1
|
Park MS, Hwang S, Kang HB, Ha M, Park J, Park SY, Park YJ, Park MH. Age-Dependent Effects of Butyl Benzyl Phthalate Exposure on Lipid Metabolism and Hepatic Fibrosis in Mice. Cells 2025; 14:126. [PMID: 39851554 PMCID: PMC11764096 DOI: 10.3390/cells14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs), including phthalates, have been implicated in the development of non-alcoholic fatty liver disease (NAFLD) and hepatic fibrosis. This study investigates the age-dependent effects of butyl benzyl phthalate (BBP) exposure on lipid metabolism in the livers of young and aged mice. Young (2-month-old) and aged (20-month-old) male C57BL/6 mice were exposed to BBP through drinking water at a dose of 169 μg/kg/day for 6 and 4 months, respectively. Young mice exposed to BBP showed fatty liver, with downregulation of key fatty acid oxidation genes (CPT1A, CPT1B, CPT2, and Acox1) and elevated pro-inflammatory cytokines (TNF-α and IL-6). In contrast, aged mice exhibited hepatic fibrosis, with increased collagen deposition and upregulation of genes related to fibrosis (Acta2, MMP2, TGF-ß1, and Col1a2), cirrhosis (CXCR4, SOX9, DCN, and MFAP4), and cancer (Bcl2, CDKN2a, c-Myc, and Fn1). Overall, these findings emphasize the importance of age when evaluating the risks of EDC exposure, such as BBP. Future research should focus on understanding the molecular mechanisms behind these age-related differences and explore Grem1 and SOCS3 as potential therapeutic targets for treating EDC-induced and age-related liver diseases.
Collapse
Affiliation(s)
- Min-Seo Park
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (M.-S.P.); (S.H.); (H.-B.K.); (M.H.); (J.P.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Seonhwa Hwang
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (M.-S.P.); (S.H.); (H.-B.K.); (M.H.); (J.P.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Hyun-Bon Kang
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (M.-S.P.); (S.H.); (H.-B.K.); (M.H.); (J.P.)
| | - Minjeong Ha
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (M.-S.P.); (S.H.); (H.-B.K.); (M.H.); (J.P.)
| | - Juyeon Park
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (M.-S.P.); (S.H.); (H.-B.K.); (M.H.); (J.P.)
| | - So-Youn Park
- Department of Pharmaceutical Science and Technology, Kyungsung University, Busan 48434, Republic of Korea;
| | - Yong-Joo Park
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (M.-S.P.); (S.H.); (H.-B.K.); (M.H.); (J.P.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Min-Hi Park
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (M.-S.P.); (S.H.); (H.-B.K.); (M.H.); (J.P.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| |
Collapse
|
2
|
Ehteshami A, Shirban F, Bagherniya M, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Association between High-density Lipoproteins and Periodontitis. Curr Med Chem 2024; 31:6407-6428. [PMID: 37493158 DOI: 10.2174/0929867331666230726140736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Periodontitis is one of the most typical chronic dental diseases. This inflammatory disease can change various functions of immune cells and impair lipid metabolism through proinflammatory cytokines. High-Density Lipoprotein (HDL) is considered protective of the cardiovascular system. It has anti-thrombotic and anti-inflammatory effects. In this article, we have reviewed the association between periodontitis and HDL. Various studies have demonstrated a reverse relationship between inflammatory cytokines and HDL. HDL contains antioxidative enzymes and proteins, whereas periopathogens impair HDL's antioxidant function. The presence of periodontal bacteria is associated with a low HDL level in patients with periodontitis. Genetic variants in the interleukin- 6 (IL)-6 gene and cytochrome (CYP)1A1 rs1048943 gene polymorphism are associated with HDL levels and periodontal status. Studies showed that HDL levels improve after treatment for periodontitis. On the one hand, periodontal pathogenic bacteria and their metabolites and pro-inflammatory cytokines from periodontal infection can result in various disorders of lipid metabolism and lipid peroxidation. On the other hand, hyperlipidemia and lipid peroxidation stimulate proinflammatory cytokines, resulting in oxidative stress and delayed wound healing, making individuals susceptible to periodontitis.
Collapse
Affiliation(s)
- Ailin Ehteshami
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK of Great Britain and Northern Ireland, Hull, UK
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Su R, Yuan J, Gao T, Liu Y, Shu W, Wang Y, Pang Y, Li Q. Selection and validation of genes related to oxidative stress production and clearance in macrophages infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 13:1324611. [PMID: 38149012 PMCID: PMC10749926 DOI: 10.3389/fcimb.2023.1324611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Background In the fight against tuberculosis, besides chemotherapy, the regulation of oxidative stress (OS) has also aroused people's interest in host-oriented therapy. However, there is limited research on the genes involved in reactive oxygen species (ROS) production and clearance in macrophages infected with Mycobacterium tuberculosis (MTB). This study analyzes and explores this to provide a basis for exploring new targets for antituberculosis treatments. Methods We established a macrophage model infected with MTB, counted intracellular bacteria, and determined the ROS produced using flow cytometry. We conducted ribonucleic acid sequencing, screened differentially expressed genes through transcriptomic methods, and validated the expression of them through reverse transcription-quantitative polymerase chain reaction. Results The ROS of macrophages increased with intracellular bacteria at 4 h after infection with MTB and reached its peak at 48 h, surpassing the uninfected macrophages (p < 0.05). A total of 1,613 differentially expressed genes were identified after infection with MTB, of which 458 were associated with ROS, with over 50% involved in the response of organelles and biological processes to stimuli. We analyzed and identified six genes. After macrophage infection with MTB, the expression of CAMK2B increased, whereas the expression of CYBB decreased (p < 0.05). The expression of GPX3 and SOD2 increased, whereas the expression of CAT decreased (p < 0.05). Conclusion The ROS-related differentially expressed genes between MTB infected and uninfected macrophages may be related to some organelles and involved in various biological processes, molecular functions, and signaling pathways. Among them, CAMK2B, GPX3, and SOD2 may be related to ROS.
Collapse
Affiliation(s)
- Renchun Su
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Tianhui Gao
- Department of Infectious Diseases, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuhong Liu
- Clinical Center on Tuberculosis Control, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Shu
- Clinical Center on Tuberculosis Control, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yufeng Wang
- Clinical Center on Tuberculosis Control, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qi Li
- Clinical Center on Tuberculosis Control, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
4
|
Maioli G, Caporali R, Favalli EG. Lessons learned from the preclinical discovery and development of sarilumab for the treatment of rheumatoid arthritis. Expert Opin Drug Discov 2022; 17:799-813. [PMID: 35757853 DOI: 10.1080/17460441.2022.2093852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) pathogenesis is driven by a complex network of proinflammatory cytokines, among which interleukin-6 (IL-6) plays a key role in inducing and perpetuating chronic inflammation. Targeting the IL-6 pathway has shown to be an invaluable treatment strategy, as demonstrated by the results accrued in the last decade with the first IL-6 inhibitor, tocilizumab. More recently, a second monoclonal antibody blocking IL-6, sarilumab, has enriched our armamentarium by proving outstanding efficacy in RA treatment. AREAS COVERED After exploring the IL-6 pathway under physiological conditions and in the RA pathogenesis, in this review we discuss the pharmacologic properties of sarilumab and the clinical trials that constitute the sarilumab development program and have enabled its licensed application. EXPERT OPINION Results from clinical trials confirmed the efficacy and safety of sarilumab for the treatment of RA, similar to its precursor tocilizumab. Blocking IL-6 pathway results in comprehensive control of the disease, from both physician's and patient's perspective, and of RA comorbidities and extra-articular manifestations which are largely IL-6 driven. Finally, the proven efficacy of sarilumab as monotherapy arises the drug as a required therapeutic alternative considering the large proportion of patients intolerant or inadequate to receive conventional synthetic disease-modifying drugs (csDMARDs).
Collapse
Affiliation(s)
- Gabriella Maioli
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, Milan, Italy.,Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, Milan, Italy.,Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| | - Ennio Giulio Favalli
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, Milan, Italy.,Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Ratchford SM, Lee JF, Bunsawat K, Alpenglow JK, Zhao J, Ma CL, Ryan JJ, Khor LL, Wray DW. The Impact of Obesity on the Regulation of Muscle Blood Flow during Exercise in Patients with Heart Failure with a Preserved Ejection Fraction. J Appl Physiol (1985) 2022; 132:1240-1249. [PMID: 35421322 PMCID: PMC9126213 DOI: 10.1152/japplphysiol.00833.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is now considered a primary comorbidity in heart failure with preserved ejection fraction (HFpEF) pathophysiology, mediated largely by systemic inflammation. While there is accumulating evidence for a disease-related dysregulation of blood flow during exercise in this patient group, the role of obesity in the hemodynamic response to exercise remain largely unknown. Small muscle mass handgrip (HG) exercise was utilized to evaluate exercising muscle blood flow in non-obese (BMI < 30 kg/m2,n=14) and obese (BMI > 30 kg/m2,n=40) patients with HFpEF. Heart rate (HR), stroke index (SI), cardiac index (CI), mean arterial pressure (MAP), forearm blood flow (FBF) and vascular conductance (FVC) were assessed during progressive intermittent HG exercise (15-30-45% maximal voluntary contraction, MVC). Blood biomarkers of inflammation (C-reactive protein (CRP) and Interleukin-6 (IL-6)) were also determined. Exercising FBF was reduced in obese patients with HFpEF at all work rates (15%: 304±42 vs. 229±15ml/min; 30%: 402±46 vs. 300±18ml/min; 45%: 484±55 vs. 380±23ml/min, non-obese vs. obese, p=0.025), and was negatively correlated with BMI (R=-.47, p<0.01). In contrast, no differences in central hemodynamics (HR, SI, CI, MAP) were found between groups. Proinflammatory biomarkers were markedly elevated in obese patients (CRP: 2133±418 vs. 4630±590ng/ml, p=0.02; IL-6: 2.9±0.3 vs. 5.2±0.7pg/ml, p = 0.04, non-obese vs. obese), and both biomarkers were positively correlated with BMI (CRP: R=0.40, p=0.03; IL-6: R=0.57, p<0.01). Together, these findings demonstrate the presence of obesity and an accompanying milieu of systemic inflammation as important factors in the dysregulation of exercising muscle blood flow in patients with HFpEF.
Collapse
Affiliation(s)
- Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT
| | - Joshua F Lee
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT
| | - Christy L Ma
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - John J Ryan
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Lillian L Khor
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
6
|
Pacwa A, Machowicz J, Wojtyniak A, Pietrucha-Dutczak M, Toropainen E, Koskela A, Mrukwa-Kominek E, Lewin-Kowalik J, Smedowski A. SCD1-Fatty Acid Desaturase Inhibitor MF-438 Alleviates Latent Inflammation Induced by Preservative-Free Prostaglandin Analog Eye Drops. J Inflamm Res 2022; 15:793-806. [PMID: 35173454 PMCID: PMC8840838 DOI: 10.2147/jir.s347784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Prostaglandin analogs are the first line of treatment in patients with glaucoma. Recently, many preservative-free prostaglandin analogs have been marketed to increase their tolerance in chronic use. However, potentially safer formulations have been reported to induce inflammation within ocular surface and adnexa, associated with pronounced activation of tissue macrophages. AIM We aimed to evaluate the effect of a Stearoyl-CoA desaturase-1 (SCD1) inhibitor, MF-438, on the differentiation of monocytes exposed to eye drop detergents, representing saturated fatty acid derivatives. METHODS A culture of human peripheral blood monocytes was exposed to eye drops containing fatty acid derivatives (eye drop detergents), pf-latanoprost (Monoprost®, hydroxystearate macrogolglycerol - MGHS40) or pf-tafluprost (Taflotan®, polysorbate 80 - PS80), as well as pf-latanoprost+MF-438, MGHS40, and PS80. For the negative control C(-), monocytes were cultured in basal medium, and for the positive controls, monocytes were stimulated with Lipopolysaccharide (LPS) and Interferon γ (IFNγ) (M1 macrophages) or Interleukin-4 (IL-4) (M2 macrophages). The concentration of desaturase in the cell homogenates was determined by ELISA. The number of cells was counted under a microscope at 20x magnification. RESULTS The following concentrations of SCD1 (ng/mL) were measured: 7.8±0.3 - pf-latanoprost group; 1.5±0.4 - pf-tafluprost group; 6.8±0.7 - MGHS40 group; 0.4±0.002 - PS80 group; 0.9±0.02 - pf-latanoprost+MF-438 group; 5.4±1.6 - C(-) control; 0.5±0.04 - M1 control; 2.2±0.13 - M2 control. The percentages of macrophages in culture were 33.6%, 17.6%, 33%, 0%, 13.5%, 18.6%, 36.3%, and 39.3% for the pf-latanoprost, pf-tafluprost, MGHS40, PS80, pf-latanoprost+MF-438, C(-), M1, and M2 cultures, respectively. There was a strong correlation between SCD1 concentration and macrophage count in the culture (r=0.8, p<0.05). CONCLUSION Inhibition of SCD1 in monocytes prevents their transformation into macrophages after exposure to saturated fatty acid derivatives contained in eye drops, which may contribute to the limitation of latent inflammation within ocular adnexa and could possibly translate into better tolerability of the topical treatment.
Collapse
Affiliation(s)
- Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Gopalakrishnan S, Uma SK, Mohan G, Mohan A, Shanmugam G, Kumar VTV, J S, Chandrika SK, Vasudevan D, Nori SRC, Sathi SN, George S, Maliekal TT. SSTP1, a Host Defense Peptide, Exploits the Immunomodulatory IL6 Pathway to Induce Apoptosis in Cancer Cells. Front Immunol 2021; 12:740620. [PMID: 34867962 PMCID: PMC8639500 DOI: 10.3389/fimmu.2021.740620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
While the immunomodulatory pathways initiated in immune cells contribute to therapeutic response, their activation in cancer cells play a role in cancer progression. Also, many of the aberrantly expressed immunomodulators on cancer cells are considered as therapeutic targets. Here, we introduce host defense peptide (HDP), a known immuomodulator, as a therapeutic agent to target them. The cationic host defense peptides (HDPs), an integral part of the innate immune system, possess membranolytic activity, which imparts antimicrobial and antitumor efficacy to it. They act as immunomodulators by activating the immune cells. Though their antimicrobial function has been recently reassigned to immunoregulation, their antitumor activity is still attributed to its membranolytic activity. This membrane pore formation ability, which is proportional to the concentration of the peptide, also leads to side effects like hemolysis, limiting their therapeutic application. So, despite the identification of a variety of anticancer HDPs, their clinical utility is limited. Though HDPs are shown to exert the immunomodulatory activity through specific membrane targets on immune cells, their targets on cancer cells are unknown. We show that SSTP1, a novel HDP identified by shotgun cloning, binds to the active IL6/IL6Rα/gp130 complex on cancer cells, rearranging the active site residues. In contrast to the IL6 blockers inhibiting JAK/STAT activity, SSTP1 shifts the proliferative IL6/JAK/STAT signaling to the apoptotic IL6/JNK/AP1 pathway. In IL6Rα-overexpressing cancer cells, SSTP1 induces apoptosis at low concentration through JNK pathway, without causing significant membrane disruption. We highlight the importance of immunomodulatory pathways in cancer apoptosis, apart from its established role in immune cell regulation and cancer cell proliferation. Our study suggests that identification of the membrane targets for the promising anticancer HDPs might lead to the identification of new drugs for targeted therapy.
Collapse
Affiliation(s)
- Shyla Gopalakrishnan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Soumya Krishnan Uma
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, India
| | - Geetha Shanmugam
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Vineeth T. V. Kumar
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreekumar J
- Statistics, Section of Extension and Social Science, The Indian Council of Agricultural Research (ICAR) Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - Sivakumar K. Chandrika
- Genomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Sai Ravi Chandra Nori
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Shijulal Nelson Sathi
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sanil George
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | |
Collapse
|
8
|
Zhang AR, Sun J, He Y, Wang N, Tian L. Attenuation of lipid accumulation in Bel-7402 cells through ADPN/AMPKα signaling stimulated by Fructus rosae laxae extract. J Food Biochem 2020; 44:e13497. [PMID: 33029846 DOI: 10.1111/jfbc.13497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
In this work, a comparison study was conducted on the contents of total flavonoids and hyperoside in different polarity extracts of Fructus rosae laxae (FRL). The lipid-lowering effect and mechanism of FRL ethyl acetate extract (FRLE) on the lipid accumulation model of Bel-7402 cells in vitro were studied. The results showed that the contents of total flavonoids and hyperoside in FRLE were significantly higher than those in the other polarity extracts. Compared with those in the model group, the levels of triglyceride and total cholesterol decreased, the activities of superoxide dismutase and lactate dehydrogenase increased, and the levels of inflammatory factors interleukin-6 and tumor necrosis factor-α decreased significantly in the cells intervened with FRLE. Moreover, FRLE can regulate lipid metabolism by activating the AMP-activated protein kinase α phosphorylation pathway and increasing the expression of adiponectin. PRACTICAL APPLICATIONS: Fructus rosae laxae (FRL) is an edible medicinal fruit with multiple biological activities, such as antioxidation, anti-inflammatory, and hepatoprotective properties. However, the lipid-lowering activity of FRL and its mechanism of action have not yet been investigated. Our data indicate that the FRL extract, which contains high levels of antioxidant and anti-inflammatory components, plays a beneficial role in regulating lipid metabolism disorders, mainly by regulating the expression of proteins involved in the ADPN/AMPK signaling pathway, and reduces the release of inflammatory factors. Thus, the FRL extract effectively reduces the accumulation of free fatty acids (FFA) in vitro and exhibits considerable potential for the prevention and treatment lipid metabolism disorders.
Collapse
Affiliation(s)
- Ai-Rong Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, P.R.China
| | - Jing Sun
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, P.R.China
| | - Yuan He
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, P.R.China
| | - Ning Wang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, P.R.China
| | - Li Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, P.R.China
| |
Collapse
|
9
|
Favalli EG. Understanding the Role of Interleukin-6 (IL-6) in the Joint and Beyond: A Comprehensive Review of IL-6 Inhibition for the Management of Rheumatoid Arthritis. Rheumatol Ther 2020; 7:473-516. [PMID: 32734482 PMCID: PMC7410942 DOI: 10.1007/s40744-020-00219-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, debilitating autoimmune disorder involving inflammation and progressive destruction of the joints, affecting up to 1% of the population. The majority of patients with RA have one or more comorbid conditions, the most common being cardiovascular disease, osteoporosis, and depression, the presence of which are associated with poorer clinical outcomes and lower health-related quality of life. RA pathogenesis is driven by a complex network of proinflammatory cells and cytokines, and of these, interleukin-6 (IL-6) plays a key role in the chronic inflammation associated with RA. Through cell signaling that can be initiated by both membrane-bound and soluble forms of its receptor, IL-6 acts both locally to promote joint inflammation and destruction, and in the circulation to mediate extra-articular manifestations of RA, including pain, fatigue, morning stiffness, anemia, and weight loss. This narrative review describes the role of IL-6 in the pathogenesis of RA, its comorbidities, and extra-articular systemic manifestations, and examines the effects of the IL-6 receptor inhibitors sarilumab and tocilizumab on clinical endpoints of RA, patient-reported outcomes, and common comorbidities and extra-articular manifestations.
Collapse
Affiliation(s)
- Ennio G Favalli
- Department of Rheumatology, ASST Gaetano Pini-CTO Institute, University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Padberg F, Hering H, Luch A, Zellmer S. Indirect co-cultivation of HepG2 with differentiated THP-1 cells induces AHR signalling and release of pro-inflammatory cytokines. Toxicol In Vitro 2020; 68:104957. [PMID: 32739440 DOI: 10.1016/j.tiv.2020.104957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
HepG2 and THP-1 cells, the latter differentiated by phorbol 12-myristate 13-acetate (PMA), were co-cultured and characterized for typical liver-specific functions, such as xenobiotic detoxification, lipid and cholesterol metabolism. Furthermore, liver injury-associated pathways, such as inflammation, were studied. In general, the co-cultivation of these cells produced a pro-inflammatory system, as indicated by increased levels of cytokines (IL-8, TGF-α, IL-6, GM-CSF, G-CSF, TGF-β, and hFGF) in the respective supernatant. Increased expression levels of target genes of the aryl hydrocarbon receptor (AHR), e.g., CYP1A1, CYP1A2 and CYP1B1, were detected, accompanied by the increased enzyme activity of CYP1A1. Moreover, transcriptome analyses indicated a significant upregulation of cholesterol biosynthesis, which could be reduced to baseline levels by lovastatin. In contrast, total de novo lipid synthesis was reduced in co-cultured HepG2 cells. Key events of the adverse outcome pathway (AOP) for fibrosis were activated by the co-cultivation, however, no increase in the concentration of extracellular collagen was detected. This indicates, that AOP should be used with care. In summary, the indirect co-culture of HepG2/THP-1 cells results in an increased release of pro-inflammatory cytokines, an activation of the AHR pathway and an increased enzymatic CYP1A activity.
Collapse
Affiliation(s)
- Florian Padberg
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Henrik Hering
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Zellmer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
11
|
Park JB, Peters R, Pham Q, Wang TTY. Javamide-II Inhibits IL-6 without Significant Impact on TNF-alpha and IL-1beta in Macrophage-Like Cells. Biomedicines 2020; 8:biomedicines8060138. [PMID: 32485858 PMCID: PMC7344767 DOI: 10.3390/biomedicines8060138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main aim of this study is to find a therapeutic compound to inhibit IL-6, not TNF-alpha and IL-1beta, in macrophage-like cells, because the high-levels of IL-6 production by macrophages are reported to cause unfavorable outcomes under several disease conditions (e.g., autoimmune diseases, and acute viral infections, including COVID-19). In this study, the potential effects of javamide-II on IL-6, IL-1beta and TNF-alpha productions were determined using their ELISA kits in macrophage-like THP-1 cells. Western blots were also performed using the same cells, to determine its effects on signaling pathways (ERK, p38, JNK, c-Fos, ATF-2, c-Jun and NF-κB p65). At concentrations of 0.2–40 µM, javamide-II inhibited IL-6 production significantly in the THP-1 cells (IC50 of 0.8 µM) (P < 0.02). However, javamide-II did not inhibit IL-1beta or TNF-alpha productions much at the same concentrations. In addition, the treatment of javamide-II decreased the phosphorylation of p38 without significant effects on ERK and JNK phosphorylations in the THP-1 cells. Furthermore, the p38 inhibition, followed by the reduction of ATF-2 phosphorylation (not c-Fos, c-Jun or NF-κB p65), led to the suppression of IL-6 mRNA expression in the cells (P < 0.02). The data indicate that javamide-II may be a potent compound to inhibit IL-6 production via suppressing the p38 signal pathway, without significant effects on the productions of TNF-alpha and IL-1beta in macrophage-like THP-1 cells.
Collapse
Affiliation(s)
- Jae B. Park
- Correspondence: ; Tel.: +301-504-8365; Fax: +301-504-9062
| | | | | | | |
Collapse
|
12
|
Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts. Int J Mol Sci 2019; 20:ijms20215273. [PMID: 31652937 PMCID: PMC6862063 DOI: 10.3390/ijms20215273] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts' proliferation but their effect on differentiation is still being researched. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is one of the key signaling pathways identified to be activated by IL-6. The aim of this study was to investigate myoblast fate as well as activation of JAK-STAT pathway at different physiologically relevant IL-6 concentrations (10 pg/mL; 100 pg/mL; 10 ng/mL) in the C2C12 mouse myoblast cell line and primary human myoblasts, isolated from eight young healthy male volunteers. Myoblasts' cell cycle progression, proliferation and differentiation in vitro were assessed. Low IL-6 concentrations facilitated cell cycle transition from the quiescence/Gap1 (G0/G1) to the synthesis (S-) phases. Low and medium IL-6 concentrations decreased the expression of myoblast determination protein 1 (MyoD) and myogenin and increased proliferating cell nuclear antigen (PCNA) expression. In contrast, high IL-6 concentration shifted a larger proportion of cells to the pro-differentiation G0/G1 phase of the cell cycle, substantiated by significant increases of both MyoD and myogenin expression and decreased PCNA expression. Low IL-6 concentration was responsible for prolonged JAK1 activation and increased suppressor of cytokine signaling 1 (SOCS1) protein expression. JAK-STAT inhibition abrogated IL-6-mediated C2C12 cell proliferation. In contrast, high IL-6 initially increased JAK1 activation but resulted in prolonged JAK2 activation and elevated SOCS3 protein expression. High IL-6 concentration decreased interleukin-6 receptor (IL-6R) expression 24 h after treatment whilst low IL-6 concentration increased IL-6 receptor (IL-6R) expression at the same time point. In conclusion, this study demonstrated that IL-6 has concentration- and time-dependent effects on both C2C12 mouse myoblasts and primary human myoblasts. Low IL-6 concentration induces proliferation whilst high IL-6 concentration induces differentiation. These effects are mediated by specific components of the JAK/STAT/SOCS pathway.
Collapse
|
13
|
Casagrande BP, Gomes MFP, Moura EOC, Santos ACC, Kubota MC, Ribeiro DA, Pisani LP, Medeiros A, Estadella D. Age-dependent hepatic alterations induced by a high-fat high-fructose diet. Inflamm Res 2019; 68:359-368. [PMID: 30874869 DOI: 10.1007/s00011-019-01223-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The present study aimed to evaluate and clarify how the age at which the intake of a high-fat and high-fructose diet begins can affect animals' livers. METHODS Thirty-eight male wistar rats aged 6 and 12 weeks were fed a high-fat and high-fructose diet for 13 weeks. Inflammatory cytokines, hepatic glycogen, serum and hepatic triacylglycerol and pAkt protein content in the liver were assessed. Percentage of weight gained, and visceral adiposity were also evaluated. RESULTS Young animal presented increased hepatic triacylglycerol and decreased glycogen, while adult animals had no significant alterations regarding its contents. IL6 and IL10 to IL6 ratio were also altered in young animals exposed to HFHF, while adult animals fed with HFHF had only increases in TNF-α. Both groups which received HFHF had increased serum triacylglycerol and visceral adiposity. However, only young animals gained more relative weight and had greater final body weight, gains which were related to alterations found in hepatic triacylglycerol and glycogen. CONCLUSION Age of which consumption begins interferes in how the liver deals with an excess of nutrient and subsequent proinflammatory stimulation, leading to different phenotypes.
Collapse
Affiliation(s)
- B P Casagrande
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - M F P Gomes
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - E O C Moura
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - A C C Santos
- Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - M C Kubota
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - D A Ribeiro
- Departamento de Biociências, Instituto de Saúde e Sociedade, Federal University of São Paulo (UNIFESP), 11015-020, Santos, SP, Brazil
| | - L P Pisani
- Departamento de Biociências, Instituto de Saúde e Sociedade, Federal University of São Paulo (UNIFESP), 11015-020, Santos, SP, Brazil
| | - A Medeiros
- Departamento de Biociências, Instituto de Saúde e Sociedade, Federal University of São Paulo (UNIFESP), 11015-020, Santos, SP, Brazil
| | - D Estadella
- Departamento de Biociências, Instituto de Saúde e Sociedade, Federal University of São Paulo (UNIFESP), 11015-020, Santos, SP, Brazil.
| |
Collapse
|
14
|
Shagholian M, Goli SA, Shirvani A, Agha-Ghazvini MR, Asgary S. Liver and serum lipids in Wistar rats fed a novel structured lipid containing conjugated linoleic acid and conjugated linolenic acid. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.0582181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLnA) have been known to have several health-promoting effects. The aim of this study was to introduce a novel structured lipid (SL) including both CLA and CLnA (cis9, trans11, cis13-18:3, punicic acid) into one triacylglycerol (TAG) molecule through enzymatic interesterification and investigate its effect on body weight, liver and serum lipids in Wistar rats. CLA oil, pomegranate seed oil (as a rich source of CLnA) and soybean oil (as a negative control) were applied as other experimental oils. The rats were fed the oils at 1500 mg/kg body weight per day via oral gavage for 45 days. Gas chromatography analysis showed that SL included CLnA and CLA in roughly equal concentrations. The in vivo study revealed that SL had the greatest effect on the reduction in liver lipid weight (4.65 g/100g of liver) and liver TAG (13.28 mg/g) compared to soybean oil (8.7 g/100g and 18.8 mg/g, respectively). High density lipoprotein cholesterol (HDL-C) in the serum of rats which were fed CLA oil significantly (p < 0.05) increased (from 0.95 to 1.14 mmol/l). Pomegranate seed oil reduced low density lipoprotein cholesterol (LDL-C) and total cholesterol (about 40% and 24% reduction, respectively). A remarkable TAG reduction (p < 0.05) was observed in all treated rats.
Collapse
|
15
|
Zhang C, Wang P, Li Y, Huang C, Ni W, Chen Y, Shi J, Chen G, Hu X, Ye M, Duan S, Wang K. Role of MicroRNAs in the Development of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Anat Rec (Hoboken) 2018; 302:193-200. [PMID: 30312023 DOI: 10.1002/ar.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent liver malignancy that can be developed from nonalcoholic fatty liver disease (NAFLD). Numerous pathophysiological alterations, including insulin resistance, specific cytokine release, oxidative stress, and mitochondrial damage, are involved in the transition of NAFLD to cirrhosis and HCC. MicroRNAs, as post-transcriptional modulators, play a critical role in the pathogenesis of NAFLD-related HCC by regulating lipid metabolism, glucose homeostasis, cell proliferation, apoptosis, migration, and differentiation. This review summarizes the current progress of microRNAs in the risk and prognosis of NAFLD-related HCC. Anat Rec, 302:193-200, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ping Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yongqiang Li
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Changxin Huang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wei Ni
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yidan Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Gongying Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiangrong Hu
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Meng Ye
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Kaifeng Wang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Hu R, Guo W, Huang Z, Li L, Liu B, Lv X. Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
17
|
Berg T, Seehofer D, Kaiser T. Reply. Clin Gastroenterol Hepatol 2018; 16:783-784. [PMID: 29678239 DOI: 10.1016/j.cgh.2018.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas Berg
- Section of Hepatology, Department of Gastroenterology and Rheumatology, University Hospital Leipzig, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplant, Thoracic and Vascular, Surgery, University Hospital Leipzig, Germany
| | - Thorsten Kaiser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| |
Collapse
|
18
|
Naseem S, Hussain T, Manzoor S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev 2018; 39:36-45. [PMID: 29361380 DOI: 10.1016/j.cytogfr.2018.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Liver pathologies (fibrosis, cirrhosis, alcoholic, non-alcoholic diseases and hepatocellular carcinoma) represent one of the most common causes of death worldwide. A number of genetic and environmental factors contribute to the development of liver diseases. Interleukin-6 (IL-6) is a pleiotropic cytokine, exerting variety of effects on inflammation, liver regeneration, and defence against infections by regulating adaptive immunity. Due to its high abundance in inflammatory settings, IL-6 is often viewed as a detrimental cytokine. However, accumulating evidence supports the view that IL-6 has a beneficial impact in numerous liver pathologies, due to its roles in liver regeneration and in promoting an anti-inflammatory response in certain conditions. IL-6 promotes proliferation, angiogenesis and metabolism, and downregulates apoptosis and oxidative stress; together these functions are critical for mediating hepatoprotection. IL-6 is also an important regulator of adaptive immunity where it induces T cell differentiation and regulates autoimmunity. It can augment antiviral adaptive immune responses and mitigate exhaustion of T cells during chronic infection. This review focuses on studies that present IL-6 as a key factor in regulating liver regeneration and in supporting effector immune functions and suggests that these functions of IL-6 can be exploited in treatment strategies for liver pathologies.
Collapse
Affiliation(s)
- Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Tabinda Hussain
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
19
|
Dietary onion ameliorates antioxidant defence, inflammatory response, and cardiovascular risk biomarkers in hypercholesterolemic Wistar rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
20
|
Strickland J, McIlmoil S, Williams BJ, Seager DC, Porter JP, Judd AM. Interleukin-6 increases the expression of key proteins associated with steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 2017; 119:1-17. [PMID: 28063793 DOI: 10.1016/j.steroids.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023]
Abstract
Mechanisms of interleukin-6 (IL-6)-induced cortisol release (CR) were investigated by exposing H295R cells to IL-6 and determining mRNA/protein expression (PCR/western blots) for steroidogenic enzymes (SE), steroidogenic acute regulatory protein (StAR), steroidogenic factor-1 (SF-1) (enhances SE/StAR expression), activator protein 1 (AP-1) (regulates SE/StAR expression) and adrenal hypoplasia congenita-like protein (DAX-1) (inhibits SE/StAR expression). Promoter activity of StAR (SPA) was measured by a luciferase-coupled promoter. Cortisol release was increased by 10ng/mL IL-6 (24h P<0.01). Proteins/mRNAs (StAR, cholesterol side chain cleavage enzyme, SF-1, AP-1) and SPA were increased by IL-6 (60min 1-50ng/mL IL-6; 5ng/mL IL-6 30-120min P<0.05). Four other SE proteins/mRNAs were also increased by 10ng/mL IL-6 (60min P<0.01). Protein/mRNA for DAX-1 was decreased by IL-6 (60min 1-50ng/mL IL-6; 5ng/mL IL-6 30-120min P<0.01). Phosphorylation of Janus kinase (JAK) and signal transducer and activator of transcription (STAT) was increased by IL-6 (JAK2 60min 1-50ng/mL IL-6; 10ng/mL IL-6 5-60min P<0.05; STAT1 and STAT3 60min 10ng/mL IL-6 P<0.01). Inhibition of JAK/STAT with AG490 (10μM) or piceatannol (50μM) blocked (P<0.01 10ng/mL IL-6vs. IL-6 plus AG490 or piceatannol) IL-6-induced increases in SPA and StAR mRNA. In summary, IL-6-induced CR may be facilitated by increased StAR and SE mediated by increased SF-1 and AP-1, decreased DAX-1, and increased phosphorylation of JAK/STAT.
Collapse
Affiliation(s)
- Janae Strickland
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Stephen McIlmoil
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Brice J Williams
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Dennis C Seager
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - James P Porter
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Allan M Judd
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
21
|
Shao J, Zeng S, Zhou B, Xu H, Bian Y, Xu Y. Angiogenic factor with G patch and FHA domains 1 (Aggf1) promotes hepatic steatosis in mice. Biochem Biophys Res Commun 2016; 482:134-140. [PMID: 27865839 DOI: 10.1016/j.bbrc.2016.10.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
Increased uptake of nutrients coupled with reduced activity leads to the development of a host of metabolic disorders in humans. In the present study we examined the role of angiogenic factor with G patch and FHA domains 1 (Aggf1) in the pathogenesis of steatosis, characterized by accumulation of lipids in the liver and consequently hepatic insulin resistance. We report here that Aggf1 expression was up-regulated in the liver in both genetically predisposed and diet-induced mouse model of steatosis. Aggf1 expression was also stimulated by free fatty acids in primary hepatocytes. Over-expression of Aggf1 in mice promoted steatosis. On the contrary, Aggf1 depletion ameliorated steatosis in mice. Mechanistically, Aggf1 activated the expression of gluconeogenesis gene and skewed the insulin signaling pathway to induce insulin resistance. Taken together, our data suggest that Aggf1 plays a role in steatosis in vivo and as such may be a new target in the development of therapeutics solutions against steatosis.
Collapse
Affiliation(s)
- Jing Shao
- College of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Bisheng Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Huihui Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yaoyao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Cron L, Allen T, Febbraio MA. The role of gp130 receptor cytokines in the regulation of metabolic homeostasis. ACTA ACUST UNITED AC 2016; 219:259-65. [PMID: 26792338 DOI: 10.1242/jeb.129213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is well known that obesity is responsible, at least in part, for the increased incidence of chronic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Despite public education programs emphasizing lifestyle modifications to arrest this global pandemic, it is now estimated that 10-15% of the world's population are overweight or obese. As a result, new therapeutic options for the treatment of obesity-related disorders are clearly warranted. Much of the benefit of physical activity has been attributed to several mechanisms including reduced adiposity, increased cardiorespiratory fitness, reduced circulating lipids and the maintenance of muscle mass. However, the observation that the gp130 receptor cytokine interleukin-6 (IL-6) was released from skeletal muscle during exercise to improve metabolic homeostasis altered our understanding of the health benefits of exercise and opened avenues for research into potential novel therapeutics to treat metabolic disease. One gp130 receptor cytokine in particular, ciliary neurotrophic factor (CNTF), a pluripotent neurocytokine, showed efficacy as a potential anti-obesogenic therapy. This review examines the potential of gp130 receptor ligands, with a focus on IL-6 and CNTF as therapeutic strategies to treat obesity-related disorders.
Collapse
Affiliation(s)
- Lena Cron
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Faculty of Biology & Medicine, University of Lausanne, Lausanne,1015 Vaud, Switzerland
| | - Tamara Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Division of Diabetes & Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
23
|
Wang C, Tian L, Zhang K, Chen Y, Chen X, Xie Y, Zhao Q, Yu X. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss. J Mol Endocrinol 2016; 57:161-70. [PMID: 27493246 DOI: 10.1530/jme-16-0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss.
Collapse
Affiliation(s)
| | | | - Kun Zhang
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yaxi Chen
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiang Chen
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying Xie
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qian Zhao
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
24
|
Bazhin AV, Yang Y, D'Haese JG, Werner J, Philippov PP, Karakhanova S. The novel mitochondria-targeted antioxidant SkQ1 modulates angiogenesis and inflammatory micromilieu in a murine orthotopic model of pancreatic cancer. Int J Cancer 2016; 139:130-9. [DOI: 10.1002/ijc.30054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Alexandr V. Bazhin
- Department of General; Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich; LMU Munich Germany
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Jan G. D'Haese
- Department of General; Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich; LMU Munich Germany
| | - Jens Werner
- Department of General; Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich; LMU Munich Germany
| | - Pavel P. Philippov
- Department of Cell Signalling; Belozersky Institute of Physico-Chemical Biology, Moscow State University; Moscow Russia
| | | |
Collapse
|
25
|
McIlmoil S, Strickland J, Judd AM. Interleukin 6 increases the in vitro expression of key proteins associated with steroidogenesis in the bovine adrenal zona fasciculata. Domest Anim Endocrinol 2016; 55:11-24. [PMID: 26700094 DOI: 10.1016/j.domaniend.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/20/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
In this study, the in vitro effects of interleukin 6 (IL-6) on the messenger RNAs (mRNAs) and proteins for key steroidogenic factors in the bovine adrenal zona fasciculata (ZF) were determined. Bovine adrenal glands were obtained from an abattoir, and the ZF was isolated. Strips of ZF were then exposed to different concentration of murine IL-6 and/or adrenocorticotropic hormone (ACTH) for various intervals, the protein and mRNA extracted, and the mRNA and protein expression determined by real-time polymerase chain reaction and Western blots. Exposure (1 h) to IL-6 increased in a concentration-dependent manner (10-pg IL-6/mL, P < 0.05 vs control; 100-pg IL-6/mL, P < 0.01 vs control) the relative expression of the mRNAs and proteins for steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), 3β hydroxysteroid dehydrogenase type 2 (3β HSD), 17α-hydroxylase/17,20-lyase/17,20-desmolase (P450 17OH), steroid 21-hydroxylase (P450 21OH), steroid 11-β-hydroxylase type 1 (P450 11βOH), and steroidogenic factor 1 (SF-1), a nuclear factor that increases StAR and steroidogenic enzymes (SEs) expression. Similarly, IL-6 (10 pg/mL) increased the relative expression of proteins and mRNAs for StAR, P450scc, 3β HSD, P450 17OH, P450 21 OH, P450 11βOH, and SF-1 in a time-dependent manner (30 min, P < 0.05 vs control; 60, 120, and 240 min, P < 0.01 vs control). In contrast, IL-6 decreased in a concentration-dependent (P < 0.01 vs control for 1, 10, and 100 pg IL-6/mL) and time-dependent (P < 0.05 vs control for 30, 60,120, and 240 min of 10 pg IL-6/mL) manner the relative expression of the mRNA and protein for adrenal hypoplasia congenita-like protein (DAX-1), a nuclear factor that decreases expression of StAR and SEs. Incubation (1 h) of ZF with 100-nM ACTH increased (P < 0.05 vs control) the relative expression of StAR, P450scc, 3β HSD, P450 17OH, P450 21OH, P450 11βOH, and SF-1 and decreased (P < 0.01 vs control) the relative expression of DAX-1. Murine IL-6 (10 pg/mL) augmented (P < 0.05 vs ACTH) both the stimulatory and inhibitory effects of ACTH. Bovine IL-6 (100 pg/mL, 1-h incubation) also increased (P < 0.01 vs control) the relative expression of the proteins for StAR, P450scc, and SF-1 and decreased (P < 0.01 vs control) the relative expression of DAX-1. In summary, IL-6 increased ZF expression of StAR and 5 SEs, which may be mediated in part by decreasing DAX-1 expression and increasing SF-1 expression.
Collapse
Affiliation(s)
- S McIlmoil
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - J Strickland
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - A M Judd
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
26
|
Rai S, Bhatnagar S. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Targets: A Network View. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:152-68. [DOI: 10.1089/omi.2015.0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
27
|
Freitas Lima LC, Braga VDA, do Socorro de França Silva M, Cruz JDC, Sousa Santos SH, de Oliveira Monteiro MM, Balarini CDM. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 2015; 6:304. [PMID: 26578976 PMCID: PMC4630286 DOI: 10.3389/fphys.2015.00304] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases can be considered the most important cause of death in diabetic population and diabetes can in turn increase the risk of cardiovascular events. Inflammation process is currently recognized as responsible for the development and maintenance of diverse chronic diseases, including diabetes and atherosclerosis. Considering that adipose tissue is an important source of adipokines, which may present anti and proinflammatory effects, the aim of this review is to explore the role of the main adipokines in the pathophysiology of diabetes and atherosclerosis, highlighting the therapeutic options that could arise from the manipulation of these signaling pathways both in humans and in translational models.
Collapse
Affiliation(s)
| | - Valdir de Andrade Braga
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| | | | - Josiane de Campos Cruz
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| | - Sérgio H. Sousa Santos
- Biological Sciences Institute, Federal University of Minas GeraisBelo Horizonte, Brazil
- Health Science Post-Graduate Program, State University of Montes ClarosMontes Claros, Brazil
| | | | - Camille de Moura Balarini
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
- Health Sciences Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| |
Collapse
|
28
|
Efficient overexpression of human interleukin-6 in Escherichia coli using nanoluciferase as a fusion partner. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Yang T, Wu L, Wang H, Fang J, Yao N, Xu Y. Inflammation Level after Decompression Surgery for a Rat Model of Chronic Severe Spinal Cord Compression and Effects on Ischemia-Reperfusion Injury. Neurol Med Chir (Tokyo) 2015; 55:578-86. [PMID: 26119897 PMCID: PMC4628191 DOI: 10.2176/nmc.oa.2015-0022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Delayed neurological deterioration in the absence of direct spinal cord insult following surgical decompression is a severe postoperative complication in patients with chronic severe spinal cord compression (SCC). The spinal cord ischemia-reperfusion injury (IRI) has been verified as a potential etiology of the complication. However, the exact pathophysiologic mechanisms of the decompression-related IRI remain to be defined. In this study, we developed a practical rat model of chronic severe SCC. To explore the underlying role of inflammation in decompression-related IRI, immunoreactivity of pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) before and after decompression were measured. In addition, expression level of TNF-α and IL-1β was examined with Western blot. Immunohistochemical staining showed negative result in gray matters in the sham group and sham-decompression group. In the severe compression group, strong positive staining of TNF-α and IL-1β were found, suggesting a dramatic infiltration of inflammatory cells in gray matters. Furthermore, the severe compression group showed a significant increase in expression level of TNF-α and IL-1β as compared with the sham group (p < 0.05). In the severe compression-decompression group, both immunostaining and Western blot showed significant increase of TNF-α and IL-1β levels in the spinal cord compared with the severe compression group (p < 0.05). The results demonstrated that surgical decompression plays a stimulative role in inflammation through increasing the expression of inflammatory cytokines in the rat model of chronic severe SCC injury. Inflammation may be one of the important pathological mechanisms of decompression-related IRI of chronic ischemia.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University
| | | | | | | | | | | |
Collapse
|
30
|
Nibali L, Rizzo M, Li Volti G, D'Aiuto F, Giglio RV, Barbagallo I, Pelekos G, Donos N. Lipid subclasses profiles and oxidative stress in aggressive periodontitis before and after treatment. J Periodontal Res 2015; 50:890-6. [DOI: 10.1111/jre.12283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/19/2022]
Affiliation(s)
- L. Nibali
- Periodontology Unit and Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - M. Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties; University of Palermo; Palermo Italy
- Euro-Mediterranean Institute of Science and Technology; Palermo Italy
| | - G. Li Volti
- Euro-Mediterranean Institute of Science and Technology; Palermo Italy
- Department of Biomedicine and Biotechnologies; University of Catania; Catania Italy
| | - F. D'Aiuto
- Periodontology Unit and Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - R. V. Giglio
- Biomedical Department of Internal Medicine and Medical Specialties; University of Palermo; Palermo Italy
| | - I. Barbagallo
- Euro-Mediterranean Institute of Science and Technology; Palermo Italy
- Department of Drug Sciences; University of Catania; Catania Italy
| | - G. Pelekos
- Periodontology Unit and Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - N. Donos
- Periodontology Unit and Department of Clinical Research; UCL Eastman Dental Institute; London UK
| |
Collapse
|
31
|
de la Torre-Escudero E, Pérez–Sánchez R, Manzano-Román R, Oleaga A. Schistosome infections induce significant changes in the host biliary proteome. J Proteomics 2015; 114:71-82. [DOI: 10.1016/j.jprot.2014.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
|
32
|
Reduced oxidative stress contributes to the lipid lowering effects of isoquercitrin in free fatty acids induced hepatocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:313602. [PMID: 25404990 PMCID: PMC4227458 DOI: 10.1155/2014/313602] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/03/2014] [Indexed: 02/06/2023]
Abstract
Oxidative stress interferes with hepatic lipid metabolism at various levels ranging from benign lipid storage to so-called second hit of inflammation activation. Isoquercitrin (IQ) is widely present flavonoid but its effects on hepatic lipid metabolism remain unknown. We used free fatty acids (FFA) induced lipid overload and oxidative stress model in two types of liver cells and measured cell viability, intracellular lipids, and reactive oxygen species (ROS) within hepatocytes. In addition, Intracellular triglycerides (TG), superoxide dismutase (SOD), and malondialdehyde (MDA) were examined. A novel in vitro model was used to evaluate correlation between lipid lowering and antioxidative activities. Furthermore, 34 major cytokines and corresponding ROS levels were analyzed in FFA/LPS induced coculture model between hepatocytes and Kupffer cells. At molecular level AMPK pathway was elucidated. We showed that IQ attenuated FFA induced lipid overload and ROS within hepatocytes. Further, IQ reversed FFA induced increase in intracellular TG SOD and MDA. It was shown that antioxidative activity of IQ correlates with its lipid lowering potentials. IQ reversed major proinflammatory cytokines and oxidative stress in FFA/LPS induced coculture model. Finally, AMPK pathway was found responsible for metabolic benefits at molecular level. IQ strikingly manifests antioxidative and related lipid lowering activities in hepatocytes.
Collapse
|
33
|
Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis. Mol Cell Biol 2014; 35:26-40. [PMID: 25312648 DOI: 10.1128/mcb.00503-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The liver plays a critical role in glucose metabolism and communicates with peripheral tissues to maintain energy homeostasis. Obesity and insulin resistance are highly associated with nonalcoholic fatty liver disease (NAFLD). However, the precise molecular details of NAFLD remain incomplete. The p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) regulate liver metabolism. However, the physiological contribution of MAPK phosphatase 1 (MKP-1) as a nuclear antagonist of both p38 MAPK and JNK in the liver is unknown. Here we show that hepatic MKP-1 becomes overexpressed following high-fat feeding. Liver-specific deletion of MKP-1 enhances gluconeogenesis and causes hepatic insulin resistance in chow-fed mice while selectively conferring protection from hepatosteatosis upon high-fat feeding. Further, hepatic MKP-1 regulates both interleukin-6 (IL-6) and fibroblast growth factor 21 (FGF21). Mice lacking hepatic MKP-1 exhibit reduced circulating IL-6 and FGF21 levels that were associated with impaired skeletal muscle mitochondrial oxidation and susceptibility to diet-induced obesity. Hence, hepatic MKP-1 serves as a selective regulator of MAPK-dependent signals that contributes to the maintenance of glucose homeostasis and peripheral tissue energy balance. These results also demonstrate that hepatic MKP-1 overexpression in obesity is causally linked to the promotion of hepatosteatosis.
Collapse
|
34
|
Robertson J, McInnes I, Sattar N. Response to 'interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders' by Hassan et al. Cytokine 2014; 70:198. [PMID: 25082651 DOI: 10.1016/j.cyto.2014.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Jamie Robertson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, United Kingdom.
| | - Iain McInnes
- Institute of Infection, Immunity & Inflammation, University of Glasgow, United Kingdom
| | - Naveed Sattar
- Metabolic Medicine, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| |
Collapse
|