1
|
Yin L, VanderGiessen M, Kumar V, Conacher B, Chao PCH, Theus M, Johnson E, Kehn-Hall K, Wu X, Xie H. Machine learning identifies genes linked to neurological disorders induced by equine encephalitis viruses, traumatic brain injuries, and organophosphorus nerve agents. Front Comput Neurosci 2025; 19:1529902. [PMID: 40433315 PMCID: PMC12106541 DOI: 10.3389/fncom.2025.1529902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Venezuelan, eastern, and western equine encephalitis viruses (collectively referred to as equine encephalitis viruses---EEV) cause serious neurological diseases and pose a significant threat to the civilian population and the warfighter. Likewise, organophosphorus nerve agents (OPNA) are highly toxic chemicals that pose serious health threats of neurological deficits to both military and civilian personnel around the world. Consequently, only a select few approved research groups are permitted to study these dangerous chemical and biological warfare agents. This has created a significant gap in our scientific understanding of the mechanisms underlying neurological diseases. Valuable insights may be gleaned by drawing parallels to other extensively researched neuropathologies, such as traumatic brain injuries (TBI). By examining combined gene expression profiles, common and unique molecular characteristics may be discovered, providing new insights into medical countermeasures (MCMs) for TBI, EEV infection and OPNA neuropathologies and sequelae. In this study, we collected transcriptomic datasets for neurological disorders caused by TBI, EEV, and OPNA injury, and implemented a framework to normalize and integrate gene expression datasets derived from various platforms. Effective machine learning approaches were developed to identify critical genes that are either shared by or distinctive among the three neuropathologies. With the aid of deep neural networks, we were able to extract important association signals for accurate prediction of different neurological disorders by using integrated gene expression datasets of VEEV, OPNA, and TBI samples. Gene ontology and pathway analyses further identified neuropathologic features with specific gene product attributes and functions, shedding light on the fundamental biology of these neurological disorders. Collectively, we highlight a workflow to analyze published transcriptomic data using machine learning, which can be used for both identification of gene biomarkers that are unique to specific neurological conditions, as well as genes shared across multiple neuropathologies. These shared genes could serve as potential neuroprotective drug targets for conditions like EEV, TBI, and OPNA.
Collapse
Affiliation(s)
- Liduo Yin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Vinoth Kumar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Benjamin Conacher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Po-Chien Haku Chao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiaowei Wu
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Padda H, Huang CYH, Grimm K, Biggerstaff BJ, Ledermann JP, Raetz J, Boroughs K, Mossel EC, Martin SW, Lehman JA, Townsend RL, Krysztof D, Saá P, Dinh ETN, Stobierski MG, Esponda-Morrison B, Wolujewicz KAA, Osborne M, Brown CM, Hopkins B, Schiffman EK, Garvin A, Lee X, Osborn RA, Wozniak RJ, Brault AC, Basavaraju SV, Stramer SL, Staples JE, Gould CV. Powassan and Eastern Equine Encephalitis Virus Seroprevalence in Endemic Areas, United States, 2019-2020. Emerg Infect Dis 2025; 31:929-936. [PMID: 40305306 PMCID: PMC12044248 DOI: 10.3201/eid3105.240893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Powassan virus (POWV) and Eastern equine encephalitis virus (EEEV) are regionally endemic arboviruses in the United States that can cause neuroinvasive disease and death. Recent identification of EEEV transmission through organ transplantation and POWV transmission through blood transfusion have increased concerns about infection risk. After historically high numbers of cases of both viruses were reported in 2019, we conducted a seroprevalence survey using blood donation samples from selected endemic counties. Specimens were screened for virus-specific neutralizing antibodies, and population seroprevalence was estimated using weights calibrated to county population census data. For POWV, median county seroprevalence in 4 states was 0.84%, ranging from 0% (95% CI 0%-2.28%) to 11.5% (95% CI 0.82%-40.9%). EEEV infection was identified in a single county (estimated seroprevalence 1.62% [95% CI 0.04%-8.75%]). Although seroprevalence estimates in sampled areas were generally low, additional investigation of higher-prevalence areas could inform risk for transmission from asymptomatic blood and organ donors.
Collapse
|
3
|
Aranda-Coello JM, Machain-Williams C, Weber M, Dzul Rosado AR, Simpkins TR, Blitvich BJ. Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico. Viruses 2025; 17:590. [PMID: 40431603 PMCID: PMC12115384 DOI: 10.3390/v17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
We performed serologic surveillance for selected arthropod-borne viruses (arboviruses) in bats and opossums in the Lacandona Rainforest, Chiapas, Mexico, in 2023-2024. Sera were collected from 94 bats of at least 15 species and 43 opossums of three species. The sera were assayed by the plaque reduction neutralization test (PRNT) for antibodies to eight orthoflaviviruses (dengue viruses 1-4, St. Louis encephalitis virus, T'Ho virus, West Nile virus, and Zika virus) and one alphavirus (chikungunya virus; CHIKV). Twelve (12.8%) bats and 15 (34.9%) opossums contained orthoflavivirus-specific antibodies. One bat (a Jamaican fruit bat) was seropositive for Zika virus, and 11 bats contained antibodies to an undetermined orthoflavivirus, as did the 15 opossums. All bats and most opossums seropositive for an undetermined orthoflavivirus had low PRNT titers, possibly because they had been infected with another (perhaps unrecognized) orthoflavivirus not included in the PRNTs. Antibodies that neutralized CHIKV were detected in three (7.0%) opossums and none of the bats. The three opossums had low CHIKV PRNT titers, and therefore, another alphavirus may have been responsible for the infections. In summary, we report serologic evidence of arbovirus infections in bats and opossums in Chiapas, Mexico.
Collapse
Affiliation(s)
- J. Manuel Aranda-Coello
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Lerma 24500, Campeche, Mexico; (J.M.A.-C.); (M.W.)
| | - Carlos Machain-Williams
- Estudios en Una Salud, Unidad Profesional Interdisciplinaria de Ingeniería Campus Palenque, Instituto Politécnico Nacional, Palenque 29960, Chiapas, Mexico; (C.M.-W.); (A.R.D.R.)
| | - Manuel Weber
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Lerma 24500, Campeche, Mexico; (J.M.A.-C.); (M.W.)
| | - Alma R. Dzul Rosado
- Estudios en Una Salud, Unidad Profesional Interdisciplinaria de Ingeniería Campus Palenque, Instituto Politécnico Nacional, Palenque 29960, Chiapas, Mexico; (C.M.-W.); (A.R.D.R.)
| | - Tyler R. Simpkins
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
4
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
5
|
Thannickal SA, Spector SN, Stapleford KA. The La Crosse virus class II fusion glycoprotein ij loop contributes to infectivity and replication in vitro and in vivo. J Virol 2023; 97:e0081923. [PMID: 37578236 PMCID: PMC10506486 DOI: 10.1128/jvi.00819-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat, with limited antiviral treatments or vaccines available. La Crosse virus (LACV) from the Bunyavirales order is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from the Togaviridae family, we hypothesized that LACV would share similar entry mechanisms with CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol-modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol dependent, while replication was less affected by cholesterol manipulation. In addition, we generated single-point mutants in the LACV Gc ij loop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gc ij loop impaired virus infectivity and attenuated LACV replication in vitro and in vivo. Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolves in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, providing evidence for the Gc glycoprotein as a contributor to LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to replication and pathogenesis. IMPORTANCE Vector-borne viruses are significant health threats that lead to devastating disease worldwide. The emergence of arboviruses, in addition to the lack of effective antivirals or vaccines, highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contains strong structural similarities at the tip of domain II. Here, we show that the bunyavirus La Crosse virus uses a cholesterol-dependent entry pathway similar to the alphavirus chikungunya virus, and residues in the ij loop are important for virus infectivity in vitro and replication in mice. These studies show that genetically diverse viruses may use similar pathways through conserved structure domains, suggesting that these viruses may be targets for broad-spectrum antivirals in multiple arboviral families.
Collapse
Affiliation(s)
- Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie N. Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
7
|
Thannickal SA, Spector SN, Stapleford KA. The La Crosse virus class II fusion glycoprotein ij loop contributes to infectivity and cholesterol-dependent entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529620. [PMID: 36865275 PMCID: PMC9980073 DOI: 10.1101/2023.02.22.529620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat with little to no antiviral treatments. La Crosse virus (LACV) from the Bunyavirales order is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from the Togaviridae family, we hypothesized that LACV would share similar entry mechanisms to CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol-dependent while replication was less affected by cholesterol manipulation. In addition, we generated single point mutants in the LACV ij loop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gc ij loop impaired virus infectivity and attenuate LACV in vitro and in vivo . Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolution in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, supporting the Gc glycoprotein as a target for LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to infectivity and pathogenesis. Importance Vector-borne arboviruses are significant health threats leading to devastating disease worldwide. This emergence and the fact that there are little to no vaccines or antivirals targeting these viruses highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contain strong structural similarities in the tip of domain II. Here we show that the bunyavirus La Crosse virus uses similar mechanisms to entry as the alphavirus chikungunya virus and residues in the ij loop are important for virus infectivity. These studies show that genetically diverse viruses use similar mechanisms through concerned structure domains, suggesting these may be a target for broad-spectrum antivirals to multiple arbovirus families.
Collapse
|