1
|
Tolomeo M, Tolomeo F, Cascio A. The Complex Interactions Between HIV-1 and Human Host Cell Genome: From Molecular Mechanisms to Clinical Practice. Int J Mol Sci 2025; 26:3184. [PMID: 40244051 PMCID: PMC11989121 DOI: 10.3390/ijms26073184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Antiretroviral therapy (ART) has significantly improved the prognosis of human immunodeficiency virus type 1 (HIV-1) infection. Although ART can suppress plasma viremia below detectable levels, it cannot eradicate the HIV-1 DNA (provirus) integrated into the host cell genome. This integration often results in unrepaired DNA damage due to the HIV-1-induced inhibition of DNA repair pathways. Furthermore, HIV-1 infection causes telomere attrition in host chromosomes, a critical factor contributing to CD4+ T cell senescence and apoptosis. HIV-1 proteins can induce DNA damage, block DNA replication, and activate DNA damage responses across various organs. In this review, we explore multiple aspects of the intricate interactions between HIV-1 and the host genome involved in CD4+ T cell depletion, inflammaging, the clonal expansion of infected cells in long-term-treated patients, and viral latency. We discuss the molecular mechanisms of DNA damage that contribute to comorbidities in HIV-1-infected individuals and highlight emerging therapeutic strategies targeting the integrated HIV-1 provirus.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, (Azienda Ospedaliera Universitaria Policlinico) A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Francesco Tolomeo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy;
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, (Azienda Ospedaliera Universitaria Policlinico) A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
2
|
Dobransky A, Root M, Hafner N, Marcum M, Sharifi HJ. CRL4-DCAF1 Ubiquitin Ligase Dependent Functions of HIV Viral Protein R and Viral Protein X. Viruses 2024; 16:1313. [PMID: 39205287 PMCID: PMC11360348 DOI: 10.3390/v16081313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The Human Immunodeficiency Virus (HIV) encodes several proteins that contort the host cell environment to promote viral replication and spread. This is often accomplished through the hijacking of cellular ubiquitin ligases. These reprogrammed complexes initiate or enhance the ubiquitination of cellular proteins that may otherwise act to restrain viral replication. Ubiquitination of target proteins may alter protein function or initiate proteasome-dependent destruction. HIV Viral Protein R (Vpr) and the related HIV-2 Viral Protein X (Vpx), engage the CRL4-DCAF1 ubiquitin ligase complex to target numerous cellular proteins. In this review we describe the CRL4-DCAF1 ubiquitin ligase complex and its interactions with HIV Vpr and Vpx. We additionally summarize the cellular proteins targeted by this association as well as the observed or hypothesized impact on HIV.
Collapse
Affiliation(s)
- Ashley Dobransky
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Mary Root
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Nicholas Hafner
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Matty Marcum
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - H John Sharifi
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
3
|
Li M, Huang W, Zhang Y, Du Y, Zhao S, Wang L, Sun Y, Sha B, Yan J, Ma Y, Tang J, Shi J, Li P, Jia L, Hu T, Chen P. Glucose deprivation triggers DCAF1-mediated inactivation of Rheb-mTORC1 and promotes cancer cell survival. Cell Death Dis 2024; 15:409. [PMID: 38862475 PMCID: PMC11166663 DOI: 10.1038/s41419-024-06808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.
Collapse
Affiliation(s)
- Miaomiao Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Huang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Zhang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Du
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shan Zhao
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Longhao Wang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yaxin Sun
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Beibei Sha
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Jie Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yangcheng Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu Tang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Pei Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tao Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Laliberté A, Prelli Bozzo C, Stahl-Hennig C, Hunszinger V, Joas S, Sauermann U, Roshani B, Klippert A, Daskalaki M, Mätz-Rensing K, Stolte-Leeb N, Tharp GK, Fuchs D, Gupta PM, Silvestri G, Nelson SA, Parodi L, Giavedoni L, Bosinger SE, Sparrer KM, Kirchhoff F. Vpr attenuates antiviral immune responses and is critical for full pathogenicity of SIV mac239 in rhesus macaques. iScience 2023; 26:108351. [PMID: 38025783 PMCID: PMC10679897 DOI: 10.1016/j.isci.2023.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The accessory viral protein R (Vpr) is encoded by all primate lentiviruses. Vpr counteracts DNA repair pathways, modulates viral immune sensing, and induces cell-cycle arrest in cell culture. However, its impact in vivo is controversial. Here, we show that deletion of vpr is associated with delayed viral replication kinetics, rapid innate immune activation, development and maintenance of strong B and T cell responses, and increased neutralizing activity against SIVmac239 in rhesus macaques. All wild-type SIVmac239-infected animals maintained high viral loads, and five of six developed fatal immunodeficiency during ∼80 weeks of follow-up. Lack of Vpr was associated with better preservation of CD4+ T cells, lower viral loads, and an attenuated clinical course of infection in most animals. Our results show that Vpr contributes to efficient viral immune evasion and the full pathogenic potential of SIVmacin vivo. Inhibition of Vpr may improve humoral immune control of viral replication.
Collapse
Affiliation(s)
- Alexandre Laliberté
- Institute of Molecular Virology – Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | - Caterina Prelli Bozzo
- Institute of Molecular Virology – Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Victoria Hunszinger
- Institute of Molecular Virology – Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | - Simone Joas
- Institute of Molecular Virology – Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Berit Roshani
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | - Maria Daskalaki
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | | | - Gregory K. Tharp
- Emory National Primate Research Center, Emory Vaccine Center and Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Dietmar Fuchs
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Prachi Mehrotra Gupta
- Emory National Primate Research Center, Emory Vaccine Center and Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory Vaccine Center and Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Sydney A. Nelson
- Emory National Primate Research Center, Emory Vaccine Center and Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Laura Parodi
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Giavedoni
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Steven E. Bosinger
- Emory National Primate Research Center, Emory Vaccine Center and Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Konstantin M.J. Sparrer
- Institute of Molecular Virology – Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology – Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| |
Collapse
|
5
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
6
|
Eldin P, Péron S, Galashevskaya A, Denis-Lagache N, Cogné M, Slupphaug G, Briant L. Impact of HIV-1 Vpr manipulation of the DNA repair enzyme UNG2 on B lymphocyte class switch recombination. J Transl Med 2020; 18:310. [PMID: 32778120 PMCID: PMC7418440 DOI: 10.1186/s12967-020-02478-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background HIV-1 Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through modulation of several host cell functions. In addition to pro-apoptotic and cytostatic properties, Vpr can redirect cellular E3 ubiquitin ligases (such as DCAF1-Cul4A E3 ligase complex) to target many host proteins and interfere with their functions. Among them, Vpr binds the uracil DNA glycosylase UNG2, which controls genome uracilation, and induces its specific degradation leading to loss of uracil removal activity in infected cells. Considering the essential role of UNG2 in antibody diversification in B-cells, we evaluated the impact of Vpr on UNG2 fate in B lymphocytes and examined the functional consequences of UNG2 modulations on class switch recombination (CSR). Methods The impact of Vpr-induced UNG2 deregulation on CSR proficiency was evaluated by using virus-like particles able to deliver Vpr protein to target cells including the murine model CSR B cell line CH12F3 and mouse primary B-cells. Co-culture experiments were used to re-examine the ability of Vpr to be released by HIV-1 infected cells and to effectively accumulate in bystander B-cells. Vpr-mediated UNG2 modulations were monitored by following UNG2 protein abundance and uracil removal enzymatic activity. Results In this study we report the ability of Vpr to reduce immunoglobulin class switch recombination (CSR) in immortalized and primary mouse B-cells through the degradation of UNG2. We also emphasize that Vpr is released by producing cells and penetrates bystander B lymphocytes. Conclusions This work therefore opens up new perspectives to study alterations of the B-cell response by using Vpr as a specific CSR blocking tool. Moreover, our results raise the question of whether extracellular HIV-1 Vpr detected in some patients may manipulate the antibody diversification process that engineers an adapted response against pathogenic intruders and thereby contribute to the intrinsic B-cell humoral defect reported in infected patients.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| | - Sophie Péron
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Anastasia Galashevskaya
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Nicolas Denis-Lagache
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Michel Cogné
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Geir Slupphaug
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
7
|
Chang H, Siarot L, Matsuura R, Lo CW, Sato H, Otsuki H, Aida Y. Distinct MCM10 Proteasomal Degradation Profiles by Primate Lentiviruses Vpr Proteins. Viruses 2020; 12:v12010098. [PMID: 31952107 PMCID: PMC7019430 DOI: 10.3390/v12010098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/28/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Viral protein R (Vpr) is an accessory protein found in various primate lentiviruses, including human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) as well as simian immunodeficiency viruses (SIVs). Vpr modulates many processes during viral lifecycle via interaction with several of cellular targets. Previous studies showed that HIV-1 Vpr strengthened degradation of Mini-chromosome Maintenance Protein10 (MCM10) by manipulating DCAF1-Cul4-E3 ligase in proteasome-dependent pathway. However, whether Vpr from other primate lentiviruses are also associated with MCM10 degradation and the ensuing impact remain unknown. Based on phylogenetic analyses, a panel of primate lentiviruses Vpr/x covering main virus lineages was prepared. Distinct MCM10 degradation profiles were mapped and HIV-1, SIVmus and SIVrcm Vprs induced MCM10 degradation in proteasome-dependent pathway. Colocalization and interaction between MCM10 with these Vprs were also observed. Moreover, MCM10 2-7 interaction region was identified as a determinant region susceptible to degradation. However, MCM10 degradation did not alleviate DNA damage response induced by these Vpr proteins. MCM10 degradation by HIV-1 Vpr proteins was correlated with G2/M arrest, while induction of apoptosis and oligomerization formation of Vpr failed to alter MCM10 proteolysis. The current study demonstrated a distinct interplay pattern between primate lentiviruses Vpr proteins and MCM10.
Collapse
Affiliation(s)
- Hao Chang
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lowela Siarot
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nakamura Laboratory, Baton Zone program, Riken Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Otsuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nakamura Laboratory, Baton Zone program, Riken Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Correspondence:
| |
Collapse
|
8
|
Giuliani E, Vassena L, Galardi S, Michienzi A, Desimio MG, Doria M. Dual regulation of L-selectin (CD62L) by HIV-1: Enhanced expression by Vpr in contrast with cell-surface down-modulation by Nef and Vpu. Virology 2018; 523:121-128. [PMID: 30119013 DOI: 10.1016/j.virol.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The HIV-1 accessory protein Vpr displays various activities that can favor viral replication such as G2 cell cycle arrest. Vpr also modulates host gene expression, although this property is poorly characterized. Here, we investigated the effect of Vpr on L-selectin (CD62L), which crucially controls leukocytes circulation and generation of immune responses against pathogens. We report that Vpr up-regulates CD62L mRNA level when individually expressed in Jurkat T cells as well as during HIV-1 infection of primary CD4+ T cells. Vpr mutant analysis and use of inhibitors suggest that the effect of Vpr on CD62L occurs independently of G2 arrest but requires activation of the ATR kinase. Yet, induction of CD62L expression by Vpr is contrasted by down-regulation of CD62L protein by Nef that, together with Vpu, induces a net reduction of cell-surface CD62L on HIV-1-infected cells, which may impact viral spread and evasion of immune responses.
Collapse
Affiliation(s)
- Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lia Vassena
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Kim SJ, Ahn DG, Syed GH, Siddiqui A. The essential role of mitochondrial dynamics in antiviral immunity. Mitochondrion 2018; 41:21-27. [PMID: 29246869 PMCID: PMC5988924 DOI: 10.1016/j.mito.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
Abstract
Viruses alter cellular physiology and function to establish cellular environment conducive for viral proliferation. Viral immune evasion is an essential aspect of viral persistence and proliferation. The multifaceted mitochondria play a central role in many cellular events such as metabolism, bioenergetics, cell death, and innate immune signaling. Recent findings accentuate that viruses regulate mitochondrial function and dynamics to facilitate viral proliferation. In this review, we will discuss how viruses exploit mitochondrial dynamics to modulate mitochondria-mediated antiviral innate immune response during infection. This review will provide new insight to understanding the virus-mediated alteration of mitochondrial dynamics and functions to perturb host antiviral immune signaling.
Collapse
Affiliation(s)
- Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Gulam H Syed
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Vermeire J, Roesch F, Sauter D, Rua R, Hotter D, Van Nuffel A, Vanderstraeten H, Naessens E, Iannucci V, Landi A, Witkowski W, Baeyens A, Kirchhoff F, Verhasselt B. HIV Triggers a cGAS-Dependent, Vpu- and Vpr-Regulated Type I Interferon Response in CD4 + T Cells. Cell Rep 2017; 17:413-424. [PMID: 27705790 DOI: 10.1016/j.celrep.2016.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/18/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
Several pattern-recognition receptors sense HIV-1 replication products and induce type I interferon (IFN-I) production under specific experimental conditions. However, it is thought that viral sensing and IFN induction are virtually absent in the main target cells of HIV-1 in vivo. Here, we show that activated CD4+ T cells sense HIV-1 infection through the cytosolic DNA sensor cGAS and mount a bioactive IFN-I response. Efficient induction of IFN-I by HIV-1 infection requires proviral integration and is regulated by newly expressed viral accessory proteins: Vpr potentiates, while Vpu suppresses cGAS-dependent IFN-I induction. Furthermore, Vpr also amplifies innate sensing of HIV-1 infection in Vpx-treated dendritic cells. Our results identify cGAS as mediator of an IFN-I response to HIV-1 infection in CD4+ T cells and demonstrate that this response is modulated by the viral accessory proteins Vpr and Vpu. Thus, viral innate immune evasion is incomplete in the main target cells of HIV-1.
Collapse
Affiliation(s)
- Jolien Vermeire
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Ferdinand Roesch
- Département de Virologie, Unité Virus et Immunité, Institut Pasteur, 75015 Paris, France
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Réjane Rua
- Département de Virologie, Unité Virus et Immunité, Institut Pasteur, 75015 Paris, France
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anouk Van Nuffel
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Hanne Vanderstraeten
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Evelien Naessens
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Veronica Iannucci
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Alessia Landi
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Wojciech Witkowski
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Ann Baeyens
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Wimmer P, Schreiner S. Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways. Viruses 2015; 7:4854-72. [PMID: 26343706 PMCID: PMC4584293 DOI: 10.3390/v7092849] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
Posttranslational modifications (PTMs) of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub) and small ubiquitin-like modifier (SUMO) moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways.
Collapse
Affiliation(s)
- Peter Wimmer
- Novartis Pharma Germany, Roonstrasse 25, 90429 Nürnberg, Germany.
| | - Sabrina Schreiner
- Institute of Virology, Technische Universität München, Trogerstrasse 30, 81675 München, Germany.
- Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg/München, Germany.
| |
Collapse
|
12
|
Hollenbaugh JA, Tao S, Lenzi GM, Ryu S, Kim DH, Diaz-Griffero F, Schinazi RF, Kim B. dNTP pool modulation dynamics by SAMHD1 protein in monocyte-derived macrophages. Retrovirology 2014; 11:63. [PMID: 25158827 PMCID: PMC4161909 DOI: 10.1186/s12977-014-0063-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/18/2014] [Indexed: 02/03/2023] Open
Abstract
Background SAMHD1 degrades deoxyribonucleotides (dNTPs), suppressing viral DNA synthesis in macrophages. Recently, viral protein X (Vpx) of HIV-2/SIVsm was shown to target SAMHD1 for proteosomal degradation and led to elevation of dNTP levels, which in turn accelerated proviral DNA synthesis of lentiviruses in macrophages. Results We investigated both time-dependent and quantitative interplays between SAMHD1 level and dNTP concentrations during multiple exposures of Vpx in macrophages. The following were observed. First, SAMHD1 level was rapidly reduced by Vpx + VLP to undetectable levels by Western blot analysis. Recovery of SAMHD1 was very slow with less than 3% of the normal macrophage level detected at day 6 post Vpx treatment and only ~30% recovered at day 14. Second, dGTP, dCTP and dTTP levels peaked at day 1 post Vpx treatment, whereas dATP peaked at day 2. However, all dNTPs rapidly decreased starting at day 3, while SAMHD1 level was below the level of detection. Third, when Vpx pretreated macrophages were re-exposed to a second Vpx treatment at day 7, we observed dNTP elevation that had faster kinetics than the first Vpx + VLP treatment. Moreover, we performed a short kinetic analysis of the second Vpx treatment to find that dATP and dGTP levels peaked at 8 hours post secondary VLP treatment. dGTP peak was consistently higher than the primary, whereas peak dATP concentration was basically equivalent to the first Vpx + VLP treatment. Lastly, HIV-1 replication kinetics were faster in macrophages treated after the secondary Vpx treatments when compared to the initial single Vpx treatment. Conclusion This study reveals that a very low level of SAMHD1 sufficiently modulates the normally low dNTP levels in macrophages and proposes potential diverse mechanisms of Vpx-mediated dNTP regulation in macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0063-2) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Recent patents and emerging therapeutics for HIV infections: a focus on protease inhibitors. Pharm Pat Anal 2014; 2:513-38. [PMID: 24237127 DOI: 10.4155/ppa.13.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inclusion of protease inhibitors (PIs) in highly active antiretroviral therapy has significantly improved clinical outcomes in HIV-1-infected patients. To date, PIs are considered to be the most important therapeutic agents for the treatment of HIV infections. Despite high anti-HIV-1 potency, poor oral bioavailability of PIs has been a major concern. For achieving therapeutic concentrations, large doses of PIs are administered, which results in unacceptable systemic toxicities. Such severe and long-term toxicities necessitate the development of safer and potentially promising PIs. Recently, considerable attention has been paid to the development of newer compounds capable of inhibiting wild-type and resistant HIV-1 protease. Some of these PIs have displayed potent HIV-1 protease inhibitory activity. In this review, we have made an attempt to provide an overview on clinically approved and newly developing PIs, and related recent patents in the development of novel PIs.
Collapse
|
14
|
Cullin4A and cullin4B are interchangeable for HIV Vpr and Vpx action through the CRL4 ubiquitin ligase complex. J Virol 2014; 88:6944-58. [PMID: 24719410 DOI: 10.1128/jvi.00241-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus (HIV) seizes control of cellular cullin-RING E3 ubiquitin ligases (CRLs) to promote viral replication. HIV-1 Vpr and HIV-2/simian immunodeficiency virus (SIV) Vpr and Vpx engage the cullin4 (CUL4)-containing ubiquitin ligase complex (CRL4) to cause polyubiquitination and proteasomal degradation of host proteins, including ones that block infection. HIV-1 Vpr engages CRL4 to trigger the degradation of uracil-N-glycosylase 2 (UNG2). Both HIV-1 Vpr and HIV-2/SIV Vpr tap CRL4 to initiate G2 cell cycle arrest. HIV-2/SIV Vpx secures CRL4 to degrade the antiviral protein SAMHD1. CRL4 includes either cullin4A (CUL4A) or cullin4B (CUL4B) among its components. Whether Vpr or Vpx relies on CUL4A, CUL4B, or both to act through CRL4 is not known. Reported structural, phenotypic, and intracellular distribution differences between the two CUL4 types led us to hypothesize that Vpr and Vpx employ these in a function-specific manner. Here we determined CUL4 requirements for HIV-1 and HIV-2/SIV Vpr-mediated G2 cell cycle arrest, HIV-1 Vpr-mediated UNG2 degradation, and HIV-2 Vpx-mediated SAMHD1 degradation. Surprisingly, CUL4A and CUL4B are exchangeable for CRL4-dependent Vpr and Vpx action, except in primary macrophages, where Vpx relies on both CUL4A and CUL4B for maximal SAMHD1 depletion. This work highlights the need to consider both CUL4 types for Vpr and Vpx functions and also shows that the intracellular distribution of CUL4A and CUL4B can vary by cell type. IMPORTANCE The work presented here shows for the first time that HIV Vpr and Vpx do not rely exclusively on CUL4A to cause ubiquitination through the CRL4 ubiquitin ligase complex. Furthermore, our finding that intracellular CUL4 and SAMHD1 distributions can vary with cell type provides the basis for reconciling previous disparate findings regarding the site of SAMHD1 depletion. Finally, our observations with primary immune cells provide insight into the cell biology of CUL4A and CUL4B that will help differentiate the functions of these similar proteins.
Collapse
|
15
|
Laguette N, Brégnard C, Hue P, Basbous J, Yatim A, Larroque M, Kirchhoff F, Constantinou A, Sobhian B, Benkirane M. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 2014; 156:134-45. [PMID: 24412650 DOI: 10.1016/j.cell.2013.12.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/05/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
Abstract
The HIV auxiliary protein Vpr potently blocks the cell cycle at the G2/M transition. Here, we show that G2/M arrest results from untimely activation of the structure-specific endonuclease (SSE) regulator SLX4 complex (SLX4com) by Vpr, a process that requires VPRBP-DDB1-CUL4 E3-ligase complex. Direct interaction of Vpr with SLX4 induced the recruitment of VPRBP and kinase-active PLK1, enhancing the cleavage of DNA by SLX4-associated MUS81-EME1 endonucleases. G2/M arrest-deficient Vpr alleles failed to interact with SLX4 or to induce recruitment of MUS81 and PLK1. Furthermore, knockdown of SLX4, MUS81, or EME1 inhibited Vpr-induced G2/M arrest. In addition, we show that the SLX4com is involved in suppressing spontaneous and HIV-1-mediated induction of type 1 interferon and establishment of antiviral responses. Thus, our work not only reveals the identity of the cellular factors required for Vpr-mediated G2/M arrest but also identifies the SLX4com as a regulator of innate immunity.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France.
| | - Christelle Brégnard
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Pauline Hue
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Jihane Basbous
- Laboratoire Instabilité du Génome et Cancer, CNRS UPR1142, Montpellier 34000, France
| | - Ahmad Yatim
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Marion Larroque
- Laboratoire Instabilité du Génome et Cancer, CNRS UPR1142, Montpellier 34000, France
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 81089 Ulm, Germany
| | - Angelos Constantinou
- Laboratoire Instabilité du Génome et Cancer, CNRS UPR1142, Montpellier 34000, France
| | - Bijan Sobhian
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France.
| |
Collapse
|
16
|
Maudet C, Sourisce A, Dragin L, Lahouassa H, Rain JC, Bouaziz S, Ramirez BC, Margottin-Goguet F. HIV-1 Vpr induces the degradation of ZIP and sZIP, adaptors of the NuRD chromatin remodeling complex, by hijacking DCAF1/VprBP. PLoS One 2013; 8:e77320. [PMID: 24116224 PMCID: PMC3792905 DOI: 10.1371/journal.pone.0077320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023] Open
Abstract
The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.
Collapse
Affiliation(s)
- Claire Maudet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Adèle Sourisce
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Loïc Dragin
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Hichem Lahouassa
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | | | - Serge Bouaziz
- University Paris Descartes, Paris, France
- CNRS UMR8015, Paris, France
| | - Bertha Cécilia Ramirez
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Florence Margottin-Goguet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, Gandolfi DD, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB. Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One 2013; 8:e74414. [PMID: 24086341 PMCID: PMC3781084 DOI: 10.1371/journal.pone.0074414] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
Collapse
Affiliation(s)
- Hartmut M. Hanauske-Abel
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Clinic St. George, Hamburg, Germany
| | - Augusto D. Luchessi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tavane D. Cambiaghi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | - Debra S. Heller
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sukhwinder Singh
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute for Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | | | | | - Anthony M. Popowicz
- Department of Information Technology, Rockefeller University, New York, New York, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bart Holland
- Department of Preventive Medicine & Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tsafi Pe’ery
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
18
|
Kang X, Chen X, He Y, Guo D, Guo L, Zhong J, Shu HB. DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication. Virology 2013; 435:385-94. [DOI: 10.1016/j.virol.2012.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
19
|
Zheng YH, Jeang KT, Tokunaga K. Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 2012; 9:112. [PMID: 23254112 PMCID: PMC3549941 DOI: 10.1186/1742-4690-9-112] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/09/2012] [Indexed: 01/19/2023] Open
Abstract
Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs), and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
20
|
Abstract
Cellular proteins called "restriction factors" can serve as powerful blockades to HIV replication, but the virus possesses elaborate strategies to circumvent these barriers. First, we discuss general hallmarks of a restriction factor. Second, we review how the viral Vif protein protects the viral genome from lethal levels of cDNA deamination by promoting APOBEC3 protein degradation; how the viral Vpu, Env, and Nef proteins facilitate internalization and degradation of the virus-tethering protein BST-2/tetherin; and how the viral Vpx protein prevents the premature termination of reverse transcription by degrading the dNTPase SAMHD1. These HIV restriction and counter-restriction mechanisms suggest strategies for new therapeutic interventions.
Collapse
Affiliation(s)
- Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
21
|
Evidence for Vpr-dependent HIV-1 replication in human CD4+ CEM.NKR T-cells. Retrovirology 2012; 9:93. [PMID: 23134572 PMCID: PMC3528630 DOI: 10.1186/1742-4690-9-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/11/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Vpr is exclusively expressed in primate lentiviruses and contributes to viral replication and disease progression in vivo. HIV-1 Vpr has two major activities in vitro: arrest of cell cycle in the G2 phase (G2 arrest), and enhancement of viral replication in macrophages. Previously, we reported a potent HIV-1 restriction in the human CD4+ CEM.NKR (NKR) T cells, where wild-type (WT) HIV-1 replication was inhibited by almost 1,000-fold. From the parental NKR cells, we isolated eight clones by limiting dilution. These clones showed three levels of resistance to the WT HIV-1 infection: non-permissive (NP), semi-permissive (SP), and permissive (P). Here, we compared the replication of WT, Vif-defective, Vpr-defective, and Vpu-defective viruses in these cells. RESULTS Although both WT and Vpu-defective viruses could replicate in the permissive and semi-permissive clones, the replication of Vif-defective and Vpr-defective viruses was completely restricted. The expression of APOBEC3G (A3G) cytidine deaminase in NKR cells explains why Vif, but not Vpr, was required for HIV-1 replication. When the Vpr-defective virus life cycle was compared with the WT virus life cycle in the semi-permissive cells, it was found that the Vpr-defective virus could enter the cell and produce virions containing properly processed Gag and Env proteins, but these virions showed much less efficiency for reverse transcription during the next-round of infection. In addition, although viral replication was restricted in the non-permissive cells, treatment with arsenic trioxide (As2O3) could completely restore WT, but not Vpr-defective virus replication. Moreover, disruption of Vpr binding to its cofactor DCAF1 and/or induction of G2 arrest activity did not disrupt the Vpr activity in enhancing HIV-1 replication in NKR cells. CONCLUSIONS These results demonstrate that HIV-1 replication in NKR cells is Vpr-dependent. Vpr promotes HIV-1 replication from the 2nd cycle likely by overcoming a block at early stage of viral replication; and this activity does not require DCAF1 and G2 arrest. Further studies of this mechanism should provide new understanding of Vpr function in the HIV-1 life cycle.
Collapse
|
22
|
Proteasome-dependent disruption of the E3 ubiquitin ligase anaphase-promoting complex by HCMV protein pUL21a. PLoS Pathog 2012; 8:e1002789. [PMID: 22792066 PMCID: PMC3390409 DOI: 10.1371/journal.ppat.1002789] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/22/2012] [Indexed: 01/27/2023] Open
Abstract
The anaphase-promoting complex (APC) is an E3 ubiquitin ligase which controls ubiquitination and degradation of multiple cell cycle regulatory proteins. During infection, human cytomegalovirus (HCMV), a widespread pathogen, not only phosphorylates the APC coactivator Cdh1 via the multifunctional viral kinase pUL97, it also promotes degradation of APC subunits via an unknown mechanism. Using a proteomics approach, we found that a recently identified HCMV protein, pUL21a, interacted with the APC. Importantly, we determined that expression of pUL21a was necessary and sufficient for proteasome-dependent degradation of APC subunits APC4 and APC5. This resulted in APC disruption and required pUL21a binding to the APC. We have identified the proline-arginine amino acid pair at residues 109–110 in pUL21a to be critical for its ability to bind and regulate the APC. A point mutant virus in which proline-arginine were mutated to alanines (PR-AA) grew at wild-type levels. However, a double mutant virus in which the viral ability to regulate the APC was abrogated by both PR-AA point mutation and UL97 deletion was markedly more attenuated compared to the UL97 deletion virus alone. This suggests that these mutations are synthetically lethal, and that HCMV exploits two viral factors to ensure successful disruption of the APC to overcome its restriction on virus infection. This study reveals the HCMV protein pUL21a as a novel APC regulator and uncovers a unique viral mechanism to subvert APC activity. In this study, we report an intriguing mechanism used by human cytomegalovirus (HCMV) to regulate a cellular E3 ubiquitin ligase, the anaphase promoting complex (APC). The ability to hijack the ubiquitin-proteasome system for regulating protein degradation and to manipulate the cell cycle for viral genome synthesis is critical in many viral infections. The APC is a master cell cycle modulator that targets a number of regulatory proteins for proteasomal degradation. It can prevent cells from entry into S-phase, thus creating a hindrance for viruses needing to coerce cells into a cellular environment favorable for viral DNA synthesis. We have identified an HCMV protein, pUL21a, which uses a seemingly counterintuitive mechanism to regulate the APC. It interacts with the APC to target the subunits of this ubiquitin ligase for proteasomal degradation. This causes disruption of the complex and reduces its activity. Furthermore, a virus lacking pUL21a and pUL97, which is another HCMV-encoded APC regulator, was highly attenuated when compared to loss of UL97 alone, suggesting that HCMV uses two proteins to fully disarm the APC. This study identifies a herpesviral protein that uses a unique, proteasome-dependent mechanism to regulate the activity of this prominent cellular E3 ubiquitin ligase.
Collapse
|
23
|
Kim B, Nguyen LA, Daddacha W, Hollenbaugh JA. Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J Biol Chem 2012; 287:21570-4. [PMID: 22589553 DOI: 10.1074/jbc.c112.374843] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, SAMHD1 has come under intense focus as a host anti-HIV factor. SAMHD1 is a dNTP triphosphohydrolase, which leads to the regulation of DNA metabolism in host cells. HIV-2/SIV (simian immunodeficiency virus) viral protein x (Vpx) has been shown to promote the degradation of SAMHD1. In this study, we examine the kinetics of SAMHD1 degradation, the increase in the dNTP pool level, and the efficiency of proviral DNA synthesis in Vpx+ virus-like particle (VLP)-treated monocyte-derived macrophages (MDMs). Our results indicate a very close temporal link with a reduction in SAMHD1 detected within the first few hours of Vpx+ VLP treatment. This loss of SAMHD1 is followed by a significant increase in cellular dNTP levels by 8 h after Vpx+ VLP addition, ultimately leading to the enhancement of the HIV proviral DNA synthesis rate and HIV infection in MDMs. Finally, the pretreatment of MDMs with the Vpx+ VLPs, which is a widely used protocol, displayed identical proviral DNA synthesis as compared with MDMs co-treated with Vpx+ VLP and HIV vector. These findings further indicate that Vpx degradation of SAMHD1 is sufficiently rapid to enable appropriate progression of reverse transcription in MDMs, even when present at the time of infection. Overall, this study demonstrates a tight interplay between SAMHD1 level, dNTP levels, and HIV proviral DNA synthesis kinetics in MDMs.
Collapse
Affiliation(s)
- Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
24
|
Kaur M, Khan MM, Kar A, Sharma A, Saxena S. CRL4-DDB1-VPRBP ubiquitin ligase mediates the stress triggered proteolysis of Mcm10. Nucleic Acids Res 2012; 40:7332-46. [PMID: 22570418 PMCID: PMC3424545 DOI: 10.1093/nar/gks366] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
When mammalian cells experience radiation insult, DNA replication is stalled to prevent erroneous DNA synthesis. UV-irradiation triggers proteolysis of Mcm10, an essential human replication factor, inhibiting the ongoing replication. Here, we report that Mcm10 associates with E3 ubiquitin ligase comprising DNA damage-binding protein, DDB1, cullin, Cul4 and ring finger protein, Roc1. Depletion of DDB1, Roc1 or Cul4 abrogates the UV-triggered Mcm10 proteolysis, implying that Cul4-Roc1-DDB1 ubiquitin ligase mediates Mcm10 downregulation. The purified Cul4-Roc1-DDB1 complex ubiquitinates Mcm10 in vitro, proving that Mcm10 is its substrate. By screening the known DDB1 interacting proteins, we discovered that VprBP is the substrate recognition subunit that targets Mcm10 for degradation. Hence, these results establish that Cul4-DDB1-VprBP ubiquitin ligase mediates the stress-induced proteolysis of replication factor, Mcm10.
Collapse
Affiliation(s)
- Manpreet Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | |
Collapse
|
25
|
HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS One 2012; 7:e33657. [PMID: 22438978 PMCID: PMC3306277 DOI: 10.1371/journal.pone.0033657] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/17/2012] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1.
Collapse
|
26
|
Biard-Piechaczyk M, Borel S, Espert L, de Bettignies G, Coux O. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell 2012; 104:165-87. [PMID: 22188301 DOI: 10.1111/boc.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.
Collapse
Affiliation(s)
- Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS-CNRS), Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
27
|
Weitzman MD, Lilley CE, Chaurushiya MS. Changing the ubiquitin landscape during viral manipulation of the DNA damage response. FEBS Lett 2011; 585:2897-906. [PMID: 21549706 PMCID: PMC3312807 DOI: 10.1016/j.febslet.2011.04.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 02/08/2023]
Abstract
Viruses often induce signaling through the same cellular cascades that are activated by damage to the cellular genome. Signaling triggered by viral proteins or exogenous DNA delivered by viruses can be beneficial or detrimental to viral infection. Viruses have therefore evolved to dissect the cellular DNA damage response pathway during infection, often marking key cellular regulators with ubiquitin to induce their degradation or change their function. Signaling controlled by ubiquitin or ubiquitin-like proteins has recently emerged as key regulator of the cellular DNA damage response. Situated at the interface between DNA damage signaling and the ubiquitin system, viruses can reveal key convergence points in this important cellular pathway. In this review, we examine how viruses harness the diversity of the cellular ubiquitin system to modulate the DNA damage signaling pathway. We discuss the implications of viral infiltration of this pathway for both the transcriptional program of the virus and for the cellular response to DNA damage.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
28
|
Gustin JK, Moses AV, Früh K, Douglas JL. Viral takeover of the host ubiquitin system. Front Microbiol 2011; 2:161. [PMID: 21847386 PMCID: PMC3147166 DOI: 10.3389/fmicb.2011.00161] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/14/2011] [Indexed: 01/29/2023] Open
Abstract
Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University Beaverton, OR, USA
| | | | | | | |
Collapse
|
29
|
Kogan M, Rappaport J. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 2011; 8:25. [PMID: 21489275 PMCID: PMC3090340 DOI: 10.1186/1742-4690-8-25] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/13/2011] [Indexed: 01/11/2023] Open
Abstract
The HIV protein, Vpr, is a multifunctional accessory protein critical for efficient viral infection of target CD4+ T cells and macrophages. Vpr is incorporated into virions and functions to transport the preintegration complex into the nucleus where the process of viral integration into the host genome is completed. This action is particularly important in macrophages, which as a result of their terminal differentiation and non-proliferative status, would be otherwise more refractory to HIV infection. Vpr has several other critical functions including activation of HIV-1 LTR transcription, cell-cycle arrest due to DCAF-1 binding, and both direct and indirect contributions to T-cell dysfunction. The interactions of Vpr with molecular pathways in the context of macrophages, on the other hand, support accumulation of a persistent reservoir of HIV infection in cells of the myeloid lineage. The role of Vpr in the virus life cycle, as well as its effects on immune cells, appears to play an important role in the immune pathogenesis of AIDS and the development of HIV induced end-organ disease. In view of the pivotal functions of Vpr in virus infection, replication, and persistence of infection, this protein represents an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Michael Kogan
- Department of Neuroscience, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
30
|
Fritz JV, Briant L, Mély Y, Bouaziz S, de Rocquigny H. HIV-1 viral protein r: from structure to function. Future Virol 2010. [DOI: 10.2217/fvl.10.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The viral protein r (Vpr) of HIV-1 binds several host proteins leading to pleiotropic functions, such as G2/M cell cycle arrest, apoptosis induction and gene transactivation. Vpr is encapsidated through the Gag C-terminus into the nascent viral particles, suggesting that Vpr plays several important functions in the early stages of the viral lifecycle. In this regard, Vpr interacts with nucleic acids and membranes to facilitate the preintegration complex migration and incorporation into the nucleus of nondividing cells. Thus, Vpr has to recruit several host and viral factors to promote its functions during HIV-1 pathogenesis. This article focuses on its interacting partners by giving an overview of the functional outcome of the different Vpr complexes, as well as the structural determinants of Vpr required for its binding properties.
Collapse
Affiliation(s)
- Joëlle V Fritz
- Department of Infectious Diseases, Virology, Universitätsklinikum, Im Neuenheimer Feld, 324, D-69120, Heidelberg, Germany
| | - Laurence Briant
- Université Montpellier 1, Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé, CNRS, UMR 5236, CPBS, F-34965 Montpellier, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR8015 UFR des Sciences Pharmaceutiques et Biologiques 4, Avenue de L’observatoire, 75006 Paris, France: Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | | |
Collapse
|