1
|
Guo S, Lin Y, Li J, Zheng Y, Lan X, Chen J, Li S, Feng Y, Wang S. Relationship of depression and asthma: a observational and Mendelian randomization study. J Asthma 2025:1-10. [PMID: 39907712 DOI: 10.1080/02770903.2025.2463973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Both depression and asthma have a significant impact on the quality of life for individuals. Studies have shown that patients with depression often experience comorbid asthma; however, the precise relationship between these two conditions remains unclear. The objective of this study is to investigate the causal relationship between depression and asthma. METHODS In a cross-sectional study, we utilized data from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 and employed logistic regression to assess the correlation between depression and asthma. In the subsequent Mendelian randomization (MR) analysis, we selected single nucleotide polymorphisms (SNPs) closely linked to both depression and asthma as instrumental variables, based on summary data from genome-wide association studies (GWAS). The inverse variance weighted method (IVW) was then applied to ascertain the causal relationship between depression and asthma. RESULTS Based on the results of the cross-sectional study, it was found that the status of depression was significantly associated with a higher risk of asthma (OR = 2.15, 95%CI = 1.79 ∼ 2.59, p < 0.001). Furthermore, in the MR analysis, a causal relationship was further identified between depression, severe depression, and the increased incidence of asthma (OR = 1.11, 95%CI = 1.05 ∼ 1.18, p < 0.001), (OR = 1.01, 95%CI = 1.01 ∼ 1.02, p < 0.001); the results of the reverse MR analysis indicated no causal relationship between asthma and the increased incidence of depression and severe depression (OR = 1.01, 95%CI0.99 ∼ 1.03, p = 0.50), (OR = 1.07, 95%CI: 0.82 ∼ 1.40, p = 0.64). CONCLUSION This study has revealed a causal relationship between depression and an increased risk of developing asthma, offering new insights for the clinical intervention of both asthma and depression.
Collapse
Affiliation(s)
- Shiyuan Guo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yilong Lin
- School of Medicine, Xiamen University, Xiamen, China
| | - Junting Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yan Zheng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Lan
- School of Medicine, Xiamen University, Xiamen, China
| | - Jiaojiao Chen
- School of clinical medicine, Anhui Medical University, Hefei, China
| | - Shuying Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingjie Feng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Songsong Wang
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Xu SY, Lv HQ, Zeng CL, Peng YJ. Prevalence and bidirectional association between rhinitis and urticaria: A systematic review and meta-analysis. Allergy Asthma Proc 2023; 44:402-412. [PMID: 37919842 DOI: 10.2500/aap.2023.44.230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Background: Rhinitis, allergic rhinitis in particular, and urticaria are both common diseases globally. However, there is controversy with regard to the correlation between rhinitis and urticaria. Objective: To examine the accurate association between rhinitis and urticaria. Methods: Three medical literature data bases were searched from data base inception until January 11, 2022. The prevalence and association between rhinitis and urticaria were estimated by meta-analysis. Quality assessment was performed by using the Newcastle-Ottawa Scale. Pooled odds ratios (OR) with 95% confidence intervals (CI) and pooled prevalence were calculated by using random-effects models. Results: Urticaria prevalence in patients with rhinitis was 17.6% (95% CI, 13.2%-21.9%). The pooled prevalence of rhinitis was 31.3% (95% CI, 24.2%-38.4%) in patients with urticaria, and rhinitis prevalence in patients with acute urticaria and chronic urticaria was 31.6% (95% CI, 7.4%-55.8%) and 28.7% (95% CI, 20.4%-36.9%), respectively. Rhinitis occurrence was significantly associated with urticaria (OR 2.67 [95% CI, 2.625-2.715]). Urticaria and rhinitis were diagnosed based on different criteria, possibly resulting in a potential error of misclassification. Conclusion: Rhinitis and urticaria were significantly correlated. Physicians should be cognizant with regard to this relationship and address nasal or skin symptoms in patients.
Collapse
|
3
|
Weihrauch T, Limberg MM, Gray N, Schmelz M, Raap U. Neurotrophins: Neuroimmune Interactions in Human Atopic Diseases. Int J Mol Sci 2023; 24:ijms24076105. [PMID: 37047077 PMCID: PMC10094011 DOI: 10.3390/ijms24076105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Allergic diseases are accompanied by a variety of symptoms such as pruritus, coughing, sneezing, and watery eyes, which can result in severe physiological and even psychological impairments. The exact mechanisms of these conditions are not yet completely understood. However, recent studies demonstrated a high relevance of neurotrophins in allergic inflammation, as they induce cytokine release, mediate interaction between immune cells and neurons, and exhibit different expression levels in health and disease. In this review, we aim to give an overview of the current state of knowledge concerning the role of neurotrophins in atopic disorders such as atopic dermatitis, allergic asthma, and allergic rhinitis.
Collapse
Affiliation(s)
- Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Natalie Gray
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- University Clinic of Dermatology and Allergy, University of Oldenburg, 26133 Oldenburg, Germany
| |
Collapse
|
4
|
Wufuer D, Aierken H, Liang Z, Zheng JP, Li L. Association between comorbid asthma and depression and depression-related gene SNPs. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2022.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Antunes GL, Silveira JS, Luft C, Greggio S, Venturin GT, Schmitz F, Biasibetti-Brendler H, Vuolo F, Dal-Pizzol F, da Costa JC, Wyse ATS, Pitrez PM, da Cunha AA. Airway inflammation induces anxiety-like behavior through neuroinflammatory, neurochemical, and neurometabolic changes in an allergic asthma model. Metab Brain Dis 2022; 37:911-926. [PMID: 35059965 DOI: 10.1007/s11011-022-00907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco's phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1β release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.
Collapse
Affiliation(s)
- Géssica Luana Antunes
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil.
| | - Josiane Silva Silveira
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil
| | - Carolina Luft
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Gianina Teribele Venturin
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Helena Biasibetti-Brendler
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Jaderson Costa da Costa
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
6
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Urbina-Varela R, Soto-Espinoza MI, Vargas R, Quiñones L, Del Campo A. Influence of BDNF Genetic Polymorphisms in the Pathophysiology of Aging-related Diseases. Aging Dis 2020; 11:1513-1526. [PMID: 33269104 PMCID: PMC7673859 DOI: 10.14336/ad.2020.0310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
For the first time in history, most of the population has a life expectancy equal or greater than 60 years. By the year 2050, it is expected that the world population in that age range will reach 2000 million, an increase of 900 million with respect to 2015, which poses new challenges for health systems. In this way, it is relevant to analyze the most common diseases associated with the aging process, namely Alzheimer´s disease, Parkinson Disease and Type II Diabetes, some of which may have a common genetic component that can be detected before manifesting, in order to delay their progress. Genetic inheritance and epigenetics are factors that could be linked in the development of these pathologies. Some researchers indicate that the BDNF gene is a common factor of these diseases, and apparently some of its polymorphisms favor the progression of them. In this regard, alterations in the level of BDNF expression and secretion, due to polymorphisms, could be linked to the development and/or progression of neurodegenerative and metabolic disorders. In this review we will deepen on the different polymorphisms in the BDNF gene and their possible association with age-related pathologies, to open the possibilities of potential therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Urbina-Varela
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Romina Vargas
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Quiñones
- 3Laboratorio de Carcinogenesis Química y Farmacogenética (CQF), Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile
| | - Andrea Del Campo
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Sreter KB, Popovic-Grle S, Lampalo M, Konjevod M, Tudor L, Nikolac Perkovic M, Jukic I, Bingulac-Popovic J, Safic Stanic H, Markeljevic J, Pivac N, Svob Strac D. Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration and BDNF/ TrkB Gene Polymorphisms in Croatian Adults with Asthma. J Pers Med 2020; 10:E189. [PMID: 33114368 PMCID: PMC7712770 DOI: 10.3390/jpm10040189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B (TrkB) receptor might contribute to normal lung functioning and immune responses; however, their role in asthma remains unclear. Plasma BDNF concentrations, as well as BDNF and NTRK2 (TrkB gene) polymorphisms, were investigated in 120 asthma patients and 120 healthy individuals using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. The genotype and allele frequencies of BDNF Val66Met (rs6265) and NTRK2 rs1439050 polymorphisms did not differ between healthy individuals and asthma patients, nor between patients grouped according to severity or different asthma phenotypes. Although plasma BDNF concentrations were higher among healthy subjects carrying the BDNF Val66Met GG genotype compared to the A allele carriers, such differences were not detected in asthma patients, suggesting the influences of other factors. Plasma BDNF concentration was not affected by NTRK2 rs1439050 polymorphism. Asthma patients had higher plasma BDNF concentrations than control subjects; however, no differences were found between patients subdivided according to asthma severity, or Type-2, allergic, and eosinophilic asthma. Higher plasma BDNF levels were observed in asthma patients with aspirin sensitivity and aspirin-exacerbated respiratory disease. These results suggest that plasma BDNF may serve as a potential peripheral biomarker for asthma, particularly asthma with aspirin sensitivity.
Collapse
Affiliation(s)
- Katherina B. Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasna Bingulac-Popovic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Hana Safic Stanic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| |
Collapse
|
9
|
Alshogran OY, Al-Eitan LN, Altawalbeh SM, Khalil AA, Alqudah MAY, Oweis AO, Aman HA, Alhawari HH. Investigating the Contribution of NPSR1, IL-6 and BDNF Polymorphisms to Depressive and Anxiety Symptoms in Hemodialysis Patients. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109657. [PMID: 31132388 DOI: 10.1016/j.pnpbp.2019.109657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022]
Abstract
AIMS Psychological symptoms are prevalent in hemodialysis (HD) patients. Previous investigations showed that brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) as well as the interaction with neuropeptide S receptor 1 (NPSR1) are linked to the development of psychological distress. This study examined the association of polymorphisms of genes encoding these proteins with depression and anxiety in a representative group of Jordanian HD patients. METHODS A total of 302 HD patients were involved in the study and categorized into three groups based on the Hospital Anxiety and Depression Scale, HADS-D or HADS-A scores as follows: normal (<7), mild (8-10) and moderate-severe (11-21). Single nucleotide polymorphism (SNP) of NPSR1 Asn107Ile (rs324981), IL-6 G174C (rs1800795), and BDNF Val66Met (rs6265) was genotyped using blood samples. RESULTS The frequency of Ile-allele of NPSR1 Asn107Ile was significantly higher in patients with moderate-severe HADS-A scores versus normal (53% vs. 40.8%, p = .035). Using ordinal regression analysis, Asn-allele of NPSR1 polymorphism was nominally significantly associated with a lower risk of anxiety (OR = 0.57, CI: 0.33-0.97, p = .038) after adjusting for other covariates. A marginally significant difference in genotype distribution of IL-6 G174C was observed among patients according to HADS-D scores (p = .05). Furthermore, carriers of IL-6174 CC genotype showed lower median IL-6 serum concentration versus carriers of GG genotype (5.2 vs. 1.35 pg/mL, p < .05). CONCLUSIONS The results support the genetic role of NPSR1 in the pathogenesis of anxiety and suggest that carriers of NPSR1 Ile-allele are at increased risk of anxiety in HD patients. Neither BDNF Val66Met nor IL-6 G174C were linked to psychological symptoms. Future studies among other ethnicities are necessary to verify the observations.
Collapse
Affiliation(s)
- Osama Y Alshogran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Shoroq M Altawalbeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amani A Khalil
- Department of Clinical Nursing, School of Nursing, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A Y Alqudah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ashraf O Oweis
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hatem A Aman
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hussein H Alhawari
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
10
|
Acute and Chronic Exposure of Toluene Induces Genotoxicity in Different Regions of the Brain in Normal and Allergic Mouse Models. Neurotox Res 2019; 36:669-678. [PMID: 30888611 DOI: 10.1007/s12640-019-00024-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Toluene is a widely used industrial organic solvent and is ubiquitous in our environment. The neurobehavioral and neurotoxic effects of toluene are well recognized; however, its genotoxicity is still under discussion. Toluene biotransformation leads to the generation of reactive oxygen species that cause oxidative stress and DNA damages. Individuals with different immunogenetic backgrounds have different sensitivities to toxic chemical exposure. Previous studies have suggested that allergic stimulation may influence the threshold for toluene sensitivity due to the modulation of neurotrophin-related genes. Therefore, we aimed to investigate toluene-induced genotoxicity in different brain regions following acute and chronic exposure in vivo and to further examine whether allergic stimulation may influence the sensitivity to toluene-induced genotoxicity. In this present study, we found that exposure of toluene induced oxidative DNA damages resulting in genotoxicity in different brain regions including cortex, cerebellum, and hippocampus using comet assay. Higher genotoxicity induced by toluene was observed in the hippocampus of control mice compared to OVA-immunized mice. These results provide evidence that toluene-induced genotoxicity may contribute to its neurotoxicity in different immunogenetic individuals.
Collapse
|
11
|
Gosens R, Gross N. The mode of action of anticholinergics in asthma. Eur Respir J 2018; 52:13993003.01247-2017. [PMID: 30115613 PMCID: PMC6340638 DOI: 10.1183/13993003.01247-2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/09/2018] [Indexed: 01/25/2023]
Abstract
Acetylcholine binds to muscarinic receptors to play a key role in the pathophysiology of asthma, leading to bronchoconstriction, increased mucus secretion, inflammation and airway remodelling. Anticholinergics are muscarinic receptor antagonists that are used in the treatment of chronic obstructive pulmonary disease and asthma. Recent in vivo and in vitro data have increased our understanding of how acetylcholine contributes to the disease manifestations of asthma, as well as elucidating the mechanism of action of anticholinergics. This review assesses the latest literature on acetylcholine in asthma pathophysiology, with a closer look at its role in airway inflammation and remodelling. New insights into the mechanism of action of anticholinergics, their effects on airway remodelling, and a review of the efficacy and safety of long-acting anticholinergics in asthma treatment will also be covered, including a summary of the latest clinical trial data. Pre-clinical data suggest that anticholinergics can reduce acetylcholine-induced airway inflammation and remodellinghttp://ow.ly/xqAQ30loP8F
Collapse
Affiliation(s)
| | - Nicholas Gross
- University Medical Research LLC, St Francis Hospital, Hartford, CT, USA
| |
Collapse
|
12
|
Meta-analysis of the association between five single nucleotide polymorphisms in the BDNF gene and allergic inflammation susceptibility. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Manti S, Brown P, Perez MK, Piedimonte G. The Role of Neurotrophins in Inflammation and Allergy. VITAMINS AND HORMONES 2016; 104:313-341. [PMID: 28215300 DOI: 10.1016/bs.vh.2016.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic inflammation is the result of a specific pattern of cellular and humoral responses leading to the activation of the innate and adaptive immune system, which, in turn, results in physiological and structural changes affecting target tissues such as the airways and the skin. Eosinophil activation and the production of soluble mediators such as IgE antibodies are pivotal features in the pathophysiology of allergic diseases. In the past few years, however, convincing evidence has shown that neurons and other neurosensory structures are not only a target of the inflammatory process but also participate in the regulation of immune responses by actively releasing soluble mediators. The main products of these activated sensory neurons are a family of protein growth factors called neurotrophins. They were first isolated in the central nervous system and identified as important factors for the survival and differentiation of neurons during fetal and postnatal development as well as neuronal maintenance later in life. Four members of this family have been identified and well defined: nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, and neurotrophin 4/5. Neurotrophins play a critical role in the bidirectional signaling mechanisms between immune cells and the neurosensory network structures in the airways and the skin. Pruritus and airway hyperresponsiveness, two major features of atopic dermatitis and asthma, respectively, are associated with the disruption of the neurosensory network activities. In this chapter, we provide a comprehensive description of the neuroimmune interactions underlying the pathophysiological mechanisms of allergic and inflammatory diseases.
Collapse
Affiliation(s)
- S Manti
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - P Brown
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - M K Perez
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States; Pediatric Institute and Children's Hospital, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - G Piedimonte
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States; Pediatric Institute and Children's Hospital, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
14
|
Yang Y, Zhao M, Zhang Y, Shen X, Yuan Y. Correlation of 5-HTT, BDNF and NPSR1 gene polymorphisms with anxiety and depression in asthmatic patients. Int J Mol Med 2016; 38:65-74. [PMID: 27176146 PMCID: PMC4899034 DOI: 10.3892/ijmm.2016.2581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
Asthmatic patients are known to have a higher risk of anxiety and depression. In the present study, we aimed to explore the association of serotonin transporter (5-HTT), brain-derived neurotrophic factor (BDNF) and neuropeptide S receptor 1 (NPSR1) gene polymorphisms with anxiety and depression in asthmatic patients. This was a cross-sectional study conducted on 143 asthmatic patients and 175 healthy volunteers. Of the asthmatic patients, 49 suffered from anxiety and 12 exhibited signs of depression. Patients with a lower level of education were more prone to depression. Both anxiety and depression were associated with poor asthma control as evaluated by the Asthma Control Test (ACT) score. The association of single nucleotide polymorphisms of BDNF, NPSR1 and 5-HTT with anxiety and depression in asthamtic patients was evaluated. The distribution of 5-HTT gene polymorphisms in the healthy group, the group with asthma but without anxiety, and the group with asthma and anxiety had significant differences. Females with asthma and anxiety were more prone to BDNF polymorphism. Also, BDNF gene distribution exhibited significant differences among those in the healthy group, the group with asthma but no depression, and the group with asthma and depression; however, NPSR1 gene distribution did not vary greatly between the groups. The anxiety score was significantly affected by the interaction between 5-HTT (LL, S+) and BDNF (A+, GG) (H=5.99, P=0.015). The depression score was significantly affected by the interaction between BDNF (A+, GG) and NPSR1 (AA, T+). We noted that both anxiety and depression led to poor asthma control. The interaction between 5-HTT (LL) and BDNF (A+) increased the risk of anxiety, and the interaction between BDNF (A+, GG) and NPSR1 (AA, T+) increased the risk of depression in asthmatic patients.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Respiratory Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Mingzhe Zhao
- Medical College of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuqun Zhang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
15
|
Andiappan AK, Sio YY, Lee B, Suri BK, Matta SA, Lum J, Foo S, Koh G, Liu J, Zolezzi F, Poidinger M, Wang DY, Rotzschke O, Chew FT. Functional variants of 17q12-21 are associated with allergic asthma but not allergic rhinitis. J Allergy Clin Immunol 2015; 137:758-66.e3. [PMID: 26483175 DOI: 10.1016/j.jaci.2015.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/02/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) and asthma are common allergic conditions with a shared genetic component to their cause. The 17q12-21 locus includes several genes that have been linked to asthma susceptibility, but the role of this locus in AR is unclear. Asthma and AR in adults of Chinese ethnicity in Singapore are predominately caused by sensitization against house dust mites with a nearly complete penetrance of the allergen, which presents a unique opportunity for accurately identifying genetic associations with allergic diseases. OBJECTIVE We sought to define the functional role of 17q12-21 in patients with AR and allergic asthma. METHODS We asked whether single nucleotide polymorphisms (SNPs) in the 17q12-21 locus were associated with AR or asthma in a cohort of 3460 ethnic Chinese subjects residing in Singapore (1435 in the discovery phase and 2025 in the validation phase). Full-blood mRNA gene expression data, plasma IgE levels, and immune cell frequencies in peripheral blood were tested against the tag SNP genotypes. Luciferase assays were used to measure the effect of putative promoter SNPs on expression of the asthma-associated orosomucoid-like 3 gene (ORMDL3). RESULTS Within 17q12-21, only the tag SNP rs8076131 was significantly associated with asthma (P = 8.53 × 10(-10); odds ratio, 0.6715), and AR status was independent of SNPs in this region. C-A alleles at rs8076131 resulted in significantly increased ORMDL3 expression in HEK293 cells in vitro relative to T-G alleles. Moreover, subjects with the risk genotype AA exhibited significantly higher total IgE levels and higher blood eosinophil counts than those with the lower-risk genotypes. CONCLUSION The 17q12-21 locus has a strong genetic association with allergic asthma but not with AR. The polymorphic effect of this locus is attributed to the linkage set tagged by rs8076131, which affects the expression of ORMDL3, protein phosphatase 1, regulatory inhibitor subunit 1B (PPP1R1B), zona pellucida binding protein 2 (ZPBP2), and gasdermin B (GSDMB) and is correlated with high IgE levels and eosinophil counts in subjects bearing the risk genotype.
Collapse
Affiliation(s)
- Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bani Kaur Suri
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Geraldine Koh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jianjun Liu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore.
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Association between Val66Met polymorphisms in brain-derived neurotrophic factor gene and asthma risk: a meta-analysis. Inflamm Res 2015; 64:875-83. [PMID: 26289094 DOI: 10.1007/s00011-015-0869-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The Val66Met polymorphisms in brain-derived neurotrophic factor (BDNF) gene have been reported to be associated with asthma risk, while the results are inconclusive. Considering a single study may lack the power to provide reliable conclusion, we performed a meta-analysis to investigate the association between the Val66Met polymorphisms and asthma susceptibility. METHODS A comprehensive literature search of PubMed, Embase, China National Knowledge Infrastructure (CNKI) and Wanfang databases was conducted before February 12, 2015. The pooled odds ratio (OR) with 95 % confidence intervals (CIs) were calculated. RESULTS Six eligible studies with a total of 3501 subjects were finally included in this meta-analysis. Overall, a significantly increased risk was detected in the Val66Met G allele (G vs. A: OR 1.33, 95 % CI 1.19-1.49, P = 5.61E-07; GG vs. GA + AA: OR 1.48, 95 % CI 1.20-1.83, P = 3.14E-04; GG vs. GA: OR 1.48, 95 % CI 1.17-1.89, P = 0.001; GG vs. AA: OR 1.62, 95 % CI 1.20-2.19, P = 0.002). Moreover, stratification by ethnicity indicated marked association between the Val66Met G allele and asthma risk in Caucasians (G vs. A: OR 1.29, 95 % CI 1.12-1.49, P = 0.001; GG + GA vs. AA: OR 1.59, 95 % CI 1.03-2.46, P = 0.039; GG vs. GA + AA: OR 1.32, 95 % CI 1.11-1.57, P = 0.001; GG vs. GA: OR 1.28, 95 % CI 1.07-1.53, P = 0.007; GG vs. AA: OR 1.72, 95 % CI 1.11-2.68, P = 0.015). CONCLUSION Our present meta-analysis suggests that the Val66Met polymorphisms in BDNF gene are potentially associated with asthma risk in Caucasians. Further well-designed case-control studies with larger sample size and more ethnic groups are needed to confirm these conclusions.
Collapse
|
17
|
Jesenak M, Babusikova E, Evinova A, Banovcin P, Dobrota D. Val66Met polymorphism in the BDNF gene in children with bronchial asthma. Pediatr Pulmonol 2015; 50:631-7. [PMID: 24863266 DOI: 10.1002/ppul.23065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 04/21/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Bronchial asthma is a chronic respiratory disease characterized by airway inflammation. There is increasing evidence that neurotrophins play an important role in the development and maintenance of neurogenic airway inflammation in chronic allergic diseases. WORKING HYPOTHESIS Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and has several important functions in the airways. There are only a few reports on the association between genetic variations in the BDNF gene and various allergic diseases, and the results are generally conflicting. Therefore, we aimed to study the functional polymorphism Val66Met (also called rs6265 or G196A) in the BDNF gene in a group of asthmatic children and healthy controls. STUDY DESIGN, PATIENT-SELECTION, AND METHODOLOGY We studied 248 asthmatic patients (aged 12.28 ± 0.24 years) and 249 healthy children (aged 13.14 ± 0.48 years). Analysis of the Val66Met polymorphism of the BDNF gene was performed by polymerase chain reaction (PCR) and PCR products were digested by PmlI. RESULTS The prevalence of the Val66Met polymorphisms (Val/Val, Val/Met, and Met/Met) was 61.7%, 33.5%, and 4.8% in asthmatics, respectively, and 47.0%, 51.8%, and 1.2% in healthy subjects, respectively. We observed a significant association of the Met/Met variant genotype with asthmatics (OR = 4.17, 95% CI = 1.16-14.96, P = 0.018). The Val/Met genotype was protective against bronchial asthma (OR = 0.69, 95% CI = 0.48-0.99, P = 0.045), especially in girls (OR = 0.34, 95% CI = 0.20-0.59, P = 0.001). CONCLUSION Specific BDNF gene polymorphism may contribute to bronchial asthma susceptibility. Our study suggested the positive association between selected functional BDNF polymorphism (rs6265) and asthma in children.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Babusikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Evinova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Banovcin
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
18
|
Jin P, Andiappan AK, Quek JM, Lee B, Au B, Sio YY, Irwanto A, Schurmann C, Grabe HJ, Suri BK, Matta SA, Westra HJ, Franke L, Esko T, Sun L, Zhang X, Liu H, Zhang F, Larbi A, Xu X, Poidinger M, Liu J, Chew FT, Rotzschke O, Shi L, Wang DY. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis. J Allergy Clin Immunol 2015; 135:1486-93.e8. [PMID: 25649076 DOI: 10.1016/j.jaci.2014.12.1870] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. OBJECTIVE We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. METHODS Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. RESULTS The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. CONCLUSION A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR.
Collapse
Affiliation(s)
- Peng Jin
- Key Laboratory of Otolaryngology of the Ministry of Health, Department of Otolaryngology, Qilu Hospital, Shandong University, Jinan, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Jia Min Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bijin Au
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Astrid Irwanto
- the Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Claudia Schurmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, HELIOS Hospital Stralsund, Greifswald, Germany
| | - Bani Kaur Suri
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Anhui Medical University, Hefei, China; Key Lab of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Collaborative Innovation Center for Complex and Severe Skin Diseases, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Anhui Medical University, Hefei, China; Key Lab of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Collaborative Innovation Center for Complex and Severe Skin Diseases, Anhui Medical University, Hefei, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; Shandong Provincial Medical Center for Dermatovenereology, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China; Shandong Provincial Key Lab for Dermatovenereology, Jinan, China; Shandong Provincial Medical Center for Dermatovenereology, Jinan, China
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Xu
- Qingdao Caretaker Otolaryngology, Head & Neck Surgery Hospital, Qingdao, China
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jianjun Liu
- the Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Li Shi
- Key Laboratory of Otolaryngology of the Ministry of Health, Department of Otolaryngology, Qilu Hospital, Shandong University, Jinan, China.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore.
| |
Collapse
|
19
|
Prakash YS, Martin RJ. Brain-derived neurotrophic factor in the airways. Pharmacol Ther 2014; 143:74-86. [PMID: 24560686 DOI: 10.1016/j.pharmthera.2014.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States; Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| | - Richard J Martin
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
20
|
Nilsson D, Andiappan AK, Halldén C, Tim CF, Säll T, Wang DY, Cardell LO. Poor reproducibility of allergic rhinitis SNP associations. PLoS One 2013; 8:e53975. [PMID: 23382861 PMCID: PMC3559641 DOI: 10.1371/journal.pone.0053975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/04/2012] [Indexed: 01/07/2023] Open
Abstract
Replication of reported associations is crucial to the investigation of complex disease. More than 100 SNPs have previously been reported as associated with allergic rhinitis (AR), but few of these have been replicated successfully. To investigate the general reproducibility of reported AR-associations in candidate gene studies, one Swedish (352 AR-cases, 709 controls) and one Singapore Chinese population (948 AR-cases, 580 controls) were analyzed using 49 AR-associated SNPs. The overall pattern of P-values indicated that very few of the investigated SNPs were associated with AR. Given published odds ratios (ORs) most SNPs showed high power to detect an association, but no correlations were found between the ORs of the two study populations or with published ORs. None of the association signals were in common to the two genome-wide association studies published in AR, indicating that the associations represent false positives or have much lower effect-sizes than reported.
Collapse
Affiliation(s)
- Daniel Nilsson
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Biomedicine, Kristianstad University, Kristianstad, Sweden
| | - Anand Kumar Andiappan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network (SIgN), Singapore, Singapore
| | | | - Chew Fook Tim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Torbjörn Säll
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Current World Literature. Curr Opin Allergy Clin Immunol 2012; 12:570-3. [DOI: 10.1097/aci.0b013e328358c69e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Nilsson D, Andiappan AK, Halldén C, De Yun W, Säll T, Tim CF, Cardell LO. Toll-like receptor gene polymorphisms are associated with allergic rhinitis: a case control study. BMC MEDICAL GENETICS 2012; 13:66. [PMID: 22857391 PMCID: PMC3459792 DOI: 10.1186/1471-2350-13-66] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/25/2012] [Indexed: 12/26/2022]
Abstract
Background The Toll-like receptor proteins are important in host defense and initiation of the innate and adaptive immune responses. A number of studies have identified associations between genetic variation in the Toll-like receptor genes and allergic disorders such as asthma and allergic rhinitis. The present study aim to search for genetic variation associated with allergic rhinitis in the Toll-like receptor genes. Methods A first association analysis genotyped 73 SNPs in 182 cases and 378 controls from a Swedish population. Based on these results an additional 24 SNPs were analyzed in one Swedish population with 352 cases and 709 controls and one Chinese population with 948 cases and 580 controls. Results The first association analysis identified 4 allergic rhinitis-associated SNPs in the TLR7-TLR8 gene region. Subsequent analysis of 24 SNPs from this region identified 7 and 5 significant SNPs from the Swedish and Chinese populations, respectively. The corresponding risk-associated haplotypes are significant after Bonferroni correction and are the most common haplotypes in both populations. The associations are primarily detected in females in the Swedish population, whereas it is seen in males in the Chinese population. Further independent support for the involvement of this region in allergic rhinitis was obtained from quantitative skin prick test data generated in both populations. Conclusions Haplotypes in the TLR7-TLR8 gene region were associated with allergic rhinitis in one Swedish and one Chinese population. Since this region has earlier been associated with asthma and allergic rhinitis in a Danish linkage study this speaks strongly in favour of this region being truly involved in the development of this disease.
Collapse
Affiliation(s)
- Daniel Nilsson
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang QY, Guan Q, Wang Y, Feng X, Sun W, Kong FY, Wen J, Cui W, Yu Y, Chen ZY. BDNF Val66Met polymorphism is associated with Stage III-IV endometriosis and poor in vitro fertilization outcome. Hum Reprod 2012; 27:1668-1675. [DOI: 10.1093/humrep/des094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
|
24
|
Wang DY. Genetic predisposition for atopy and allergic rhinitis in the Singapore Chinese population. Asia Pac Allergy 2011; 1:152-6. [PMID: 22053312 PMCID: PMC3206245 DOI: 10.5415/apallergy.2011.1.3.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 11/12/2022] Open
Abstract
The prevalence of allergic diseases is high globally, but especially in developed countries, with one in five to one in four individuals affected worldwide. The World Health Organization's "Allergic Rhinitis and its Impact on Asthma 2008 Update" guidelines stated explicitly that over 600 million patients from all countries, all ethnic groups and all ages suffer from allergic rhinitis (AR). There are clear evidences to support the concept that allergic diseases are influenced by genetic predisposition and environmental factors. The genetic basis of AR has been evaluated more intensively in the recent 10-20 years. Advances in technology and statistical methods, such as genome-wide association studies (GWAS) have enabled millions of single nucleotide polymorphisms (SNPs) to be genotyped at rapid pace and for less cost. However these studies have not yet answered the entire heritability profile of the disease. Additionally, environmental influences on these genetic variants cannot be discounted. Hence these allergic diseases must be evaluated as a complex interplay between genetic and environmental factors. This review focuses on the genetic basis of AR, with special emphasis on studies performed in Singapore. Candidate gene based studies and GWAS performed in Singapore cohorts have been discussed to suggest how these diseases could be understood better in a Singapore context which is still applicable to research in AR globally.
Collapse
Affiliation(s)
- De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|