1
|
Davis A, Tuomanen E. Interactions of the Pneumococcus with the Central Nervous System: Postnatal Meningitis Versus Fetal Neurodevelopment. J Pediatric Infect Dis Soc 2025; 14:piae068. [PMID: 39777500 DOI: 10.1093/jpids/piae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 01/11/2025]
Abstract
In young children, pneumococcal meningitis epitomizes the paradigm of a destructive innate inflammatory response in the central nervous system: a five-alarm fire. In contrast, cell-free bacterial components reaching the fetal brain from an infected mother signal a quiet, noninflammatory immune response that drives abnormal neurodevelopment, changing brain architecture through neuroproliferation. This review addresses the difference between prenatal and postnatal bacterial-host signaling within the brain.
Collapse
Affiliation(s)
- Amy Davis
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Elaine Tuomanen
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Xu Y, Wang J, Qin X, Liu J. Advances in the pathogenesis and treatment of pneumococcal meningitis. Virulence 2024; 15:2387180. [PMID: 39192572 PMCID: PMC11364070 DOI: 10.1080/21505594.2024.2387180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Streptococcus pneumoniae is a common pathogen associated with community-acquired bacterial meningitis, characterized by high morbidity and mortality rates. While vaccination reduces the incidence of meningitis, many survivors experience severe brain damage and corresponding sequelae. The pathogenesis of pneumococcal meningitis has not been fully elucidated. Currently, meningitis requires bacterial disruption of the blood - brain barrier, a process that involves the interaction of bacterial surface components with host cells and various inflammatory responses. This review delineates the global prevalence, pathogenesis, and treatment strategies of pneumococcal meningitis. The objective is to enhance the thorough comprehension of the clinical manifestations and biological mechanisms of the disease, thereby enabling more efficient prevention, diagnosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Yiyun Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Ji Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
3
|
Harris JC, Lee RJ, Carey RM. Extragustatory bitter taste receptors in head and neck health and disease. J Mol Med (Berl) 2024; 102:1413-1424. [PMID: 39317733 PMCID: PMC11579162 DOI: 10.1007/s00109-024-02490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Taste receptors, first described for their gustatory functions within the oral cavity and oropharynx, are now known to be expressed in many organ systems. Even intraoral taste receptors regulate non-sensory pathways, and recent literature has connected bitter taste receptors to various states of health and disease. These extragustatory pathways involve previously unexplored, clinically relevant roles for taste signaling in areas including susceptibility to infection, antibiotic efficacy, and cancer outcomes. Among other physicians, otolaryngologists who manage head and neck diseases should be aware of this growing body of evidence and its relevance to their fields. In this review, we describe the role of extragustatory taste receptors in head and neck health and disease, highlighting recent advances, clinical implications, and directions for future investigation. Additionally, this review will discuss known TAS2R polymorphisms and the associated implications for clinical prognosis.
Collapse
Affiliation(s)
- Jacob C Harris
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Djebar M, Anselme I, Pezeron G, Bardet PL, Cantaut-Belarif Y, Eschstruth A, López-Santos D, Le Ribeuz H, Jenett A, Khoury H, Veziers J, Parmentier C, Hirschler A, Carapito C, Bachmann-Gagescu R, Schneider-Maunoury S, Vesque C. Astrogliosis and neuroinflammation underlie scoliosis upon cilia dysfunction. eLife 2024; 13:RP96831. [PMID: 39388365 PMCID: PMC11466456 DOI: 10.7554/elife.96831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.
Collapse
Affiliation(s)
- Morgane Djebar
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Isabelle Anselme
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Guillaume Pezeron
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d’Histoire Naturelle, CNRSParisFrance
| | - Pierre-Luc Bardet
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Inserm U 16 1127, CNRS UMR 7225, F-75013ParisFrance
| | - Alexis Eschstruth
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Diego López-Santos
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Hélène Le Ribeuz
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UMS2010 / INRA UMS1451, Université Paris-SaclayParisFrance
| | - Hanane Khoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Joelle Veziers
- Inserm UMR 1229, CHU Nantes PHU4 OTONN, SC3M facility, Inserm UMS 016, CNRS 3556, Université de NantesNantesFrance
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Institut de Biologie Paris Seine (IBPS) – Neurosciences Paris Seine (NPS)ParisFrance
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, 23 Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - 24 FR2048StrasbourgFrance
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, 23 Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - 24 FR2048StrasbourgFrance
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of ZurichZurichSwitzerland
- Institute of Molecular Life Sciences, University of ZurichZurichSwitzerland
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| |
Collapse
|
5
|
Yue WWS, Touhara KK, Toma K, Duan X, Julius D. Endogenous opioid signalling regulates spinal ependymal cell proliferation. Nature 2024; 634:407-414. [PMID: 39294372 DOI: 10.1038/s41586-024-07889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2024] [Indexed: 09/20/2024]
Abstract
After injury, mammalian spinal cords develop scars to confine the lesion and prevent further damage. However, excessive scarring can hinder neural regeneration and functional recovery1,2. These competing actions underscore the importance of developing therapeutic strategies to dynamically modulate scar progression. Previous research on scarring has primarily focused on astrocytes, but recent evidence has suggested that ependymal cells also participate. Ependymal cells normally form the epithelial layer encasing the central canal, but they undergo massive proliferation and differentiation into astroglia following certain injuries, becoming a core scar component3-7. However, the mechanisms regulating ependymal proliferation in vivo remain unclear. Here we uncover an endogenous κ-opioid signalling pathway that controls ependymal proliferation. Specifically, we detect expression of the κ-opioid receptor, OPRK1, in a functionally under-characterized cell type known as cerebrospinal fluid-contacting neuron (CSF-cN). We also discover a neighbouring cell population that expresses the cognate ligand prodynorphin (PDYN). Whereas κ-opioids are typically considered inhibitory, they excite CSF-cNs to inhibit ependymal proliferation. Systemic administration of a κ-antagonist enhances ependymal proliferation in uninjured spinal cords in a CSF-cN-dependent manner. Moreover, a κ-agonist impairs ependymal proliferation, scar formation and motor function following injury. Together, our data suggest a paracrine signalling pathway in which PDYN+ cells tonically release κ-opioids to stimulate CSF-cNs and suppress ependymal proliferation, revealing an endogenous mechanism and potential pharmacological strategy for modulating scarring after spinal cord injury.
Collapse
Affiliation(s)
- Wendy W S Yue
- Department of Physiology, University of California, San Francisco, CA, USA.
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Xiong Y, Pi W, Zhao W, Shi W, Yan W, Yang H, Zhou Y, Li Q, Yang L. Roles of cerebrospinal fluid-contacting neurons as potential neural stem cells in the repair and regeneration of spinal cord injuries. Front Cell Dev Biol 2024; 12:1426395. [PMID: 38983786 PMCID: PMC11231923 DOI: 10.3389/fcell.2024.1426395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a distinct group of interneurons characterized by their prominent apical globular protrusions penetrating the spinal cord's central canal and their basal axons extending towards adjacent cells. Identified nearly a century back, the specific roles and attributes of CSF-cNs have just started to emerge due to the historical lack of definitive markers. Recent findings have confirmed that CSF-cNs expressing PKD2L1 possess attributes of neural stem cells, suggesting a critical function in the regeneration processes following spinal cord injuries. This review aims to elucidate the molecular markers of CSF-cNs as potential neural stem cells during spinal cord development and assess their roles post-spinal cord injury, with an emphasis on their potential therapeutic implications for spinal cord repair.
Collapse
Affiliation(s)
- Yanxiang Xiong
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wang Zhao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Shi
- Department of Medical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weihong Yan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanrong Zhou
- Department of Health, The Qinglong County People’s Hospital, Qinglong, Guizhou, China
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Leiluo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Wang RL, Chang RB. The Coding Logic of Interoception. Annu Rev Physiol 2024; 86:301-327. [PMID: 38061018 PMCID: PMC11103614 DOI: 10.1146/annurev-physiol-042222-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.
Collapse
Affiliation(s)
- Ruiqi L Wang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Rui B Chang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
8
|
van de Beek D, Brouwer MC. Neurological infections in 2023: surveillance and prevention. Lancet Neurol 2024; 23:30-32. [PMID: 38101896 DOI: 10.1016/s1474-4422(23)00445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Affiliation(s)
- Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands.
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
9
|
Bellegarda C, Zavard G, Moisan L, Brochard-Wyart F, Joanny JF, Gray RS, Cantaut-Belarif Y, Wyart C. The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid. eLife 2023; 12:e86175. [PMID: 37772792 PMCID: PMC10617989 DOI: 10.7554/elife.86175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber's cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF's heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons.
Collapse
Affiliation(s)
- Celine Bellegarda
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | - Guillaume Zavard
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | | | | | - Jean-François Joanny
- Paris Sciences et Lettres (PSL) University, Institut Curie, Sorbonne UniversitéParisFrance
- Paris Sciences et Lettres (PSL) University, Collège de FranceParisFrance
| | - Ryan S Gray
- Dell Pediatrics Research Institute, The University of Texas at AustinAustinUnited States
| | - Yasmine Cantaut-Belarif
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| |
Collapse
|
10
|
Yue WWS, Touhara KK, Toma K, Duan X, Julius D. Endogenous Opioid Signaling Regulates Proliferation of Spinal Cord Ependymal Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556726. [PMID: 38883735 PMCID: PMC11178014 DOI: 10.1101/2023.09.07.556726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
After injury, mammalian spinal cords develop scars to seal off the damaged area and prevent further injury. However, excessive scarring can hinder neural regeneration and functional recovery (1, 2). These competing actions underscore the importance of developing therapeutic strategies to dynamically modulate the extent of scar formation. Previous research on scar formation has primarily focused on the role of astrocytes, but recent evidence suggests that ependymal cells also participate. Ependymal cells normally form the epithelial layer encasing the central canal, but they undergo massive proliferation and differentiation into astroglia following certain types of injury, becoming a core component of scars (3-7). However, the mechanisms regulating ependymal proliferation in vivo in both healthy and injured conditions remain unclear. Here, we uncover an intercellular kappa (κ) opioid signaling pathway that controls endogenous ependymal proliferation. Specifically, we detect expression of the κ opioid receptor, OPRK1, in a functionally under-characterized cell type called cerebrospinal fluid-contacting neurons (CSF-cNs). We also discover a neighboring cell population that express the cognate ligand, prodynorphin (PDYN). Importantly, OPRK1 activation excites CSF-cNs, and systemic administration of a κ antagonist enhances ependymal proliferation in uninjured spinal cords in a CSF-cN-dependent manner. Moreover, injecting a κ agonist reduces the proliferation induced by dorsal hemisection. Altogether, our data suggest a regulatory mechanism whereby PDYN + cells tonically release κ opioids to stimulate CSF-cNs, which in turn suppress ependymal proliferation. This endogenous pathway provides a mechanistic basis for the potential use of κ opiates in modulating scar formation and treating spinal cord injuries.
Collapse
|
11
|
Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del'Immagine A, Böhm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci 2023; 24:540-556. [PMID: 37558908 DOI: 10.1038/s41583-023-00723-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France.
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | | | - Urs L Böhm
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Stanchak KE, Miller KE, Shikiar D, Brunton BW, Perkel DJ. Mechanistic Hypotheses for Proprioceptive Sensing Within the Avian Lumbosacral Spinal Cord. Integr Comp Biol 2023; 63:474-483. [PMID: 37279454 DOI: 10.1093/icb/icad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Animals need to accurately sense changes in their body position to perform complex movements. It is increasingly clear that the vertebrate central nervous system contains a variety of cells capable of detecting body motion, in addition to the comparatively well-understood mechanosensory cells of the vestibular system and the peripheral proprioceptors. One such intriguing system is the lower spinal cord and column in birds, also known as the avian lumbosacral organ (LSO), which is thought to act as a set of balance sensors that allow birds to detect body movements separately from head movements detected by the vestibular system. Here, we take what is known about proprioceptive, mechanosensory spinal neurons in other vertebrates to explore hypotheses for how the LSO might sense mechanical information related to movement. Although the LSO is found only in birds, recent immunohistochemical studies of the avian LSO have hinted at similarities between cells in the LSO and the known spinal proprioceptors in other vertebrates. In addition to describing possible connections between avian spinal anatomy and recent findings on spinal proprioception as well as sensory and sensorimotor spinal networks, we also present some new data that suggest a role for sensory afferent peptides in LSO function. Thus, this perspective articulates a set of testable ideas on mechanisms of LSO function grounded in the emerging spinal proprioception scientific literature.
Collapse
Affiliation(s)
| | - Kimberly E Miller
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Devany Shikiar
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - David J Perkel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Otolaryngology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Wyart C, Ki Jim K, Prendergast A. Sensory systems in the peripheral and central nervous systems shape host response during infections. Neuroscience 2023:S0306-4522(23)00303-2. [PMID: 37419406 DOI: 10.1016/j.neuroscience.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The function of sensory cells has been largely investigated in the field of neuroscience for how they report the physical and chemical changes of the environment ("exteroception") and of internal physiology ("interoception"). Investigations over the last century have largely focused on the morphological, electrical and receptor properties of sensory cells in the nervous system focusing on conscious perception of external cues or homeostatic regulation upon detection of internal cues. Research in the last decade has uncovered that sensory cells can often sense polymodal cues, such as mechanical, chemical, and/ or thermal. Furthermore, sensory cells in the peripheral as well as in the central nervous system can detect evidence associated with the invasion of pathogenic bacteria or viruses. The corresponding neuronal activation associated with the presence of pathogens can impact their classical functions within the nervous system and trigger the release of compounds modulating the response to intruders, either triggering pain to raise awareness, enhancing host defense or sometimes, aggravating the infection. This perspective brings to light the need for interdisciplinary training in immunology, microbiology and neuroscience for the next generation of investigators in this field.
Collapse
Affiliation(s)
- Claire Wyart
- Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, Paris 75013, France.
| | - Kin Ki Jim
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Andrew Prendergast
- Comparative Medicine, 300 George St., Room 0752, New Haven, CT 06511, United States
| |
Collapse
|
14
|
MacCain W, Tuomanen E. Taste vs. pain: A sensory feast in bacterial meningitis. Cell Host Microbe 2023; 31:681-682. [PMID: 37167946 DOI: 10.1016/j.chom.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
During meningitis, sensory neurons detect bacterial toxins and metabolites. Early activation of pain receptors suppresses host defense in the meninges while, later, taste receptors amplify inflammation in the spinal cord. Is a neuroimmune axis a clue to new treatments?
Collapse
Affiliation(s)
- William MacCain
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Elaine Tuomanen
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA.
| |
Collapse
|