1
|
Nathani A, Khan I, Tanimoto MH, Mejía JAA, DE Miranda AM, Rishi A, Dev S, Bastos JK, Singh M. Antitumor Potential of Guttiferone E Combined With Carboplatin Against Osimertinib-resistant H1975 Lung Cancer Through Apoptosis. Anticancer Res 2024; 44:4175-4188. [PMID: 39348999 PMCID: PMC11863775 DOI: 10.21873/anticanres.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND/AIM Low selectivity and high frequency of side-effects are the major problems of currently used chemotherapeutics. Among natural compounds, the polyprenylated acylphloroglucinol, guttiferone E, isolated from Brazilian red propolis, has attracted attention due to its marked anticancer properties and was evaluated here for its role against osimertinib-resistant H1975 cells (with double mutations of epidermal growth factor receptor: EGFR L858R/T790M). MATERIALS AND METHODS Guttiferone E was obtained from red propolis using established extraction procedures. Guttiferone E was tested using the H1975 cell line in in vitro (2D and 3D) cell cultures and in vivo in BALB/c athymic nude mice. Live/dead assay was also performed to support the results. Tumor tissues obtained from in vivo studies were used for western blotting. Guttiferone E reduced H1975 cell viability in a concentration-dependent manner. The IC50 values in 2D and 3D cell lines were 2.56±0.12 μM and 11.25±0.34 μM. Furthermore, at 10 mg/kg intraperitoneally, guttiferone E significantly reduced the tumor volume in tumor xenografts when used alone and in combination with carboplatin. Guttiferone E and carboplatin displayed synergistic inhibition of H1975 cells and animal tumors. Co-treatment of guttiferone E with carboplatin induced more prominent apoptosis than treatment with either drug alone. Guttiferone E treatment induced cleavage of poly-ADP ribose polymerase and induced apoptosis by significantly reducing levels of mammalian target of rapamycin, sirtuin 1, sirtuin 7, superoxide dismutase, programmed death-ligand 1, and programmed cell death 1 in tumor tissues. CONCLUSION Our results show guttiferone E to be a promising, novel and potent antitumor drug candidate for osimertinib-resistant lung cancer with EGFR L858R/T790M mutations.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Matheus Hikaru Tanimoto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Aline Mayrink DE Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Arun Rishi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, U.S.A
| | - Satyanarayan Dev
- Biological Systems Engineering, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil;
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.;
| |
Collapse
|
2
|
Wu H, Jiang F, Yuan W, Zhao Y, Liu N, Miao X. Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. PLoS One 2024; 19:e0301660. [PMID: 38626146 PMCID: PMC11020939 DOI: 10.1371/journal.pone.0301660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/20/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS). METHODS We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real‑time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model. CONCLUSION In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.
Collapse
Affiliation(s)
- Haidong Wu
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fan Jiang
- Medical Centre for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei Yuan
- Department of Emergency Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Fang JR, Zhang YJ, Meng X, Chen Y, Zhang X, Zhu LJ, Yao XS. Two new Nb-oxide indole alkaloids with β-hematin inhibitory activity from the stems and leaves of Rauvolfia dichotoma. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-9. [PMID: 38247111 DOI: 10.1080/10286020.2024.2302825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Rauvolfia dichotoma, a shrub of Apocynaceae, was collected from the Islands of SAO Tome and Principe and cultivated locally for medicinal purpose. Phytochemical investigation of 95% ethanol extract from the stems and leaves of R. dichotoma led to the isolation of two new Nb-oxide indole alkaloids, namely Nb-oxide-mitoridine (1) and Nb-oxide-raucaffricine (2), together with two known alkaloids (3-4) and eleven known lignans (5-15). Their chemical structures were elucidated by extensive NMR and HR-ESI-MS data analysis. All compounds (except 13) were tested for their β-hematin inhibitory activity. Compounds 2, 4, 14, and 15 showed certain inhibitory activity, indicating that they may have an antimalarial effect.
Collapse
Affiliation(s)
- Jing-Ru Fang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Jie Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Meng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ling-Juan Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Sheng Yao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
de Sousa HM, da Silva AB, Ferreira MKA, da Silva AW, de Menezes JESA, Marinho ES, Marinho MM, Dos Santos HS, Pessoa ODL. Indole Alkaloids of Rauvolfia ligustrina and Their Anxiolytic Effects in Adult Zebrafish. PLANTA MEDICA 2023; 89:979-989. [PMID: 36940928 DOI: 10.1055/a-2058-3710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rauvolfia species are well known as producers of bioactive monoterpene indole alkaloids, which exhibit a broad spectrum of biological activities. A new vobasine-sarpagan-type bisindole alkaloid (1: ) along with six known monomeric indoles (2, 3/4, 5: , and 6/7: ) were isolated from the ethanol extract of the roots of Rauvolfia ligustrina. The structure of the new compound was elucidated by interpretation of their spectroscopic data (1D and 2D NMR and HRESIMS) and comparison with published data for analog compounds. The cytotoxicity of the isolated compounds was screened in a zebrafish (Danio rerio) model. The possible GABAergic (diazepam as the positive control) and serotoninergic (fluoxetine as the positive control) mechanisms of action in adult zebrafish were also evaluated. No compounds were cytotoxic. Compound 2: and the epimers 3: /4: and 6: /7: showed a mechanism action by GABAA, while compound 1: showed a mechanism action by a serotonin receptor (anxiolytic activity). Molecular docking studies showed that compounds 2: and 5: have a greater affinity by the GABAA receptor when compared with diazepam, whereas 1: showed the best affinity for the 5HT2AR channel when compared to risperidone.
Collapse
Affiliation(s)
| | - Alison Batista da Silva
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza-CE, Brazil
| | | | | | | | - Emmanuel Silva Marinho
- Programa de Graduação em Ciências Naturais, Universidade Estadual de Ceará, Fortaleza-CE, Brazil
| | | | | | | |
Collapse
|
5
|
Sabu A, J S, R G, E D. In-vitro anticancer activity of Rauvolfia tetraphylla extract on mcf-7 breast cancer cell lines. Bioinformation 2023; 19:43-47. [PMID: 37720282 PMCID: PMC10504496 DOI: 10.6026/97320630019043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
The medicinal herb Rauwolfia tetraphylla is utilized by South Indian tribes to treat various medical ailments, although its cytotoxicity action has not been studied. As a result, the emphasis of the current investigation is on the anticancer activity of Rauvolfia tetraphylla extracts on MCF-7 breast cancer cell lines, as well as their effects on the levels of gene expression for BCl2 and TGF. The study found that the anticancer activity of R. tetraphylla extract demonstrated significant cytotoxic activity against MCF-7 breast cancer cell lines. Because of this, its anticancer effect may be caused by apoptosis, which is caused by DNA breaking and is helped by active phytochemicals like alkaloids, phenols, and flavonoids in the extracts. It also promotes apoptosis by altering Bcl-2 and TGF expression levels. The present study suggests using R. tetraphylla extract as an anticancer agent in traditional medicine.
Collapse
Affiliation(s)
- Abraham Sabu
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Selvaraj J
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Gayatridevi R
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Dilipan E
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
6
|
Okem A, Henstra C, Lambert M, Hayeshi R. A review of the pharmacodynamic effect of chemo-herbal drug combinations therapy for cancer treatment. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Efthimiou I, Vlastos D, Triantafyllidis V, Eleftherianos A, Antonopoulou M. Investigation of the Genotoxicological Profile of Aqueous Betula pendula Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 11:2673. [PMID: 36297697 PMCID: PMC9611029 DOI: 10.3390/plants11202673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Betula pendula belongs to the Betulaceae family and is most common in the northern hemisphere. Various birch species have exhibited antimicrobial, antioxidant and anticancer properties. In the present study, we investigated the genotoxic and cytotoxic activity as well as the antigenotoxic potential against the mutagenic agent mitomycin-C (MMC) of two commercial products, i.e., a Betula pendula aqueous leaf extract product (BE) and a Betula pendula product containing aqueous extract of birch leaves at a percentage of 94% and lemon juice at a percentage of 6% (BP) using the cytokinesis block micronucleus (CBMN) assay. The most prevalent compounds and elements of BE and BP were identified using UHPLC-MS and ICP-MS/MS, respectively. All mixtures of BE with MMC demonstrated a decrease in the MN frequencies, with the lowest and highest concentrations inducing a statistically significant antigenotoxic activity. BP lacked genotoxic potential, while it was cytotoxic in all concentrations. Its mixtures with MMC demonstrated statistically significant antigenotoxic activity only at the lowest concentration. UHPLC-MS and ICP-MS/MS showed the presence of various elements and phytochemicals. Our results reveal antigenotoxic and cytotoxic potential of both BE and BP, while the variations observed could indicate the importance of the interactions among different natural products and/or their compounds.
Collapse
Affiliation(s)
- Ioanna Efthimiou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), GR-19013 Anavyssos, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, GR-26500 Patras, Greece
| | | | - Antonios Eleftherianos
- Akrokeramos Sewerage Laboratory, Athens Water Supply and Sewerage Company (EYDAP SA), GR-18755 Keratsini, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
| |
Collapse
|
8
|
Kumar S, Kumari D, Singh B. Genus Rauvolfia: A review of its ethnopharmacology, phytochemistry, quality control/quality assurance, pharmacological activities and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115327. [PMID: 35504505 DOI: 10.1016/j.jep.2022.115327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants are from the genus Rauvolfia Plum. ex L. (Apocynaceae), which is represented by 74 species with many synonyms, and distributed worldwide, especially in the Asian, and African continents. Traditionally, some of them are used for the treatment of various disorders related to the central nervous system (CNS), cardiovascular diseases (CVD), and as an antidote due to the presence of monoterpene indole alkaloids (MIAs) such as ajmaline (144), ajmalicine (164) serpentine (182), yohimbine (190) and reserpine (214). AIM The present review provides comprehensive summarization and critical analysis of the traditional to modern applications of Rauvolfia species, and the major focus was to include traditional uses, phytochemistry, quality control, pharmacological properties, as well as clinical evidence that may be useful in the drug discovery process. MATERIALS AND METHODS Information related to traditional uses, chemical constituents, separation techniques/analytical methods, and pharmacological properties of the genus Rauvolfia were obtained using electronic databases such as Web of Science, Scopus, SciFinder, PubMed, PubChem, ChemSpider, and Google Scholar between the years 1949-2021. The scientific name of the species and its synonyms were checked with the information of The Plant List. RESULTS A total of seventeen Rauvolfia species have been traditionally explored for various therapeutic applications, out of which the roots of R. serpentina and R. vomitoria are used most commonly for the treatment of many diseases. About 287 alkaloids, seven terpenoids, nine flavonoids, and four phenolic acids have been reported in different parts of the forty-three species. Quality control (QC)/quality assurance (QA) of extracts/herbal formulations of Rauvolfia species was analyzed by qualitative and quantitative methods based on the major MIAs such as compounds 144, 164, 182, 190, and 214 using HPTLC, HPLC, and HPLC-MS. The various extracts of different plant parts of thirteen Rauvolfia species are explored for their pharmacological properties such as antimicrobial, antioxidant, antiprotozoal, antitrypanosomal, antipsychotic, cardioprotective, cholinesterase inhibitory, and hepatoprotective. Of which, clinical trials of herbal formulations/extracts of R. serpentina and MIAs have been reported for CVD, CNS, antihypertensive therapy, antidiabetic effects, and psoriasis therapy, while the extracts and phytoconstituents of remaining Rauvolfia species are predominantly significant, owning them to be additional attention for further investigation under clinical trials and QC/QA. CONCLUSION The present communication has provided a comprehensive, systematic, and critically analyzed vision into the traditional uses, phytochemistry, and modern therapeutic applications of the genus Rauvolfia are validated by scientific evidence. In addition, different plant parts from this genus, especially raw and finished herbal products of the roots of R. serpentina have been demonstrated for the QC/QA.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, Farrukhabad, 209602, India; Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur, Kalyanpur, 208024, Uttar Pradesh, India.
| | - Diksha Kumari
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
9
|
Isolation of Potential Compound from the Leaves of Elytraria acaulis and Evaluating Its Therapeutic Properties Using In Vitro Studies Against Ovarian Cancer. Appl Biochem Biotechnol 2022; 194:5607-5626. [PMID: 35796948 DOI: 10.1007/s12010-022-04048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The present study was designed to isolate a potential compound from the extracts of Elytraria acaulis (E. acaulis) for ovarian cancer. n-Hexane, ethyl acetate, chloroform, acetone and methanol extract were taken using the Soxhlet method. Thin layer, column chromatography, NMR and MASS studies were done for the isolation and structural characterization of the compound. Finally, the novel compound (Z)-3-(2-methyl-3-oxoprop-1-en-1-yl) phenyl heptanoate was identified. MTT assay, cell morphology and cell cycle analysis were done to evaluate the anticancer property of the compound. In the MTT assay, the percentage of the cell viability treated with the isolated compound was decreased while increasing the concentration of the compound. Cancer cells treated with the isolated compound showed distinct morphological changes when compared to the control untreated cells. In the cell cycle analysis, the isolated compound induced a significant increase in the percentage of cells in G0/G1 phase and a decrease in the percentage of cells in the S phase and G2-M phase of the PA 1 cell lines. The cell cycle arrest induced by the isolated compound may account for its antiproliferative capacity. Hence, the novel compound isolated from E. acaulis can be a potent candidate in the designing of anticancer drugs.
Collapse
|
10
|
Huang G, He X, Xue Z, Long Y, Liu J, Cai J, Tang P, Han B, Shen B, Huang R, Yan J. Rauwolfia vomitoria extract suppresses benign prostatic hyperplasia by inducing autophagic apoptosis through endoplasmic reticulum stress. BMC Complement Med Ther 2022; 22:125. [PMID: 35513857 PMCID: PMC9074266 DOI: 10.1186/s12906-022-03610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background The current drug treatments for benign prostatic hyperplasia (BPH) have negative side effects. Therefore, it is important to find effective alternative therapies with significantly fewer side effects. Our previous study revealed that Rauwolfia vomitoria (RWF) root bark extract reversed BPH development in a rat model. However, the molecular mechanism of its inhibitory effects on BPH remains largely unknown. Methods BPH-1 and WPMY-1 cell lines derived from BPH epithelial and prostatic stromal compartments were selected to investigate how RWF extract inhibits BPH in vitro by MTT and flow cytometry assays. Microarray, quantitative real-time PCR, immunoblotting, and GFP-LC3 immunofluorescence assays were performed to evaluate the effects of RWF extract on endoplasmic reticulum stress (ER stress) and autophagic apoptosis pathways in two cell lines. A human BPH ex vivo explant assay was also employed for validation. Results RWF extract treatment decreased cell viability and induced apoptotic cell death in both BPH-1 and WPMY-1 cells in a concentration-dependent manner with the increase of pro-apoptotic PCDC4 protein. RWF extract induced autophagy by enhancing the levels of autophagic genes (ULK2 and SQSTM1/p62) and the LC3II:LC3I ratio, with the increase of GFP-LC3 puncta. Moreover, RWF extract activated PERK- and ATF6-associated ER stress pathways by inducing the transcriptional levels of EIF2AK3/PERK, DDIT3/CHOP and ATF6, accompanied by the reduction of BiP protein level, but not its mRNA level. Another ER stress pathway was not induced by RWF extract, as manifested by the lack of XBP1 splicing. Pharmacological inhibition of autophagy by 3-methyladenine abrogated apoptosis but not ER stress; while inhibition of ER stress by 4-phenylbutyrate alleviated the induction of autophagy and apoptosis. In addition, pretreatments with either 3-methyladenine or 4-phenylbutyrate suppressed RWF extract-induced cytotoxicity. Notably, the inductions of PERK- and ATF6-related stress pathways and autophagic apoptosis were confirmed in a human BPH ex vivo explant. Conclusions Our data have demonstrated that RWF extract significantly suppressed the viabilities of BPH epithelial cells and BPH myofibroblasts by inducing apoptosis via upregulating ER stress and autophagy. These data indicate that RWF extract is a potential novel alternative therapeutic approach for BPH. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03610-4.
Collapse
Affiliation(s)
- Guifang Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiao He
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zesheng Xue
- Model Animal Research Center of Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu, China
| | - Yiming Long
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Jiakuan Liu
- Department of Laboratory Animal Science, Fudan University, 130 Dong'an Road, Shanghai, 200032, China
| | - Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Pengfei Tang
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Ruimin Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China. .,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China.
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
11
|
Chen P, Dong R, Chen Q. Extracts of the Medicinal Plants Pao Pereira and Rauwolfia vomitoria Inhibit Ovarian Cancer Stem Cells In Vitro. Integr Cancer Ther 2022; 21:15347354221123019. [PMID: 36178054 PMCID: PMC9528043 DOI: 10.1177/15347354221123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer has an enrichment of cancer stem cells (CSCs) which contribute to the treatment resistant tumor’s high rate of recurrence and metastasis. Here we investigated 2 plant extracts from the medicinal plants Pao Pereira (Pao) and Rauwolfia vomitoria (Rau) each for their activities against ovarian CSCs. Both Pao and Rau inhibited overall proliferation of human ovarian cancer cell lines with IC50 ranging from 210 to 420 μg/mL and had limited cytotoxicity to normal epithelial cells. Ovarian CSC population was examined using cell surface markers and tumor spheroid formation assays. The results showed that both Pao and Rau treatment significantly reduced the ovarian CSC population. Pao and Rau had similar activities in inhibiting ovarian CSCs, with IC50s of ~120 μg/mL for 24 hours treatment, and ~50 μg/mL for long-term tumor spheroid formation. Nuclear β-catenin levels were decreased, suggesting suppression of Wnt/β-catenin signaling pathway. Taken together, data here showed that Pao and Rau both inhibited ovarian cancer stem cells, probably in preference to the bulk of tumor cells. Further mechanistic studies and in vivo investigation validating these findings are warranted, given that inhibition of cancer stem cells holds the promise of comprehensively inhibiting cancer metastasis, drug resistance and recurrence.
Collapse
Affiliation(s)
- Ping Chen
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Ruochen Dong
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Qi Chen
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Mei L, Moutet J, Stull SM, Gianetti TL. Synthesis of CF 3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade. J Org Chem 2021; 86:10640-10653. [PMID: 34255497 DOI: 10.1021/acs.joc.1c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A red-light-mediated nPr-DMQA+-catalyzed cascade intramolecular trifluoromethylation and dearomatization of indole derivatives with Umemoto's reagent has been developed. This protocol provides a facile and efficient approach for the construction of functionalized and potentially biologically important CF3-containing 3,3-spirocyclic indolines with moderate to high yields and excellent diastereoselectivities under mild conditions. The success of multiple gram-scale (1 and 10 g) experiments further highlights the robustness and practicality of this protocol and the merit of the employment of red light. Mechanistic studies support the formation of a crucial CF3 radical species and a dearomatized benzyl carbocation intermediate.
Collapse
Affiliation(s)
- Liangyong Mei
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jules Moutet
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Savannah M Stull
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Wang YX, Lin C, Cui LJ, Yang WH, Li QM, Liu ZJ, Miao XP. Rauwolfia vomitoria Extract Represses Colorectal Cancer Cell Autophagy and Promotes Apoptosis. Pharmacology 2021; 106:488-497. [PMID: 34237728 DOI: 10.1159/000512614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most frequent digestive tract tumors in the world with an increasing incidence. Currently, surgical resection and chemotherapy are the main therapeutic options; however, their effects are limited by various adverse reactions. Rauwolfia vomitoria extract (Rau) has been shown to repress the progression of multiple human cancers; however, whether Rau plays a role in CRC remains undetermined. METHODS Influences of Rau treatment on HCT-116 and LoVo cells were estimated via MTT and colony formation experiments. Flow cytometry analysis was adopted to evaluate the apoptosis rate of HCT-116 and LoVo cells. Apoptosis-related proteins (Bcl-2, Bax, and caspase-3) and autophagy-related proteins (LC3 and P62) were assessed by Western blotting. Effects of Rau on autophagy of HCT-116 and LoVo cell were evaluated through GFP-LC3 analysis. In vivo xenograft tumor assay was conducted to further examine the role of Rau in CRC tumor growth. RESULTS Rau remarkably repressed HCT-116 and LoVo cell viability and promoted HCT-116 and LoVo cell apoptosis in vitro in a dose-dependent manner. Rau increased the expression of caspase-3 and Bax and decreased the expression of Bcl-2 in HCT-116 and LoVo cells. Moreover, Rau was demonstrated to decrease the LC3||/LC3| ratio and increase the level of P62 in HCT-116 and LoVo cells. In addition, we found that Rau repressed xenograft tumor growth and also repressed autophagy in vivo. CONCLUSION Our findings revealed that Rau repressed CRC cell viability and autophagy in vitro and in vivo, suggesting that Rau might be a potent therapeutic agent of CRC.
Collapse
Affiliation(s)
- Yu-Xuan Wang
- Department of Gastroenterology, Hainan General Hospital, Haikou, China
| | - Cheng Lin
- Department of Gastroenterology, Hainan General Hospital, Haikou, China
| | - Lu-Jia Cui
- Department of Gastroenterology, Hainan General Hospital, Haikou, China
| | - Wan-He Yang
- Department of Gastroenterology, Hainan General Hospital, Haikou, China
| | - Qiu-Min Li
- Department of Gastroenterology, Hainan General Hospital, Haikou, China
| | - Zhan-Ju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xin-Pu Miao
- Department of Gastroenterology, Hainan General Hospital, Haikou, China
| |
Collapse
|
14
|
Ohiagu FO, Chikezie PC, Chikezie CM, Enyoh CE. Anticancer activity of Nigerian medicinal plants: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00222-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer is currently the leading cause of death globally and the number of deaths from cancer is on the rise daily. Medicinal plants have been in continuous use over the years for the management of cancer, particularly, in most developing countries of the world including Nigeria. The use of synthetic drugs for the treatment of cancer is often accompanied by toxic side effects. Thus, the alternative use of readily available and inexpensive medicinal plants is the panacea to the toxic side effects associated with synthetic drugs.
Main body
The present review summarized the anticancer activity of 51 medicinal plants that are widespread in all regions of Nigeria. Furthermore, the proposed anticancer pharmacological actions as well as the anticancer bioactive compounds, the type of cancer cell inhibited, the plant parts responsible for the anticancer activity, and the nature of the extracts used for the studies were discussed in this review. The 51 Nigerian medicinal plants were reported to exhibit anticancer activities of the prostate, cervices, lung, skin, colon, esophagus, blood, ovary, central nervous system/brain, breast, stomach, pancreas, larynx, and kidney. The major classes of bioactive compounds indicated to be responsible for the anticancer activity include the polyphenols, flavonoids, alkaloids, saponins, triterpenes, tannins, and quinones. The major anticancer pharmacological actions of these bioactive compounds were antiproliferative, cytotoxic, cytostatic, antimetastatic, apoptotic, and antioxidative as well as provoked cell cycle arrest, inhibition of angiogenesis and reduction of cancer cell viability.
Conclusion
The Nigerian medicinal plants can be harnessed to provide for readily available and inexpensive anticancer drugs in the future because the plants reported in this review showed promising anticancer activity.
Collapse
|
15
|
Akinwumi KA, Gbadegesin MA, Aboyewa JA, Odunola OA. Attenuation of potassium dichromate and sodium arsenite toxicities by methanol extract of Rauvolfia vomitoria in mice. J Basic Clin Physiol Pharmacol 2020; 33:255-264. [PMID: 35596240 DOI: 10.1515/jbcpp-2020-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/12/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Exposure to arsenic and hexavalent chromium is a major public health concern especially in the developing part of the world and there is paucity of information on reliable treatment modalilities. It is in this regard that this study evaluates the efficacy of methanol leaf extract of Rauvolfia vomitoria (MRV) when used as pretreatment agent against potassium dichromate (K2Cr2O7) and sodium arsenite (NaAsO2) exposure. METHODS Swiss albino mice between 7 and 10 weeks old were divided into eight cohorts of five animals each. Treatment groups consisted of a distilled water control, MRV alone (275 mg/kg po daily), K2Cr2O7 (12.0 mg/kg, single ip injection) +/- MRV pretreatment, NaAsO2 (2.5 mg/kg, single ip injection) +/- MRV pretreatment, Na2AsO2 + K2Cr2O7 +/- MRV pretreatment. MRV was given for seven consecutive days, while K2Cr2O7 and NaAsO2 were injected on day seven of the experiment. The frequency of micronucleated polychromatic erythrocytes (mPCEs) was determined in bone marrow cells, while aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were assessed in the plasma. Hepatic glutathione (GSH), malondialdehyde (MDA), catalase (CAT) and glutathione-S-transferase (GST) levels were also determined. RESULTS The NaAsO2 and K2Cr2O7 significantly (p<0.05) increased mPCE formation, AST, ALT, and CAT when compared with the control. Simultaneous exposure to NaAsO2 and K2Cr2O7 further increased the levels of the markers. Furthermore, GSH and GST were significantly reduced by NaAsO2 or K2Cr2O7 or their combination. Pretreatment with MRV reversed the markers towards that of control. CONCLUSIONS Methanol extract of Rauvolfia vomitoria may therefore ameliorate NaAsO2 and K2Cr2O7-induced toxicities via reduction of oxidative stress and fortification of anti-oxidant system.
Collapse
Affiliation(s)
- Kazeem A Akinwumi
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Chemical Sciences and Food Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
| | - Michael A Gbadegesin
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jumoke A Aboyewa
- Department of Chemical Sciences and Food Sciences, Bells University of Technology, Ota, Ogun State, Nigeria.,Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Oyeronke A Odunola
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Zhan G, Miao R, Zhang F, Wang X, Zhang X, Guo Z. Cytotoxic Yohimbine-Type Alkaloids from the Leaves of Rauvolfia vomitoria. Chem Biodivers 2020; 17:e2000647. [PMID: 33044757 DOI: 10.1002/cbdv.202000647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023]
Abstract
Two new yohimbine-type monoterpene indole alkaloids, rauvines A and B, and six known derivatives were obtained from the leaves of R. vomitoria. The structures of rauvines A and B were determined by extensive spectroscopic analyses, 13 C-NMR, and ECD calculations. This is the first time to determine the absolute configurations of yohimbine-type N-oxides by quantum chemistry calculations (13 C-NMR and ECD calculations). All the isolates were tested for their cytotoxicity against five human cancer cell lines. Rauvine B showed moderate cytotoxicity on human MCF-7 breast, SWS80 colon, and A549 lung cancer cell lines with IC50 values of 25.5, 22.6, and 26.0 μM, respectively.
Collapse
Affiliation(s)
- Guanqun Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Rongkun Miao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Fuxin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xingbin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xinxin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Zengjun Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| |
Collapse
|
17
|
Magalhães HS, da Silva AB, Nascimento NR, de Sousa LGF, da Fonseca MJS, Loiola MIB, Monteiro NK, Almeida Neto FWQ, Canuto KM, Pessoa ODL. Effect of indole alkaloids from roots of Rauvolfia ligustrina in the noradrenergic neurotransmission. Fitoterapia 2020; 143:104545. [DOI: 10.1016/j.fitote.2020.104545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/04/2023]
|
18
|
Ampomah IG, Malau-Aduli BS, Malau-Aduli AE, Emeto TI. Effectiveness of Integrated Health Systems in Africa: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E271. [PMID: 32486110 PMCID: PMC7353894 DOI: 10.3390/medicina56060271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Background and objective: Traditional medicine (TM) was integrated into health systems in Africa due to its importance within the health delivery setup in fostering increased health care accessibility through safe practices. However, the quality of integrated health systems in Africa has not been assessed since its implementation. The objective of this paper was to extensively and systematically review the effectiveness of integrated health systems in Africa. Materials and Methods: A systematic literature search was conducted from October, 2019 to March, 2020 using Ovid Medline, Scopus, Emcare, Web of Science, Cumulative Index to Nursing and Allied Health (CINAHL), and Google Scholar, in order to retrieve original articles evaluating the integration of TM into health systems in Africa. A quality assessment of relevant articles was also carried out using the Quality Assessment Tool for Studies with Diverse Designs (QATDSS) critical appraisal tool. Results: The results indicated that the formulation and execution of health policies were the main measures taken to integrate TM into health systems in Africa. The review also highlighted relatively low levels of awareness, usage, satisfaction, and acceptance of integrated health systems among the populace. Knowledge about the existence of an integrated system varied among study participants, while satisfaction and acceptance were low among orthodox medicine practitioners. Health service users' satisfaction and acceptance of the practice of an integrated health system were high in the countries assessed. Conclusion: The review concluded that existing health policies in Africa are not working, so the integration of TM has not been successful. It is critical to uncover the barriers in the health system by exploring the perceptions and experiences of stakeholders, in order to develop solutions for better integration of the two health systems.
Collapse
Affiliation(s)
- Irene G. Ampomah
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville QLD 4811, Australia; (I.G.A.); (A.E.O.M.-A.)
| | - Bunmi S. Malau-Aduli
- College of Medicine and Dentistry, James Cook University, Townsville QLD 4811, Australia;
| | - Aduli E.O. Malau-Aduli
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville QLD 4811, Australia; (I.G.A.); (A.E.O.M.-A.)
| | - Theophilus I. Emeto
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville QLD 4811, Australia; (I.G.A.); (A.E.O.M.-A.)
| |
Collapse
|
19
|
Adewole KE. Nigerian antimalarial plants and their anticancer potential: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:92-113. [DOI: 10.1016/j.joim.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
|
20
|
Cudalbeanu M, Furdui B, Cârâc G, Barbu V, Iancu AV, Marques F, Leitão JH, Sousa SA, Dinica RM. Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts. Antibiotics (Basel) 2019; 9:antibiotics9010007. [PMID: 31877815 PMCID: PMC7168328 DOI: 10.3390/antibiotics9010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore for the first time the biological properties such as antifungal, antitumoral and antioxidant of Danube Delta Nymphaea alba (N. alba) leaf and root methanolic extracts. The toxicity studies of N. alba extracts showed no inhibitory effect on wheat seed germination by evaluating the most sensitive physiological parameters (Germination %, Germination index, Vigor index) and using confocal laser scanning microscopy images. The analyzed extracts were found to have high antifungal activity against Candida glabrata with MIC values of 1.717 µg/mL for leaf and 1.935 µg/mL for root. The antitumor activity of the both extracts against A2780/A2780cisR ovarian, LNCaP prostate and MCF-7 breast cancer cells was promising with IC50 values ranging from 23–274 µg/mL for leaf and 18–152 µg/mL for root, and the combination of N. alba extracts with cisplatin showed a synergistic effect (coefficient of drug interaction <1). The antioxidant properties were assessed by β-carotene bleaching, ABTS and FRAP assays and cyclic voltammetry. Quercetin, the most prominent antioxidant, was quantified in very good yields by spectroelectrochemical assay.
Collapse
Affiliation(s)
- Mihaela Cudalbeanu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
| | - Bianca Furdui
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
- Correspondence: (B.F.); (R.M.D.)
| | - Geta Cârâc
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
| | - Vasilica Barbu
- Faculty of Food Science and Engineering, Department of Food Science, Food Engineering, Biotechnology and Aquaculture, ‘‘Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania;
| | - Alina Viorica Iancu
- Faculty of Medicine and Pharmacy, Department of Morphological and Functional Sciences, ‘‘Dunărea de Jos” University of Galati, 800008 Romania, 47 Domnească Street, 8000008 Galati, Romania;
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, University of Lisbon, 2695-066 Bobadela, Portugal;
| | - Jorge Humberto Leitão
- IBB-Institute of Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (J.H.L.); (S.A.S.)
| | - Sílvia Andreia Sousa
- IBB-Institute of Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (J.H.L.); (S.A.S.)
| | - Rodica Mihaela Dinica
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
- Correspondence: (B.F.); (R.M.D.)
| |
Collapse
|
21
|
Grugel CP, Breit B. Rhodium-Catalyzed Diastereo- and Enantioselective Tandem Spirocyclization/Reduction of 3-Allenylindoles: Access to Functionalized Vinylic Spiroindolines. Org Lett 2019; 21:9672-9676. [PMID: 31769696 DOI: 10.1021/acs.orglett.9b03835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A highly selective rhodium-catalyzed tandem spirocyclization/reduction of 3-allenylindoles is reported. By employing a Hantzsch ester as reductant, vinylic spiroindolines are obtained in excellent yields as well as diastereo- and enantioselectivity. In addition, the reaction's synthetic utility is highlighted by broad functional group compatibility and exemplified by a gram scale reaction with subsequent assorted transformations.
Collapse
Affiliation(s)
- Christian P Grugel
- Institut für Organische Chemie , Albert-Ludwigs-Universität Freiburg , Albertrstr. 21 , 79104 Freiburg , Germany
| | - Bernhard Breit
- Institut für Organische Chemie , Albert-Ludwigs-Universität Freiburg , Albertrstr. 21 , 79104 Freiburg , Germany
| |
Collapse
|
22
|
Medicinal plants used in management of cancer and other related diseases in Woleu-Ntem province, Gabon. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Pezzani R, Salehi B, Vitalini S, Iriti M, Zuñiga FA, Sharifi-Rad J, Martorell M, Martins N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. ACTA ACUST UNITED AC 2019; 55:medicina55040110. [PMID: 30999703 PMCID: PMC6524059 DOI: 10.3390/medicina55040110] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
Synergy is a process in which some substances cooperate to reach a combined effect that is greater than the sum of their separate effects. It can be considered a natural "straight" strategy which has evolved by nature to obtain more efficacy at low cost. In this regard, synergistic effects may be observed in the interaction between herbal products and conventional drugs or biochemical compounds. It is important to identify and exploit these interactions since any improvement brought by such kind of process can be advantageously used to treat human disorders. Even in a complex disease such as cancer, positive synergistic plant-drug interactions should be investigated to achieve the best outcomes, including providing a greater benefit to patients or avoiding adverse side effects. This review analyzes and summarizes the current knowledge on the synergistic effects of plant-drug interactions with a focus on anticancer strategies.
Collapse
Affiliation(s)
- Raffaele Pezzani
- Endocrinology Unit, Department of Medicine, University of Padova, via Ospedale 105, 35128 Padova, Italy.
- AIROB-Associazione Italiana per la Ricerca Oncologica di Base, 3520128 Padova, Italy.
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy.
| | - Felipe Andrés Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepcion 4070386, Chile.
| | - Javad Sharifi-Rad
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan 3519899951, Iran.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
24
|
Sánchez-Mendoza M, Santiago-Cruz J, Arrieta J, García-Machorro J, Arrieta-Baez D. Cytotoxic activity of Rauvolfia tetraphylla L. on human cervical cancer (HeLa) cells. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_106_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Dong R, Chen P, Chen Q. Inhibition of pancreatic cancer stem cells by Rauwolfia vomitoria extract. Oncol Rep 2018; 40:3144-3154. [PMID: 30272287 PMCID: PMC6196640 DOI: 10.3892/or.2018.6713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/25/2018] [Indexed: 01/05/2023] Open
Abstract
The poor treatment outcomes of pancreatic cancer are linked to an enrichment of cancer stem cells (CSCs) in these tumors, which are resistant to chemotherapy and promote metastasis and tumor recurrence. The present study investigated an extract from the root of the medicinal plant Rauwolfia vomitoria (Rau) for its activity against pancreatic CSCs. In vitro tumor spheroid formation and CSC markers were tested, and in vivo tumorigenicity was evaluated in nude mice. Rau inhibited the overall proliferation of human pancreatic cancer cell lines with a 50% inhibitory concentration (IC50) ranging between 125 and 325 µg/ml, and showed limited cytotoxicity towards normal epithelial cells. The pancreatic CSC population, identified using cell surface markers or a tumor spheroid formation assay, was significantly reduced, with an IC50 value of ~100 µg/ml treatment for 48 h and ~27 µg/ml for long-term tumor spheroid formation. The levels of CSC-related gene Nanog and nuclear β-catenin were decreased, suggesting suppression of the Wnt/β-catenin signaling pathway. In vivo, 20 mg/kg of Rau administered five times per week by oral gavage significantly reduced the tumorigenicity of PANC-1 cells in immunocompromised mice. Taken together, these data showed that Rau preferentially inhibited pancreatic cancer stem cells. Further investigation is warranted to examine the potential of Rau as a novel treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, KU Integrative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, KU Integrative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, KU Integrative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Ndjonka D, Djafsia B, Liebau E. Review on medicinal plants and natural compounds as anti-Onchocerca agents. Parasitol Res 2018; 117:2697-2713. [PMID: 30008135 DOI: 10.1007/s00436-018-6003-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022]
Abstract
Onchocerciasis is a filarial vector borne disease which affects several million people mostly in Africa. The therapeutic approach of its control was based on a succession of drugs which always showed limits. The last one: ivermectin is not the least. It was shown to be only microfilaricidal and induced resistance to the human parasite Onchocerca volvulus. The approach using medicinal plants used in traditional medicine is a possible alternative method to cure onchocerciasis. Onchocerca ochengi and Onchocerca gutturosa are the parasite models used to assess anthelmintic activity of potentially anthelmintic plants. Numerous studies assessed the in vitro and/or in vivo anthelmintic activity of medicinal plants. Online electronic databases were consulted to gather publications on in vitro and in vivo studies of anti-Onchocerca activity of plants from 1990 to 2017. Globally, 13 plant families were investigated for anti-Onchocerca activity in 13 studies. The most active species were Anacardium occidentale, Euphorbia hirta and Acacia nilotica each with an LC50 value of 2.76, 6.25 and 1.2 μg/mL, respectively. Polycarpol, voacamine, voacangine, ellagic acid, gallic acid, gentisic acid, 3-O-acetyl aleuritolic acid and (-)-epigallocatechin 3-O-gallate were the isolated plant compounds with anti-Onchocerca activity. Most of the assessed extract/compounds showed a good safety after in vivo acute toxicity assays and/or in vitro cytotoxicity test. The exception was the ethanol extract of Trichilia emetica, which killed completely and drastically mice at a dose of 3000 mg/kg. Several plant groups of compounds were shown active against Onchocerca sp. such as tannins, alkaloids, triterpenoids and essential oils. Nevertheless, none of the active compounds was subjected to clinical trial, to assessment of its diffusibility through nodular wall or its capability to induce genetic resistance of Onchocerca sp.
Collapse
Affiliation(s)
- Dieudonné Ndjonka
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.
| | - Boursou Djafsia
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.,Saint Jerome School of Health Sciences, Saint Jerome Catholic University of Douala, Douala, Cameroon
| | - Eva Liebau
- University of Münster, Institute for Zoophysiology, Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|
27
|
Bading Taika B, Bouckandou M, Souza A, Bourobou Bourobou HP, MacKenzie LS, Lione L. An overview of anti-diabetic plants used in Gabon: Pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:203-228. [PMID: 29305175 DOI: 10.1016/j.jep.2017.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The management of diabetes mellitus management in African communities, especially in Gabon, is not well established as more than 60% of population rely on traditional treatments as primary healthcare. The aim of this review was to collect and present the scientific evidence for the use of medicinal plants that are in currect by Gabonese traditional healers to manage diabetes or hyperglycaemia based here on the pharmacological and toxicological profiles of plants with anti-diabetic activity. There are presented in order to promote their therapeutic value, ensure a safer use by population and provide some bases for further study on high potential plants reviewed. MATERIALS AND METHODS Ethnobotanical studies were sourced using databases such as Online Wiley library, Pubmed, Google Scholar, PROTA, books and unpublished data including Ph.D. and Master thesis, African and Asian journals. Keywords including 'Diabetes', 'Gabon', 'Toxicity', 'Constituents', 'hyperglycaemia' were used. RESULTS A total of 69 plants currently used in Gabon with potential anti-diabetic activity have been identified in the literature, all of which have been used in in vivo or in vitro studies. Most of the plants have been studied in human or animal models for their ability to reduce blood glucose, stimulate insulin secretion or inhibit carbohydrates enzymes. Active substances have been identified in 12 out of 69 plants outlined in this review, these include Allium cepa and Tabernanthe iboga. Only eight plants have their active substances tested for anti-diabetic activity and are suitables for further investigation. Toxicological data is scarce and is dose-related to the functional parameters of major organs such as kidney and liver. CONCLUSION An in-depth understanding on the pharmacology and toxicology of Gabonese anti-diabetic plants is lacking yet there is a great scope for new treatments. With further research, the use of Gabonese anti-diabetic plants is important to ensure the safety of the diabetic patients in Gabon.
Collapse
Affiliation(s)
- B Bading Taika
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK; IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon.
| | - M Bouckandou
- IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon
| | - A Souza
- Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), Franceville, Gabon
| | - H P Bourobou Bourobou
- IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon
| | - L S MacKenzie
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - L Lione
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK
| |
Collapse
|
28
|
Zeng J, Zhang DB, Zhou PP, Zhang QL, Zhao L, Chen JJ, Gao K. Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria. Org Lett 2017; 19:3998-4001. [PMID: 28718654 DOI: 10.1021/acs.orglett.7b01723] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two unusual normonoterpenoid indole alkaloids rauvomine A (1) and rauvomine B (2), together with two known compounds peraksine (3) and alstoyunine A (4), were isolated from the aerial parts of Rauvolfia vomitoria. The structures with absolute configurations of 1 and 2 were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compound 2 is a novel C18 normonoterpenoid indole alkaloid with a substituted cyclopropane ring that forms an unusual 6/5/6/6/3/5 hexcyclic rearranged ring system. The plausible biogenetic pathways of 1 and 2 were proposed. Compound 2 exhibited significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Jun Zeng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Dong-Bo Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Qi-Li Zhang
- Gansu University of Chinese Medicine , Lanzhou 730000, China
| | - Lei Zhao
- Gansu University of Chinese Medicine , Lanzhou 730000, China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| |
Collapse
|
29
|
In Vitro Assessment of Anthelmintic Activities of Rauwolfia vomitoria (Apocynaceae) Stem Bark and Roots against Parasitic Stages of Schistosoma mansoni and Cytotoxic Study. J Parasitol Res 2017; 2017:2583969. [PMID: 28348881 PMCID: PMC5350319 DOI: 10.1155/2017/2583969] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/09/2017] [Indexed: 11/17/2022] Open
Abstract
Schistosomiasis is a Neglected Tropical Diseases which can be prevented with mass deworming chemotherapy. The reliance on a single drug, praziquantel, is a motivation for the search of novel antischistosomal compounds. This study investigated the anthelmintic activity of the stem bark and roots of Rauwolfia vomitoria against two life stages of Schistosoma mansoni. Both plant parts were found to be active against cercariae and adult worms. Within 2 h of exposure all cercariae were killed at a concentration range of 62.5–1000 µg/mL and 250–1000 µg/mL of R. vomitoria stem bark and roots, respectively. The LC50 values determined for the stem bark after 1 and 2 h of exposure were 207.4 and 61.18 µg/mL, respectively. All adult worms exposed to the concentrations range of 250–1000 µg/mL for both plant parts died within 120 h of incubation. The cytotoxic effects against HepG2 and Chang liver cell assessed using MTT assay method indicated that both plant extracts which were inhibitory to the proliferation of cell lines with IC50 > 20 μg/mL appear to be safe. This report provides the first evidence of in vitro schistosomicidal potency of R. vomitoria with the stem bark being moderately, but relatively, more active and selective against schistosome parasites. This suggests the presence of promising medicinal constituent(s).
Collapse
|
30
|
Kumar S, Singh A, Bajpai V, Srivastava M, Singh BP, Ojha S, Kumar B. Simultaneous Determination of Bioactive Monoterpene Indole Alkaloids in Ethanolic Extract of Seven Rauvolfia Species using UHPLC with Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:296-303. [PMID: 27437669 DOI: 10.1002/pca.2631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Rauvolfia serpentina is an endangered plant species due to its over-exploitation. It has highly commercial and economic importance due to the presence of bioactive monoterpene indole alkaloids (MIAs) such as ajmaline, yohimbine, ajmalicine, serpentine and reserpine. OBJECTIVE To develop a validated, rapid, sensitive and selective ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry (UHPLC-QqQLIT -MS/MS) method in the multiple reaction monitoring (MRM) mode for simultaneous determination of bioactive MIAs in ethanolic extract of seven Rauvolfia species and herbal formulations. METHODS The separation of MIAs was achieved on an ACQUITY UPLC BEH™ C18 column (1.7 μm, 2.1 mm × 50 mm) using a gradient mobile phase (0.1% aqueous formic acid and acetonitrile) at flow rate 0.3 μL/min in 7 min. The validated method showed good linearity (r(2) ≥ 0.9999), limit of detection (LOD) (0.06-0.15 ng/mL), limit of quantitation (LOQ) (0.18-0.44 ng/mL), precisions [intraday: relative standard deviation (RSD) ≤ 2.24%, interday: RSD ≤ 2.74%], stability (RSD ≤ 1.53%) and overall recovery (RSD ≤ 2.23%). RESULTS The validated method was applied to quantitate MIAs. Root of Rauvolfia vomitoria showed a high content of ajmaline (48.43 mg/g), serpentine (87.77 mg/g) whereas high quantities of yohimbine (100.21 mg/g) and ajmalicine (120.51 mg/g) were detected in R. tetraphylla. High content of reserpine was detected in R. micrantha (35.18 mg/g) and R. serpentina (32.38 mg/g). CONCLUSION The encouraging results of this study may lead to easy selection of suitable Rauvolfia species according to the abundance of MIAs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sunil Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Awantika Singh
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Vikas Bajpai
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Mukesh Srivastava
- Biometry and Statistics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Bhim Pratap Singh
- Department of Biotechnology, Mizoram University, Mizoram-796004 Tanharil, Aizawl, Mizoram, India
| | - Sanjeev Ojha
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| |
Collapse
|
31
|
Kenmogne LC, Ayan D, Roy J, Maltais R, Poirier D. The Aminosteroid Derivative RM-133 Shows In Vitro and In Vivo Antitumor Activity in Human Ovarian and Pancreatic Cancers. PLoS One 2015; 10:e0144890. [PMID: 26660672 PMCID: PMC4682813 DOI: 10.1371/journal.pone.0144890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 01/06/2023] Open
Abstract
Ovarian and pancreatic cancers are two of the most aggressive and lethal cancers, whose management faces only limited therapeutic options. Typically, these tumors spread insidiously accompanied first with atypical symptoms, and usually shift to a drug resistance phenotype with the current pharmaceutical armamentarium. Thus, the development of new drugs acting via a different mechanism of action represents a clear priority. Herein, we are reporting for the first time that the aminosteroid derivative RM-133, developed in our laboratory, displays promising activity on two models of aggressive cancers, namely ovarian (OVCAR-3) and pancreatic (PANC-1) cancers. The IC50 value of RM-133 was 0.8 μM and 0.3 μM for OVCAR-3 and PANC-1 cell lines in culture, respectively. Based on pharmacokinetic studies on RM-133 using 11 different vehicles, we selected two main vehicles: aqueous 0.4% methylcellulose:ethanol (92:8) and sunflower oil:ethanol (92:8) for in vivo studies. Using subcutaneous injection of RM-133 with the methylcellulose-based vehicle, growth of PANC-1 tumors xenografted to nude mice was inhibited by 63%. Quite interestingly, RM-133 injected subcutaneously with the methylcellulose-based or sunflower-based vehicles reduced OVCAR-3 xenograft growth by 122% and 100%, respectively. After the end of RM-133 treatment using the methylcellulose-based vehicle, OVCAR-3 tumor growth inhibition was maintained for ≥ 1 week. RM-133 was also well tolerated in the whole animal, no apparent sign of toxicity having been detected in the xenograft studies.
Collapse
Affiliation(s)
- Lucie Carolle Kenmogne
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Diana Ayan
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
32
|
Liu Y, Zheng D, Liu M, Bai J, Zhou X, Gong B, Lü J, Zhang Y, Huang H, Luo W, Huang G. Downregulation of glypican-3 expression increases migration, invasion, and tumorigenicity of human ovarian cancer cells. Tumour Biol 2015; 36:7997-8006. [PMID: 25967456 DOI: 10.1007/s13277-015-3528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/04/2015] [Indexed: 01/03/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane of heparan sulfate proteoglycan family involved in cell proliferation, adhesion, migration, invasion, and differentiation during the development of the majority of mesodermal tissues and organs. GPC3 is explored as a potential biomarker for hepatocellular carcinoma screening. However, as a tumor-associated antigen, its role in ovarian cancer remains elusive. In this report, the expression levels of GPC3 in the various ovarian cancer cells were determined with quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and GPC3 expression in ovarian cancer UCI 101 and A2780 cells was knocked down by siRNA transfection, and the effects of GPC3 knockdown on in vitro cell proliferation, migration, and invasion were respectively analyzed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and Transwell migration assay. Additionally, the effect of GPC3 knockdown on in vivo tumorigenesis were investigated in athymic nude mice. The results indicated that GPC3 knockdown significantly promoted cell proliferation and increased cell migration and invasion by upregulation of matrix metalloproteinase (MMP)-2 and MMP-9 expression and downregulation of tissue inhibitor of metalloproteinase-1 expression. Additionally, GPC3 knockdown also increased in vivo tumorigenicity of UCI 101 and A2780 cells and final tumor weights and volumes after subcutaneous cell injection in the nude mice. The results of immunohistochemical staining and Western blotting both demonstrated a lower expression of GPC3 antigen in the tumors of GPC3 knockdown groups than that of negative control groups. Moreover, transforming growth factor-β2 protein expression in the tumors of GPC3 knockdown groups was significantly increased, which at least contributed to tumor growth in the nude mice. Taken together, these findings suggest that GPC3 knockdown promotes the progression of human ovarian cancer cells by increasing their migration, invasion, and tumorigenicity, and suggest that GPC3 is a potential therapeutic target for ovarian cancer patients.
Collapse
Affiliation(s)
- Ying Liu
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Dongping Zheng
- Ultrasonic Imaging Division, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Mingming Liu
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Jiao Bai
- Ultrasonic Imaging Division, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Xi Zhou
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Baolan Gong
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Jieyu Lü
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Hui Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Wenying Luo
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, China
| | - Guangrong Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
33
|
Ouyang L, Luo Y, Tian M, Zhang SY, Lu R, Wang JH, Kasimu R, Li X. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif 2015; 47:506-15. [PMID: 25377084 DOI: 10.1111/cpr.12143] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 02/05/2023] Open
Abstract
Natural products are chemical compounds or substances produced naturally by living organisms. With the development of modern technology, more and more plant extracts have been found to be useful to medical practice. Both micromolecules and macromolecules have been reported to have the ability to inhibit tumour progression, a novel weapon to fight cancer by targeting its 10 characteristic hallmarks. In this review, we focus on summarizing plant natural compounds and their derivatives with anti-tumour properties, into categories, according to their potential therapeutic strategies against different types of human cancer. Taken together, we present a well-grounded review of these properties, hoping to shed new light on discovery of novel anti-tumour therapeutic drugs from known plant natural sources.
Collapse
Affiliation(s)
- L Ouyang
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Azevedo MM, Pinheiro C, Dias ACP, Pinto-Ribeiro F, Baltazar F. Impact of an educational hands-on project on the antimicrobial, antitumor and anti-inflammatory properties of plants on Portuguese students' awareness, knowledge, and competences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:2437-53. [PMID: 25711362 PMCID: PMC4377910 DOI: 10.3390/ijerph120302437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/13/2015] [Indexed: 01/09/2023]
Abstract
Promoting environmental and health education is crucial to allow students to make conscious decisions based on scientific criteria. The study is based on the outcomes of an Educational Project implemented with Portuguese students and consisted of several activities, exploring pre-existent Scientific Gardens at the School, aiming to investigate the antibacterial, antitumor and anti-inflammatory properties of plant extracts, with posterior incorporation in soaps and creams. A logo and a webpage were also created. The effectiveness of the project was assessed via the application of a questionnaire (pre- and post-test) and observations of the participants in terms of engagement and interaction with all individuals involved in the project. This project increased the knowledge about autochthonous plants and the potential medical properties of the corresponding plant extracts and increased the awareness about the correct design of scientific experiments and the importance of the use of experimental models of disease. The students regarded their experiences as exciting and valuable and believed that the project helped to improve their understanding and increase their interest in these subjects and in science in general. This study emphasizes the importance of raising students' awareness on the valorization of autochthonous plants and exploitation of their medicinal properties.
Collapse
Affiliation(s)
- Maria-Manuel Azevedo
- School D. Maria II, Rua da Alegria, 4760-067 Vila Nova de Famalicão, Portugal.
- Department of Microbiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | - Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, 14784-400 Barretos, São Paulo, Brazil.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, 14784-400 Barretos, Brazil.
| | - Alberto C P Dias
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
| |
Collapse
|
35
|
Lee HL, Park MH, Hong JE, Kim DH, Kim JY, Seo HO, Han SB, Yoon JH, Lee WH, Song HS, Lee JI, Lee US, Song MJ, Hong JT. Inhibitory effect of snake venom toxin on NF-κB activity prevents human cervical cancer cell growth via increase of death receptor 3 and 5 expression. Arch Toxicol 2014; 90:463-77. [DOI: 10.1007/s00204-014-1393-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
|
36
|
El-Merahbi R, Liu YN, Eid A, Daoud G, Hosry L, Monzer A, Mouhieddine TH, Hamade A, Najjar F, Abou-Kheir W. Berberis libanotica Ehrenb extract shows anti-neoplastic effects on prostate cancer stem/progenitor cells. PLoS One 2014; 9:e112453. [PMID: 25380390 PMCID: PMC4224486 DOI: 10.1371/journal.pone.0112453] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/08/2014] [Indexed: 01/11/2023] Open
Abstract
Cancer stem cells (CSCs), including those of advanced prostate cancer, are a suggested reason for tumor resistance toward conventional tumor therapy. Therefore, new therapeutic agents are urgently needed for targeting CSCs. Despite the minimal understanding of their modes of action, natural products and herbal therapies have been commonly used in the prevention and treatment of many cancers. Berberis libanotica Ehrenb (BLE) is a plant rich in alkaloids which may possess anti-cancer activity and a high potential for eliminating CSCs. We tested the effect of BLE on prostate cancer cells and our data indicated that this extract induced significant reduction in cell viability and inhibited the proliferation of human prostate cancer cell lines (DU145, PC3 and 22Rv1) in a dose- and time-dependent manner. BLE extract induced a perturbation of the cell cycle, leading to a G0-G1 arrest. Furthermore, we noted 50% cell death, characterized by the production of high levels of reactive oxidative species (ROS). Inhibition of cellular migration and invasion was also achieved upon treatment with BLE extract, suggesting a role in inhibiting metastasis. Interestingly, BLE extract had a major effect on CSCs. Cells were grown in a 3D sphere-formation assay to enrich for a population of cancer stem/progenitor cells. Our results showed a significant reduction in sphere formation ability. Three rounds of treatment with BLE extract were sufficient to eradicate the self-renewal ability of highly resistant CSCs. In conclusion, our results suggest a high therapeutic potential of BLE extract in targeting prostate cancer and its CSCs.
Collapse
Affiliation(s)
- Rabih El-Merahbi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Leina Hosry
- Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek H. Mouhieddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aline Hamade
- Department of Biology, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Fadia Najjar
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|