1
|
Wróbel A, Klichowska E, Nobis M. Phylogeny and evolutionary history of alpine alkali grasses (Poaceae: Puccinellia) within the subtribe Coleanthinae. Mol Phylogenet Evol 2025:108385. [PMID: 40516837 DOI: 10.1016/j.ympev.2025.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 05/17/2025] [Accepted: 06/07/2025] [Indexed: 06/16/2025]
Abstract
Alkali grasses (Poaceae: Puccinellia) are a widely-distributed and species-rich group that has developed tolerance to alkaline and/or saline conditions. With more than 100 species, the genus is the largest in the subtribe Coleanthinae and is characterized by the ubiquity of polyploidy and hybridization. Despite large taxonomic and ecological diversity, the evolutionary history of alkali grasses and the emergence of their high-mountain diversity remain poorly understood. In this study, we combined genomic data (DArTseq), nuclear ribosomal, and chloroplast markers to shed more light on the origins of alpine alkali grasses within the subtribe Coleanthinae. Using a global perspective, we found that the alpine species of the Pan-Tibetan Highlands emerged at different timescales along the evolutionary history of Puccinellia. Particularly, our results revealed that two high-alpine species, P. pamirica and P. subspicata, are resolved near the backbone of the infrageneric diversification of alkali grasses and remain closely related to multiple arctic species. Our integrative approach suggests a key role of cold-tolerance during the early stages of evolutionary radiation of the genus and highlights the importance of the Pleistocene climate oscillations for speciation in alkali grasses.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| |
Collapse
|
2
|
García-Pérez P, De Gregorio MA, Capri E, Zengin G, Lucini L. Unleashing the nutritional potential of Brassica microgreens: A case study on seed priming with Vermicompost. Food Chem 2025; 475:143281. [PMID: 39956059 DOI: 10.1016/j.foodchem.2025.143281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Microgreens constitute ready-to-eat functional foods, being rich sources of phytonutrients and phytochemicals. Because of their short life cycle, seed priming is a promising strategy to fortify their functional outcome. Vermicompost was applied as seed priming agent for four Brassicaceae microgreens of nutritional interest. The combination of untargeted metabolomics and in vitro assays highlighted the involvement of phenolics and glucosinolates in the functional traits of microgreens, following species-specific responses. Cress accumulated specific polyphenols at low vermicompost dosage, while daikon mainly accumulated aliphatic glucosinolates. Mustard and red cabbage were found to repress glucosinolate accumulation while eliciting polyphenols following vermicompost fortification. The application of machine learning chemometrics revealed that both families of compounds coordinated the functionality of microgreens in terms of antioxidant and neuroprotective bioactivities, highlighting the importance of optimizing genotype-specific interventions. This research sheds light on nutritional enhancement of functional foods, paving the way toward the establishment of novel sustainable food systems.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Murcia, Spain; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy.
| | - Marco A De Gregorio
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Ettore Capri
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Luigi Lucini
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Murcia, Spain; Institute of Bioimaging and Biological Complex Systems (IBSBC), National Research Council (CNR), 20054 Milan, Italy
| |
Collapse
|
3
|
Jiang X, Hu Q, Mei D, Li X, Xiang L, Al-Shehbaz IA, Song X, Liu J, Lysak MA, Sun P. Chromosome fusions shaped karyotype evolution and evolutionary relationships in the model family Brassicaceae. Nat Commun 2025; 16:4631. [PMID: 40389407 PMCID: PMC12089291 DOI: 10.1038/s41467-025-59640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Abstract
The ancestral crucifer karyotype and 22 conserved genomic blocks (CGBs) facilitate phylogenomic analyses in the Brassicaceae. Chromosomal rearrangements reshuffled CGBs of ancestral chromosomes during karyotype evolution. Here, we identify eight protochromosomes representing the common ancestral karyotype (ACBK) of the two Brassicoideae supertribes: Camelinodae (Lineage I) and Brassicodae (Lineage II). The characterization of multiple cascading fusion events allows us to infer evolutionary relationships based on these events. In the Camelinodae, the ACBK first evolved into the AKI genome, which remained conserved in the Cardamineae, whereas it was altered to tAKI by a reciprocal translocation that preceded the diversification of most Camelinodae tribes. The identified fusion breakpoints largely overlap with CGB boundaries, suggesting that CGBs are mainly disrupted by chromosome fusions. Our results demonstrate the stable inheritance of chromosome fusions and their importance for reconstructing evolutionary relationships. The chromosomal breakpoint approach provides a basis for ancestral state reconstruction based on chromosome-level genome assemblies.
Collapse
Affiliation(s)
- Xinyao Jiang
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dong Mei
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaonan Li
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ling Xiang
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China.
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology and Department of Experimental Botany, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China.
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
4
|
Bird KA, Ramos AA, Kliebenstein DJ. Phylogenetic and genomic mechanisms shaping glucosinolate innovation. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102705. [PMID: 40157132 DOI: 10.1016/j.pbi.2025.102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Plants have created an immense diversity of specialized metabolites to optimize fitness within a complex environment. Each plant lineage has created novel metabolites often using the classical duplication/neo-functionalization model, but this is constrained by undersampled genera and an absence of high-quality genomes. Phylogenetically resolved genomes, deeper chemical sampling and mechanistic assessment of glucosinolate diversity in the Brassicales is beginning to fill in a deeper understanding of how chemical novelty arises. This is showing that small-scale duplications like tandem or distal events may have more influence on the formation of metabolic novelty. Similarly, this is showing that gene loss is playing a significant role in metabolic diversity across the entire genera. Finally, mechanistic work is showing that the glucosinolate pathway is not a defined endpoint but is being used as a launching pad for the creation of other metabolites. In combination, this work is showing the potential in combining high-quality genomes with balanced phylogenetic sampling to develop improved models on how specialized metabolite gene evolution occurs.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Amanda Agosto Ramos
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA; Plant Biology Graduate Group, University of California, Davis, Davis, CA, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA; Plant Biology Graduate Group, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Sennikov A, Lazkov G, German DA. The first checklist of alien vascular plants of Kyrgyzstan, with new records and critical evaluation of earlier data. Contribution 3. Biodivers Data J 2025; 13:e145624. [PMID: 40078829 PMCID: PMC11897906 DOI: 10.3897/bdj.13.e145624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background We continue the series of detailed treatments of alien vascular plants of Kyrgyzstan. The complete background for every species occurrence (herbarium specimens, documented observations, published literature) is uncovered and critically evaluated in a wide context of plant invasions in Central Asia with a reference to Eastern Europe and Northern Asia, based on events in the political and economic history. Complete point distribution maps are provided for each species in Central Asia, in general and Kyrgyzstan, in particular. New information All records of Hesperismatronalis in Central Asia (including Kyrgyzstan) belong to H.pycnotricha; the latter species is newly reported as a locally naturalised alien in Kazakhstan. The previous record of Sisymbriumirio from Kyrgyzstan is rejected as based on a misidentified specimen of S.loeselii, but the species is newly recorded here as a recent casual alien. Hirschfeldiaincana is presumably native in south-western Turkmenistan; its second record in Central Asia was caused by the import of contaminated wheat grain in the times of the Soviet grain crisis and its recent expansion may be linked to the increasing import of forage grain. The introduction of Crambeorientalis was connected with its cultivation for fodder and as an ornamental plant and its further broad dispersal was aided by winds. Rorippaaustriaca is native in the steppes of north-western Kazakhstan, but alien in the mountains of Central Asia. The occurrences of three alien species originated directly from cultivation (Hesperispycnotricha as an ornamental, Armoraciarusticana as an edible plant, Crambeorientalis as an ornamental and fodder plant), three species (Hirschfeldiaincana, Mutardaarvensis, Sisymbriumirio) were imported as grain contaminants, whereas two others (Rorippaaustriaca, R.sylvestris) have arrived with contaminated soil on ornamental plants or arboreous saplings. The arrival period is inferred as the Neolithic period (Mutardaarvensis), the Imperial times (Armoraciarusticana, Hesperispycnotricha), the post-war Soviet times (Crambeorientalis, Rorippaaustriaca, R.sylvestris) and the independence times (Hirschfeldiaincana, Sisymbriumirio). All the treated species, but two, increase their frequency in Kyrgyzstan; Mutardaarvensis has already reached its complete distribution, being an ubiquitous weed, whereas Armoraciarusticana experiences a projected decline because its common cultivation has ceased. No species is invasive in natural habitats. A new combination, Mutardaarvensisvar.orientalis (L.) Sennikov, is proposed for a variant with pubescent pods.
Collapse
Affiliation(s)
- Alexander Sennikov
- University of Helsinki, Helsinki, FinlandUniversity of HelsinkiHelsinkiFinland
| | - Georgy Lazkov
- Institute of Biology, Bishkek, KyrgyzstanInstitute of BiologyBishkekKyrgyzstan
| | - Dmitry A. German
- Altai State University, Barnaul, RussiaAltai State UniversityBarnaulRussia
| |
Collapse
|
6
|
Gols R. Tolerance to insect herbivory increases with progressing plant development. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:287-296. [PMID: 39720944 PMCID: PMC11846633 DOI: 10.1111/plb.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024]
Abstract
Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities. Fitness costs decreased with progressive ontogenetic stage at which damage was inflicted. Feeding on meristem tissues on vegetative and budding plants limited the plant's ability to fully compensate for tissue loss, whereas feeding on flowers resulted in full compensation or overcompensation in Sinapis arvensis and Brassica nigra. Herbivory promoted germination of seeds in the following year, thereby causing a shift in relative contribution to the next year's generation at the expense of contributing to the long-lived seed bank. Herbivory intensity affected fitness correlates of B. nigra and to a lesser extent of Sisymbrium officinale, but not of S. arvensis, demonstrating that even closely related plant species can differ in their specific responses to herbivory and that these can differently affect reproductive output. In terms of fitness costs, annual plant species can be quite resilient to herbivory. However, the extent to which they tolerate tissue loss depends on the ontogenetic stage that is under attack. Seed persistence in the soil has been proposed as a bet-hedging strategy of short-lived species to increase long-term fitness. Herbivore-induced changes in seed germination can result in a shift in the relative contribution of seeds to the seed bank and next year's generation.
Collapse
Affiliation(s)
- R. Gols
- Laboratory of Entomology, Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
7
|
Jin GT, Xu YC, Hou XH, Jiang J, Li XX, Xiao JH, Bian YT, Gong YB, Wang MY, Zhang ZQ, Zhang YE, Zhu WS, Liu YX, Guo YL. A de novo Gene Promotes Seed Germination Under Drought Stress in Arabidopsis. Mol Biol Evol 2025; 42:msae262. [PMID: 39719058 PMCID: PMC11721784 DOI: 10.1093/molbev/msae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
The origin of genes from noncoding sequences is a long-term and fundamental biological question. However, how de novo genes originate and integrate into the existing pathways to regulate phenotypic variations is largely unknown. Here, we selected 7 genes from 782 de novo genes for functional exploration based on transcriptional and translational evidence. Subsequently, we revealed that Sun Wu-Kong (SWK), a de novo gene that originated from a noncoding sequence in Arabidopsis thaliana, plays a role in seed germination under osmotic stress. SWK is primarily expressed in dry seed, imbibing seed and silique. SWK can be fully translated into an 8 kDa protein, which is mainly located in the nucleus. Intriguingly, SWK was integrated into an extant pathway of hydrogen peroxide content (folate synthesis pathway) via the upstream gene cytHPPK/DHPS, an Arabidopsis-specific gene that originated from the duplication of mitHPPK/DHPS, and downstream gene GSTF9, to improve seed germination in osmotic stress. In addition, we demonstrated that the presence of SWK may be associated with drought tolerance in natural populations of Arabidopsis. Overall, our study highlights how a de novo gene originated and integrated into the existing pathways to regulate stress adaptation.
Collapse
Affiliation(s)
- Guang-Teng Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Xin Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Hui Xiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Tao Bian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bo Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Wang
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents and Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang-Sheng Zhu
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yong-Xiu Liu
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liao IT, Sears KE, Hileman LC, Nikolov LA. Different orthology inference algorithms generate similar predicted orthogroups among Brassicaceae species. APPLICATIONS IN PLANT SCIENCES 2025; 13:e11627. [PMID: 39906489 PMCID: PMC11788906 DOI: 10.1002/aps3.11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 02/06/2025]
Abstract
Premise Orthology inference is crucial for comparative genomics, and multiple algorithms have been developed to identify putative orthologs for downstream analyses. Despite the abundance of proposed solutions, including publicly available benchmarks, it is difficult to assess which tool is most suitable for plant species, which commonly have complex genomic histories. Methods We explored the performance of four orthology inference algorithms-OrthoFinder, SonicParanoid, Broccoli, and OrthNet-on eight Brassicaceae genomes in two groups: one group comprising only diploids and another set comprising the diploids, two mesopolyploids, and one recent hexaploid genome. Results The composition of the orthogroups reflected the species' ploidy and genomic histories, with the diploid set having a higher proportion of identical orthogroups. While the diploid + higher ploidy set had a lower proportion of orthogroups with identical compositions, the average degree of similarity between the orthogroups was not different from the diploid set. Discussion Three algorithms-OrthoFinder, SonicParanoid, and Broccoli-are helpful for initial orthology predictions. Results produced using OrthNet were generally outliers but could still provide detailed information about gene colinearity. With our Brassicaceae dataset, slight discrepancies were found across the orthology inference algorithms, necessitating additional analyses such as tree inference to fine-tune results.
Collapse
Affiliation(s)
- Irene T. Liao
- Department of Molecular, Cell, and Development BiologyUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| | - Karen E. Sears
- Department of Molecular, Cell, and Development BiologyUniversity of California – Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| | - Lena C. Hileman
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | | |
Collapse
|
9
|
Wolters FC, Del Pup E, Singh KS, Bouwmeester K, Schranz ME, van der Hooft JJJ, Medema MH. Pairing omics to decode the diversity of plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102657. [PMID: 39527852 DOI: 10.1016/j.pbi.2024.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Plants have evolved complex bouquets of specialized natural products that are utilized in medicine, agriculture, and industry. Untargeted natural product discovery has benefitted from growing plant omics data resources. Yet, plant genome complexity limits the identification and curation of biosynthetic pathways via single omics. Pairing multi-omics types within experiments provides multiple layers of evidence for biosynthetic pathway mining. The extraction of paired biological information facilitates connecting genes to transcripts and metabolites, especially when captured across time points, conditions and chemotypes. Experimental design requires specific adaptations to enable effective paired-omics analysis. Ultimately, metadata standards are required to support the integration of paired and unpaired public datasets and to accelerate collaborative efforts for natural product discovery in the plant research community.
Collapse
Affiliation(s)
- Felicia C Wolters
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands; Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Elena Del Pup
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands. https://twitter.com/elena_delpup
| | - Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands; Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, the Netherlands; Faculty of Environment, Science and Economy, University of Exeter, TR10 9FE Penryn Cornwall UK; Plant Functional Genomics Group, Brightlands Future Farming Institute, Faculty of Science and Engineering, Maastricht University 5928 SX Venlo, the Netherlands. https://twitter.com/Kumar_S_Singh
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands. https://twitter.com/K_Bouwmeester
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marnix H Medema
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Fonseca LHM, Asselman P, Goodrich KR, Nge FJ, Soulé V, Mercier K, Couvreur TLP, Chatrou LW. Truly the best of both worlds: Merging lineage-specific and universal probe kits to maximize phylogenomic inference. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11615. [PMID: 39628541 PMCID: PMC11610415 DOI: 10.1002/aps3.11615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 12/06/2024]
Abstract
Premise Hybridization capture kits are now commonly used for reduced representation approaches in genomic sequencing, with both universal and clade-specific kits available. Here, we present a probe kit targeting 799 low-copy genes for the plant family Annonaceae. Methods This new version of the kit combines the original 469 genes from the previous Annonaceae kit with 334 genes from the universal Angiosperms353 kit. We also compare the results obtained using the original Angiosperms353 kit with our custom approach using a subset of specimens. Parsimony-informative sites and the results of maximum likelihood phylogenetic inference were assessed for combined matrices using the genera Asimina and Deeringothamnus. Results The Annonaceae799 genes derived from the Angiosperms353 kit have extremely high recovery rates. Off-target reads were also detected. When evaluating size, the proportion of on- and off-target regions, and the number of parsimony-informative sites, the genes incorporated from the Angiosperms353 panel generally outperformed the genes from the original Annonaceae probe kit. Discussion We demonstrated that the new sequences from the Angiosperms353 probe set are variable and relevant for future studies on species-level phylogenomics and within-species studies in the Annonaceae. The integration of kits also establishes a connection between projects and makes new genes available for phylogenetic and population studies.
Collapse
Affiliation(s)
- Luiz Henrique M. Fonseca
- Systematic and Evolutionary Botany Laboratory, Department of BiologyGhent UniversityGhentBelgium
| | - Pieter Asselman
- Systematic and Evolutionary Botany Laboratory, Department of BiologyGhent UniversityGhentBelgium
| | | | - Francis J. Nge
- Institute of Research for Development (IRD), UMR DIADEUniversité de MontpellierMontpellierFrance
| | - Vincent Soulé
- Institute of Research for Development (IRD), UMR DIADEUniversité de MontpellierMontpellierFrance
| | - Kathryn Mercier
- Department of BiologyCity College of New YorkNew YorkNew YorkUSA
- The Graduate Center of the City University of New YorkNew YorkNew YorkUSA
| | - Thomas L. P. Couvreur
- Institute of Research for Development (IRD), UMR DIADEUniversité de MontpellierMontpellierFrance
| | - Lars W. Chatrou
- Systematic and Evolutionary Botany Laboratory, Department of BiologyGhent UniversityGhentBelgium
| |
Collapse
|
11
|
Nicolas Mala KL, Skalak J, Zemlyanskaya E, Dolgikh V, Jedlickova V, Robert HS, Havlickova L, Panzarova K, Trtilek M, Bancroft I, Hejatko J. Primary multistep phosphorelay activation comprises both cytokinin and abiotic stress responses: insights from comparative analysis of Brassica type-A response regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6346-6368. [PMID: 39171371 PMCID: PMC11523033 DOI: 10.1093/jxb/erae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Multistep phosphorelay (MSP) signaling integrates hormonal and environmental signals to control both plant development and adaptive responses. Type-A RESPONSE REGULATOR (RRA) genes, the downstream members of the MSP cascade and cytokinin primary response genes, are thought to mediate primarily the negative feedback regulation of (cytokinin-induced) MSP signaling. However, transcriptional data also suggest the involvement of RRA genes in stress-related responses. By employing evolutionary conservation with the well-characterized Arabidopsis thaliana RRA genes, we identified five and 38 novel putative RRA genes in Brassica oleracea and Brassica napus, respectively. Our phylogenetic analysis suggests the existence of gene-specific selective pressure, maintaining the homologs of ARR3, ARR6, and ARR16 as singletons during the evolution of Brassicaceae. We categorized RRA genes based on the kinetics of their cytokinin-mediated up-regulation and observed both similarities and specificities in this type of response across Brassicaceae species. Using bioinformatic analysis and experimental data demonstrating the cytokinin and abiotic stress responsiveness of the A. thaliana-derived TCSv2 reporter, we unveil the mechanistic conservation of cytokinin- and stress-mediated up-regulation of RRA genes in B. rapa and B. napus. Notably, we identify partial cytokinin dependency of cold stress-induced RRA transcription, thus further demonstrating the role of cytokinin signaling in crop adaptive responses.
Collapse
Affiliation(s)
- Katrina Leslie Nicolas Mala
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Jan Skalak
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladislav Dolgikh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Veronika Jedlickova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Helene S Robert
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | | | - Klara Panzarova
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Martin Trtilek
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Ian Bancroft
- Department of Biology, University of York, York, UK
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Hoang NV, Walden N, Caracciolo L, Luoni SB, Retta M, Li R, Wolters FC, Woldu T, Becker FFM, Verbaarschot P, Harbinson J, Driever SM, Struik PC, van Amerongen H, de Ridder D, Aarts MGM, Schranz ME. Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits. ANNALS OF BOTANY 2024:mcae179. [PMID: 39446469 DOI: 10.1093/aob/mcae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits. METHODS We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops. KEY RESULTS Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light. CONCLUSIONS The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
Collapse
Affiliation(s)
- Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nora Walden
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges Retta
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Run Li
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felicia C Wolters
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tina Woldu
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Saunders TC, Larridon I, Baker WJ, Barrett RL, Forest F, Françoso E, Maurin O, Rokni S, Roalson EH. Tangled webs and spider-flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16399. [PMID: 39206557 DOI: 10.1002/ajb2.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 09/04/2024]
Abstract
PREMISE Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points. METHODS We used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image-stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records. RESULTS We recovered a well-supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species. CONCLUSIONS Our results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long-distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.
Collapse
Affiliation(s)
- Theresa C Saunders
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164-4236, USA
| | | | | | - Russell L Barrett
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Elaine Françoso
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Saba Rokni
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164-4236, USA
| |
Collapse
|
14
|
Snoeck S, Lee HK, Schmid MW, Bender KW, Neeracher MJ, Fernández-Fernández AD, Santiago J, Zipfel C. Leveraging coevolutionary insights and AI-based structural modeling to unravel receptor-peptide ligand-binding mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2400862121. [PMID: 39106311 PMCID: PMC11331138 DOI: 10.1073/pnas.2400862121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024] Open
Abstract
Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the "SxS" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | | | - Kyle W. Bender
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Matthias J. Neeracher
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Alvaro D. Fernández-Fernández
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | - Cyril Zipfel
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
15
|
de Vos JM, Streiff SJR, Bachelier JB, Epitawalage N, Maurin O, Forest F, Baker WJ. Phylogenomics of the pantropical Connaraceae: revised infrafamilial classification and the evolution of heterostyly. PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2024; 310:29. [PMID: 39105137 PMCID: PMC11297820 DOI: 10.1007/s00606-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024]
Abstract
Connaraceae is a pantropical family of about 200 species containing lianas and small trees with remarkably diverse floral polymorphisms, including distyly, tristyly, homostyly, and dioecy. To date, relationships within the family have not been investigated using a targeted molecular phylogenetic treatment, severely limiting systematic understanding and reconstruction of trait evolution. Accordingly, their last infrafamilial classification was based only on morphological data. Here, we used phylogenomic data obtained using the Angiosperms353 nuclear target sequence capture probes, sampling all tribes and almost all genera, entirely from herbarium specimens, to revise infrafamilial classification and investigate the evolution of heterostyly. The backbone of the resulting molecular phylogenetic tree is almost entirely resolved. Connaraceae consists of two clades, one containing only the African genus Manotes (4 or 5 species), which we newly recognize at the subfamily level. Vegetative and reproductive synapomorphies are proposed for Manotoideae. Within Connaroideae, Connareae is expanded to include the former Jollydoreae. The backbone of Cnestideae, which contains more than half of the Connaraceae species, remains incompletely resolved. Reconstructions of reproductive system evolution are presented that tentatively support tristyly as the ancestral state for the family, with multiple parallel losses, in agreement with previous hypotheses, plus possible re-gains. However, the great diversity of stylar polymorphisms and their phylogenetic lability preclude a definitive answer. Overall, this study reinforces the usefulness of herbarium phylogenomics, and unlocks the reproductive diversity of Connaraceae as a model system for the evolution of complex biological phenomena. Supplementary Information The online version contains supplementary material available at 10.1007/s00606-024-01909-y.
Collapse
Affiliation(s)
- Jurriaan M. de Vos
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Serafin J. R. Streiff
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
- UMR DIADE, Université de Montpellier, IRD, CIRAD, 911 Avenue Agropolis, 34090 Montpellier, France
| | - Julien B. Bachelier
- Institüt für Biologie/Dahlem Centre of Plant Sciences, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany
| | - Niroshini Epitawalage
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458 USA
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
| | - William J. Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
- Department of Biology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| |
Collapse
|
16
|
Beringer M, Choudhury RR, Mandáková T, Grünig S, Poretti M, Leitch IJ, Lysak MA, Parisod C. Biased Retention of Environment-Responsive Genes Following Genome Fractionation. Mol Biol Evol 2024; 41:msae155. [PMID: 39073781 PMCID: PMC11306978 DOI: 10.1093/molbev/msae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.
Collapse
Affiliation(s)
- Marc Beringer
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Sandra Grünig
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manuel Poretti
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
17
|
Thomas SK, Hoek KV, Ogoti T, Duong H, Angelovici R, Pires JC, Mendoza-Cozatl D, Washburn J, Schenck CA. Halophytes and heavy metals: A multi-omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima. AMERICAN JOURNAL OF BOTANY 2024; 111:e16310. [PMID: 38600732 DOI: 10.1002/ajb2.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 04/12/2024]
Abstract
PREMISE The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole-genome triplication with closely related salt-sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. METHODS Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. RESULTS Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. CONCLUSIONS These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.
Collapse
Affiliation(s)
- Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, 65211, MO, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, 65211, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
| | - Kathryn Vanden Hoek
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| | - Tasha Ogoti
- Department of Computer Science, University of Missouri, Columbia, 65211, MO, USA
| | - Ha Duong
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, 65211, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
| | - J Chris Pires
- Soil and Crop Sciences, Colorado State University, Fort Collins, 80523-1170, CO, USA
| | - David Mendoza-Cozatl
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Division of Plant Sciences and Technology, University of Missouri, Columbia, 65211, MO, USA
| | - Jacob Washburn
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Plant Genetics Research Unit, USDA-ARS, Columbia, 65211, MO, USA
| | - Craig A Schenck
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
18
|
Jeon D, Kim C. Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2087. [PMID: 39124204 PMCID: PMC11314605 DOI: 10.3390/plants13152087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The Brassicaceae family is distinguished by its inclusion of high-value crops such as cabbage, broccoli, mustard, and wasabi, all noted for their glucosinolates. In this family, many polyploidy species are distributed and shaped by numerous whole-genome duplications, independent genome doublings, and hybridization events. The evolutionary trajectory of the family is marked by enhanced diversification and lineage splitting after paleo- and meso-polyploidization, with discernible remnants of whole-genome duplications within their genomes. The recent neopolyploidization events notably increased the proportion of polyploid species within the family. Although sequencing efforts for the Brassicaceae genome have been robust, accurately distinguishing sub-genomes remains a significant challenge, frequently complicating the assembly process. Assembly strategies include comparative analyses with ancestral species and examining k-mers, long terminal repeat retrotransposons, and pollen sequencing. This review comprehensively explores the unique genomic characteristics of the Brassicaceae family, with a particular emphasis on polyploidization events and the latest strategies for sequencing and assembly. This review will significantly improve our understanding of polyploidy in the Brassicaceae family and assist in future genome assembly methods.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Changsoo Kim
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
19
|
Liu J, Zhou SZ, Liu YL, Zhao BY, Yu D, Zhong MC, Jiang XD, Cui WH, Zhao JX, Qiu J, Liu LM, Guo ZH, Li HT, Tan DY, Hu JY, Li DZ. Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae. PLANT COMMUNICATIONS 2024; 5:100878. [PMID: 38475995 PMCID: PMC11287156 DOI: 10.1016/j.xplc.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin-Yan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiu
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liang-Min Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dun-Yan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
20
|
Zhang Z, Shi X, Tian H, Qiu J, Ma H, Tan D. Complete Chloroplast Genome of Megacarpaea megalocarpa and Comparative Analysis with Related Species from Brassicaceae. Genes (Basel) 2024; 15:886. [PMID: 39062665 PMCID: PMC11276580 DOI: 10.3390/genes15070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine-cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunyan Tan
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Z.Z.); (X.S.); (H.T.); (J.Q.); (H.M.)
| |
Collapse
|
21
|
Wang Y, Wang H, Ye C, Wang Z, Ma C, Lin D, Jin X. Progress in systematics and biogeography of Orchidaceae. PLANT DIVERSITY 2024; 46:425-434. [PMID: 39280975 PMCID: PMC11390685 DOI: 10.1016/j.pld.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024]
Abstract
Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade, numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae, leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new insights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust foundation for future research. Nevertheless, pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015, delving into discussions on the underlying reasons for observed topological conflicts. We also provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography, highlighting factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chao Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhiping Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chongbo Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
22
|
Byrne ME, Imlay E, Ridza NNB. Shaping leaves through TALE homeodomain transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3220-3232. [PMID: 38527334 PMCID: PMC11156807 DOI: 10.1093/jxb/erae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
The first TALE homeodomain transcription factor gene to be described in plants was maize knotted1 (kn1). Dominant mutations in kn1 disrupt leaf development, with abnormal knots of tissue forming in the leaf blade. kn1 was found to be expressed in the shoot meristem but not in a peripheral region that gives rise to leaves. Furthermore, KN1 and closely related proteins were excluded from initiating and developing leaves. These findings were a prelude to a large body of work wherein TALE homeodomain proteins have been identified as vital regulators of meristem homeostasis and organ development in plants. KN1 homologues are widely represented across land plant taxa. Thus, studying the regulation and mechanistic action of this gene class has allowed investigations into the evolution of diverse plant morphologies. This review will focus on the function of TALE homeodomain transcription factors in leaf development in eudicots. Here, we discuss how TALE homeodomain proteins contribute to a spectrum of leaf forms, from the simple leaves of Arabidopsis thaliana to the compound leaves of Cardamine hirsuta and species beyond the Brassicaceae.
Collapse
Affiliation(s)
- Mary E Byrne
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Eleanor Imlay
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
23
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
24
|
Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, Epitawalage N, Françoso E, Gallego-Paramo B, McGinnie C, Negrão R, Roy SR, Simpson L, Toledo Romero E, Barber VMA, Botigué L, Clarkson JJ, Cowan RS, Dodsworth S, Johnson MG, Kim JT, Pokorny L, Wickett NJ, Antar GM, DeBolt L, Gutierrez K, Hendriks KP, Hoewener A, Hu AQ, Joyce EM, Kikuchi IABS, Larridon I, Larson DA, de Lírio EJ, Liu JX, Malakasi P, Przelomska NAS, Shah T, Viruel J, Allnutt TR, Ameka GK, Andrew RL, Appelhans MS, Arista M, Ariza MJ, Arroyo J, Arthan W, Bachelier JB, Bailey CD, Barnes HF, Barrett MD, Barrett RL, Bayer RJ, Bayly MJ, Biffin E, Biggs N, Birch JL, Bogarín D, Borosova R, Bowles AMC, Boyce PC, Bramley GLC, Briggs M, Broadhurst L, Brown GK, Bruhl JJ, Bruneau A, Buerki S, Burns E, Byrne M, Cable S, Calladine A, Callmander MW, Cano Á, Cantrill DJ, Cardinal-McTeague WM, Carlsen MM, Carruthers AJA, de Castro Mateo A, Chase MW, Chatrou LW, Cheek M, Chen S, Christenhusz MJM, Christin PA, Clements MA, Coffey SC, Conran JG, Cornejo X, Couvreur TLP, Cowie ID, Csiba L, Darbyshire I, Davidse G, Davies NMJ, Davis AP, van Dijk KJ, Downie SR, Duretto MF, Duvall MR, et alZuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, Epitawalage N, Françoso E, Gallego-Paramo B, McGinnie C, Negrão R, Roy SR, Simpson L, Toledo Romero E, Barber VMA, Botigué L, Clarkson JJ, Cowan RS, Dodsworth S, Johnson MG, Kim JT, Pokorny L, Wickett NJ, Antar GM, DeBolt L, Gutierrez K, Hendriks KP, Hoewener A, Hu AQ, Joyce EM, Kikuchi IABS, Larridon I, Larson DA, de Lírio EJ, Liu JX, Malakasi P, Przelomska NAS, Shah T, Viruel J, Allnutt TR, Ameka GK, Andrew RL, Appelhans MS, Arista M, Ariza MJ, Arroyo J, Arthan W, Bachelier JB, Bailey CD, Barnes HF, Barrett MD, Barrett RL, Bayer RJ, Bayly MJ, Biffin E, Biggs N, Birch JL, Bogarín D, Borosova R, Bowles AMC, Boyce PC, Bramley GLC, Briggs M, Broadhurst L, Brown GK, Bruhl JJ, Bruneau A, Buerki S, Burns E, Byrne M, Cable S, Calladine A, Callmander MW, Cano Á, Cantrill DJ, Cardinal-McTeague WM, Carlsen MM, Carruthers AJA, de Castro Mateo A, Chase MW, Chatrou LW, Cheek M, Chen S, Christenhusz MJM, Christin PA, Clements MA, Coffey SC, Conran JG, Cornejo X, Couvreur TLP, Cowie ID, Csiba L, Darbyshire I, Davidse G, Davies NMJ, Davis AP, van Dijk KJ, Downie SR, Duretto MF, Duvall MR, Edwards SL, Eggli U, Erkens RHJ, Escudero M, de la Estrella M, Fabriani F, Fay MF, Ferreira PDL, Ficinski SZ, Fowler RM, Frisby S, Fu L, Fulcher T, Galbany-Casals M, Gardner EM, German DA, Giaretta A, Gibernau M, Gillespie LJ, González CC, Goyder DJ, Graham SW, Grall A, Green L, Gunn BF, Gutiérrez DG, Hackel J, Haevermans T, Haigh A, Hall JC, Hall T, Harrison MJ, Hatt SA, Hidalgo O, Hodkinson TR, Holmes GD, Hopkins HCF, Jackson CJ, James SA, Jobson RW, Kadereit G, Kahandawala IM, Kainulainen K, Kato M, Kellogg EA, King GJ, Klejevskaja B, Klitgaard BB, Klopper RR, Knapp S, Koch MA, Leebens-Mack JH, Lens F, Leon CJ, Léveillé-Bourret É, Lewis GP, Li DZ, Li L, Liede-Schumann S, Livshultz T, Lorence D, Lu M, Lu-Irving P, Luber J, Lucas EJ, Luján M, Lum M, Macfarlane TD, Magdalena C, Mansano VF, Masters LE, Mayo SJ, McColl K, McDonnell AJ, McDougall AE, McLay TGB, McPherson H, Meneses RI, Merckx VSFT, Michelangeli FA, Mitchell JD, Monro AK, Moore MJ, Mueller TL, Mummenhoff K, Munzinger J, Muriel P, Murphy DJ, Nargar K, Nauheimer L, Nge FJ, Nyffeler R, Orejuela A, Ortiz EM, Palazzesi L, Peixoto AL, Pell SK, Pellicer J, Penneys DS, Perez-Escobar OA, Persson C, Pignal M, Pillon Y, Pirani JR, Plunkett GM, Powell RF, Prance GT, Puglisi C, Qin M, Rabeler RK, Rees PEJ, Renner M, Roalson EH, Rodda M, Rogers ZS, Rokni S, Rutishauser R, de Salas MF, Schaefer H, Schley RJ, Schmidt-Lebuhn A, Shapcott A, Al-Shehbaz I, Shepherd KA, Simmons MP, Simões AO, Simões ARG, Siros M, Smidt EC, Smith JF, Snow N, Soltis DE, Soltis PS, Soreng RJ, Sothers CA, Starr JR, Stevens PF, Straub SCK, Struwe L, Taylor JM, Telford IRH, Thornhill AH, Tooth I, Trias-Blasi A, Udovicic F, Utteridge TMA, Del Valle JC, Verboom GA, Vonow HP, Vorontsova MS, de Vos JM, Al-Wattar N, Waycott M, Welker CAD, White AJ, Wieringa JJ, Williamson LT, Wilson TC, Wong SY, Woods LA, Woods R, Worboys S, Xanthos M, Yang Y, Zhang YX, Zhou MY, Zmarzty S, Zuloaga FO, Antonelli A, Bellot S, Crayn DM, Grace OM, Kersey PJ, Leitch IJ, Sauquet H, Smith SA, Eiserhardt WL, Forest F, Baker WJ. Phylogenomics and the rise of the angiosperms. Nature 2024; 629:843-850. [PMID: 38658746 PMCID: PMC11111409 DOI: 10.1038/s41586-024-07324-0] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elaine Françoso
- Royal Botanic Gardens, Kew, Richmond, UK
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, London, UK
| | | | | | | | | | - Lalita Simpson
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | | | - Laura Botigué
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | | | | | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Jan T Kim
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| | - Norman J Wickett
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Guilherme M Antar
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, Brazil
| | | | | | - Kasper P Hendriks
- Department of Biology, University of Osnabrück, Osnabrück, Germany
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Alina Hoewener
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Elizabeth M Joyce
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
- Systematic, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, Munich, Germany
| | - Izai A B S Kikuchi
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Drew A Larson
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Elton John de Lírio
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, Richmond, UK
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Toral Shah
- Royal Botanic Gardens, Kew, Richmond, UK
| | | | | | - Gabriel K Ameka
- Department of Plant and Environmental Biology, University of Ghana, Accra, Ghana
| | - Rose L Andrew
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Marc S Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Jesús Ariza
- General Research Services, Herbario SEV, CITIUS, Universidad de Sevilla, Seville, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | | | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Helen F Barnes
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Matthew D Barrett
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Russell L Barrett
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Randall J Bayer
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Joanne L Birch
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Diego Bogarín
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | | | | | - Peter C Boyce
- Centro Studi Erbario Tropicale, Dipartimento di Biologia, University of Florence, Florence, Italy
| | | | | | - Linda Broadhurst
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Gillian K Brown
- Queensland Herbarium and Biodiversity Science, Brisbane Botanic Gardens, Toowong, Queensland, Australia
| | - Jeremy J Bruhl
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, University of Montreal, Montreal, Quebec, Canada
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | | | - Ainsley Calladine
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Ángela Cano
- Cambridge University Botanic Garden, Cambridge, UK
| | | | - Warren M Cardinal-McTeague
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Alejandra de Castro Mateo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mark W Chase
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | | | | | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Maarten J M Christenhusz
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Plant Gateway, Den Haag, The Netherlands
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Mark A Clements
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Skye C Coffey
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - John G Conran
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xavier Cornejo
- Herbario GUAY, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador
| | | | - Ian D Cowie
- Northern Territory Herbarium Department of Environment Parks & Water Security, Northern Territory Government, Palmerston, Northern Territory, Australia
| | | | | | | | | | | | - Kor-Jent van Dijk
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Stephen R Downie
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marco F Duretto
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Melvin R Duvall
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability and Energy, Northern Illinois University, DeKalb, IL, USA
| | | | - Urs Eggli
- Sukkulenten-Sammlung Zürich/ Grün Stadt Zürich, Zürich, Switzerland
| | - Roy H J Erkens
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
- System Earth Science, Maastricht University, Venlo, The Netherlands
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Manuel de la Estrella
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Paola de L Ferreira
- Departamento de Biologia, Faculdade de Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sue Frisby
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Lin Fu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Mercè Galbany-Casals
- Systematics and Evolution of Vascular Plants (UAB)-Associated Unit to CSIC by IBB, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elliot M Gardner
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Augusto Giaretta
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Marc Gibernau
- Laboratoire Sciences Pour l'Environnement, Université de Corse, Ajaccio, France
| | | | - Cynthia C González
- Herbario Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina
| | | | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Bee F Gunn
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Diego G Gutiérrez
- Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina
| | - Jan Hackel
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Universität Marburg, Marburg, Germany
| | - Thomas Haevermans
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Anna Haigh
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tony Hall
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Melissa J Harrison
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Trevor R Hodkinson
- Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gareth D Holmes
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | | | - Shelley A James
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - Richard W Jobson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, Botanische Staatssammlung München, Botanischer Garten München-Nymphenburg, Munich, Germany
| | | | | | - Masahiro Kato
- National Museum of Nature and Science, Tsukuba, Japan
| | | | - Graham J King
- Southern Cross University, Lismore, New South Wales, Australia
| | | | | | - Ronell R Klopper
- Foundational Biodiversity Science Division, South African National Biodiversity Institute, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Marcus A Koch
- Centre for Organismal Studies, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | | | - Frederic Lens
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | | | | | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lan Li
- CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Tatyana Livshultz
- Department of Biodiversity, Earth and Environmental Sciences, Drexel University, Philadelphia, PA, USA
- Academy of Natural Science, Drexel University, Philadelphia, PA, USA
| | - David Lorence
- National Tropical Botanical Garden, Kalaheo, HI, USA
| | - Meng Lu
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Patricia Lu-Irving
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Jaquelini Luber
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Mabel Lum
- Bioplatforms Australia Ltd, Sydney, New South Wales, Australia
| | - Terry D Macfarlane
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | | | - Vidal F Mansano
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Kristina McColl
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Angela J McDonnell
- Department of Biological Sciences, Saint Cloud State University, Saint Cloud, MN, USA
| | - Andrew E McDougall
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Hannah McPherson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Rosa I Meneses
- Instituto de Arqueología y Antropología, Universidad Católica del Norte, San Pedro de Atacama, Chile
| | | | | | | | | | | | - Taryn L Mueller
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | - Klaus Mummenhoff
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Jérôme Munzinger
- AMAP Lab, Université Montpellier, IRD, CIRAD, CNRS INRAE, Montpellier, France
| | - Priscilla Muriel
- Laboratorio de Ecofisiología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Francis J Nge
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | - Reto Nyffeler
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Andrés Orejuela
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- Grupo de Investigación en Recursos Naturales Amazónicos, Instituto Tecnológico del Putumayo, Mocoa, Colombia
| | - Edgardo M Ortiz
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | - Luis Palazzesi
- Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina
| | - Ariane Luna Peixoto
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Darin S Penneys
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | - Claes Persson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pignal
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Yohan Pillon
- LSTM Université Montpellier, CIRADIRD, Montpellier, France
| | - José R Pirani
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Carmen Puglisi
- Royal Botanic Gardens, Kew, Richmond, UK
- Missouri Botanical Garden, St. Louis, MO, USA
| | - Ming Qin
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Richard K Rabeler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Matthew Renner
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michele Rodda
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | | | - Saba Rokni
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Rolf Rutishauser
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Miguel F de Salas
- Tasmanian Herbarium, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Hanno Schaefer
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | | | - Alexander Schmidt-Lebuhn
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Alison Shapcott
- School of Science Technology and Engineering, Center for Bioinnovation, University Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | - Kelly A Shepherd
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - André O Simões
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Michelle Siros
- Royal Botanic Gardens, Kew, Richmond, UK
- University of California, San Francisco, San Francisco, CA, USA
| | - Eric C Smidt
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - James F Smith
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Neil Snow
- Pittsburg State University, Pittsburg, KS, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | | | - Julian R Starr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | - Ian R H Telford
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Andrew H Thornhill
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ifeanna Tooth
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | | | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | - Jose C Del Valle
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - G Anthony Verboom
- Department of Biological Sciences and Bolus Herbarium, University of Cape Town, Cape Town, South Africa
| | - Helen P Vonow
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Jurriaan M de Vos
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| | | | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cassiano A D Welker
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Adam J White
- Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Luis T Williamson
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Trevor C Wilson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Sin Yeng Wong
- Institute of Biodiversity And Environmental Conservation, Universiti Malaysia Sarawak, Samarahan, Malaysia
| | - Lisa A Woods
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | | | - Stuart Worboys
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | - Ya Yang
- University of Minnesota-Twin Cities, St. Paul, MN, USA
| | | | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Darren M Crayn
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | | | - Hervé Sauquet
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - William J Baker
- Royal Botanic Gardens, Kew, Richmond, UK.
- Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Xiao TW, Song F, Vu DQ, Feng Y, Ge XJ. The evolution of ephemeral flora in Xinjiang, China: insights from plastid phylogenomic analyses of Brassicaceae. BMC PLANT BIOLOGY 2024; 24:111. [PMID: 38360561 PMCID: PMC10868009 DOI: 10.1186/s12870-024-04796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND The ephemeral flora of northern Xinjiang, China, plays an important role in the desert ecosystems. However, the evolutionary history of this flora remains unclear. To gain new insights into its origin and evolutionary dynamics, we comprehensively sampled ephemeral plants of Brassicaceae, one of the essential plant groups of the ephemeral flora. RESULTS We reconstructed a phylogenetic tree using plastid genomes and estimated their divergence times. Our results indicate that ephemeral species began to colonize the arid areas in north Xinjiang during the Early Miocene and there was a greater dispersal of ephemeral species from the surrounding areas into the ephemeral community of north Xinjiang during the Middle and Late Miocene, in contrast to the Early Miocene or Pliocene periods. CONCLUSIONS Our findings, together with previous studies, suggest that the ephemeral flora originated in the Early Miocene, and species assembly became rapid from the Middle Miocene onwards, possibly attributable to global climate changes and regional geological events.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Duc Quy Vu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Feng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
26
|
Zhou R, Qin X, Hou J, Liu Y. Research progress on Brassicaceae plants: a bibliometrics analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1285050. [PMID: 38357268 PMCID: PMC10864531 DOI: 10.3389/fpls.2024.1285050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
The Brassicaceae is a worldwide family that produces ornamental flowers, edible vegetables, and oilseed plants, with high economic value in agriculture, horticulture, and landscaping. This study used the Web of Science core dataset and the CiteSpace bibliometric tool to quantitatively visualize the number of publications, authors, institutions, and countries of 3139 papers related to Brassicaceae plants from 2002 to 2022. The keywords and references were divided into two phases: Phase 1 (2002-2011) and Phase 2 (2012-2022) for quantitative and qualitative analysis. The results showed: An average annual publication volume of 149 articles, with an overall fluctuating upward trend; the research force was mainly led by Professor Ihsan A. Al-shehbaz from Missouri Botanical Garden; and the United States had the highest number of publications. In the first phase, research focused on the phylogeny of Brassicaceae plants, while the second phase delved into diverse research based on previous studies, research in areas such as polyploidy, molecular technique, physiology, and hyperaccumulator has been extended. Based on this research, we propounded some ideas for future studies on Brassicaceae plants and summarized the research gaps.
Collapse
Affiliation(s)
- Ruixue Zhou
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinsheng Qin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junjun Hou
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yining Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Castillo-Lorenzo E, Breman E, Gómez Barreiro P, Viruel J. Current status of global conservation and characterisation of wild and cultivated Brassicaceae genetic resources. Gigascience 2024; 13:giae050. [PMID: 39110621 PMCID: PMC11304946 DOI: 10.1093/gigascience/giae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/23/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The economic importance of the globally distributed Brassicaceae family resides in the large diversity of crops within the family and the substantial variety of agronomic and functional traits they possess. We reviewed the current classifications of crop wild relatives (CWRs) in the Brassicaceae family with the aim of identifying new potential cross-compatible species from a total of 1,242 species using phylogenetic approaches. RESULTS In general, cross-compatibility data between wild species and crops, as well as phenotype and genotype characterisation data, were available for major crops but very limited for minor crops, restricting the identification of new potential CWRs. Around 70% of wild Brassicaceae did not have genetic sequence data available in public repositories, and only 40% had chromosome counts published. Using phylogenetic distances, we propose 103 new potential CWRs for this family, which we recommend as priorities for cross-compatibility tests with crops and for phenotypic characterisation, including 71 newly identified CWRs for 10 minor crops. From the total species used in this study, more than half had no records of being in ex situ conservation, and 80% were not assessed for their conservation status or were data deficient (IUCN Red List Assessments). CONCLUSIONS Great efforts are needed on ex situ conservation to have accessible material for characterising and evaluating the species for future breeding programmes. We identified the Mediterranean region as one key conservation area for wild Brassicaceae species, with great numbers of endemic and threatened species. Conservation assessments are urgently needed to evaluate most of these wild Brassicaceae.
Collapse
Affiliation(s)
- Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Partnerships department, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst, Partnerships department, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Pablo Gómez Barreiro
- Royal Botanic Gardens, Kew, Wakehurst, Science Operations, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Research department, Surrey, TW9 3AE, UK
| |
Collapse
|
28
|
Givnish TJ. Plant biology: Phylogenomics of mustards and their relatives. Curr Biol 2023; 33:R998-R1000. [PMID: 37816328 DOI: 10.1016/j.cub.2023.08.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
A new nuclear phylogeny for the large family Brassicaceae opens the way for advanced comparative studies of adaptation, development, coevolution, hybridization, and diversification in this crucial group, which is the source for many of the genomic resources now used across the flowering plants.
Collapse
Affiliation(s)
- Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
29
|
Hay NM, Windham MD, Mandáková T, Lysak MA, Hendriks KP, Mummenhoff K, Lens F, Pryer KM, Bailey CD. A Hyb-Seq phylogeny of Boechera and related genera using a combination of Angiosperms353 and Brassicaceae-specific bait sets. AMERICAN JOURNAL OF BOTANY 2023; 110:e16226. [PMID: 37561651 DOI: 10.1002/ajb2.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
PREMISE Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.
Collapse
Affiliation(s)
- Nikolai M Hay
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Michael D Windham
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kasper P Hendriks
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
| | - Frederic Lens
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|