1
|
Suhardi VJ, Oktarina A, Hammad M, Niu Y, Li Q, Thomson A, Lopez J, McCormick J, Ayturk UM, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor. Nat Biomed Eng 2024; 8:1285-1307. [PMID: 39085645 PMCID: PMC12016487 DOI: 10.1038/s41551-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The cellular and molecular mediators of peri-implant fibrosis-a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint-remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.
Collapse
Affiliation(s)
- Vincentius Jeremy Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | | | - Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Juan Lopez
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Ugur M Ayturk
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Matthew B Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Mathias P G Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Wang N, Ma Q, Zhang J, Wang J, Li X, Liang Y, Wu X. Transcriptomics-based anti-tuberculous mechanism of traditional Chinese polyherbal preparation NiuBeiXiaoHe intermediates. Front Pharmacol 2024; 15:1415951. [PMID: 39364045 PMCID: PMC11446850 DOI: 10.3389/fphar.2024.1415951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
Background Integrated traditional Chinese medicine and biomedicine is an effective method to treat tuberculosis (TB). In our previous research, traditional Chinese medicine preparation NiuBeiXiaoHe (NBXH) achieved obvious anti-TB effects in animal experiments and clinical practice. However, the action mechanism of NBXH has not been elucidated. Method Peripheral blood mononuclear cells (PBMCs) were collected to extract mRNA and differentially expressed (DE) genes were obtained using gene microarray technology. Finally, GEO databases and RT-qPCR were used to verify the results of expression profile. Result After MTB infection, most upregulated DE genes in mice were immune-related genes, including cxcl9, camp, cfb, c4b, serpina3g, and ngp. Downregulated DE genes included lrrc74b, sult1d1, cxxc4, and grip2. After treatment with NBXH, especially high-dose NBXH, the abnormal gene expression was significantly corrected. Some DE genes have been confirmed in multiple GEO datasets or in pulmonary TB patients through RT-qPCR. Conclusion MTB infection led to extensive changes in host gene expression and mainly caused the host's anti-TB immune responses. The treatment using high-dose NBXH partially repaired the abnormal gene expression, further enhanced the anti-TB immunity included autophagy and NK cell-mediated cytotoxicity, and had a certain inhibitory effect on overactivated immune responses.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Junxian Zhang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xiaojun Li
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Lugtmeijer C, Bowtell JL, O’Leary M. Tissue-Level Effect of Andrographis and Ashwagandha Metabolites on Metabolic and Inflammatory Gene Expression in Skeletal Muscle and Adipose Tissue: An Ex Vivo/In Vitro Investigation. Nutrients 2024; 16:2291. [PMID: 39064738 PMCID: PMC11279956 DOI: 10.3390/nu16142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.
Collapse
Affiliation(s)
| | | | - Mary O’Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter EX1 2LU, UK; (C.L.); (J.L.B.)
| |
Collapse
|
4
|
Xie Z, Wang X, Huang Y, Chen S, Liu M, Zhang F, Li M, Wang X, Gu Y, Yang Y, Shen X, Wang Y, Xu Y, Xu L. Pseudomonas aeruginosa outer membrane vesicle-packed sRNAs can enter host cells and regulate innate immune responses. Microb Pathog 2024; 188:106562. [PMID: 38307370 DOI: 10.1016/j.micpath.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) can package and deliver virulence factors into host cells, which is an important mechanism mediating host-pathogen interactions. It has been reported that small RNAs (sRNAs) can be packed into OMVs with varying relative abundance, which might affect the function and/or stability of host mRNAs. In this study, we used OptiPrep density gradient ultra-high-speed centrifugation to purify OMVs from Pseudomonas aeruginosa. Next, the sequences and abundance of sRNAs were detected by using Small RNA-Seq. In particular, sRNA4518698, sRNA2316613 and sRNA809738 were the three most abundant sRNAs in OMVs, which are all fragments of P. aeruginosa non-coding RNAs. sRNAs were shielded within the interior of OMVs and remained resistant to external RNase cleavage. The miRanda and RNAhybrid analysis demonstrated that those sRNAs could target a large number of host mRNAs, which were enriched in host immune responses by the functions of GO and KEGG enrichment. Experimentally, we demonstrated that the transfection of synthetic sRNA4518698, sRNA2316613, or sRNA809738 could reduce the expression of innate immune response genes in RAW264.7 cells. Together, we demonstrated that P. aeruginosa OMVs sRNAs can regulate innate immune responses. This study uncovered a mechanism in which the OMVs regulate host responses by transferring bacterial sRNAs.
Collapse
Affiliation(s)
- Zhen Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangyang Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yadong Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yang Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Pu S, Wang Q, Liu Q, Zhao H, Zhou Z, Wu Q. Nr1d1 Mediated Cell Senescence in Mouse Heart-Derived Sca-1+CD31− Cells. Int J Mol Sci 2022; 23:ijms232012455. [PMID: 36293311 PMCID: PMC9603916 DOI: 10.3390/ijms232012455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Aim: Sca-1+CD31− cells are resident cardiac progenitor cells, found in many mammalian tissues including the heart, and able to differentiate into cardiomyocytes in vitro and in vivo. Our previous work indicated that heart-derived Sca-1+CD31− cells increased the Nr1d1 mRNA level of Nr1d1 with aging. However, how Nr1d1 affects the senescence of Sca-1+CD31− cells. Methods: Overexpression and knockdown of Nr1d1 in Sca-1+CD31− cells and mouse cardiac myocyte (MCM) cell lines were performed by lentiviral transduction. The effects of Nr1d1 abundance on cell differentiation, proliferation, apoptosis, cell cycle, and transcriptomics were evaluated. Moreover, binding of Nr1d1 to the promoter region of Nr4a3 and Serpina3 was examined by a luciferase reporter assay. Results and Conclusions: Upregulation Nr1d1 in young Sca-1+CD31− cells inhibited cell proliferation and promoted apoptosis. However, depletion of Nr1d1 in aged Sca-1+CD31− cells promoted cell proliferation and inhibited apoptosis. Furthermore, Nr1d1 was negatively associated with cell proliferation, promoting apoptosis and senescence-associated beta-galactosidase production in MCMs. Our findings show that Nr1d1 stimulates Serpina3 expression through its interaction with Nr4a3. Nr1d1 may therefore act as a potent anti-aging receptor that can be a therapeutic target for aging-related diseases.
Collapse
Affiliation(s)
- Shiming Pu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qian Wang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qin Liu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hongxia Zhao
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.Z.); (Q.W.)
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.Z.); (Q.W.)
| |
Collapse
|
6
|
Lee JS, Song WS, Lim JW, Choi TR, Jo SH, Jeon HJ, Kwon JE, Park JH, Kim YR, Yang YH, Jeong JH, Kim YG. An integrative multiomics approach to characterize anti-adipogenic and anti-lipogenic effects of Akkermansia muciniphila in adipocytes. Biotechnol J 2021; 17:e2100397. [PMID: 34894414 DOI: 10.1002/biot.202100397] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023]
Abstract
The cellular components of Akkermansia muciniphila are considered potential biotherapeutics for the improvement of obesity, diabetes, and metabolic diseases. However, the molecular-based mechanism of A. muciniphila for treatment of obesity, which can provide important evidence for human research, has rarely been explored. Here, we applied integrative multiomics approaches to investigate the underlying molecular mechanism involved in obesity treatment by A. muciniphila. First, the treatment with a cell lysate of A. muciniphila reduced lipid accumulation in 3T3-L1 cells and downregulated the mRNA expression of proteins involved in adipogenesis and lipogenesis. Our proteomic results revealed that A. muciniphila decreased the expression of proteins involved in fat cell differentiation, fatty acid metabolism, and energy metabolism in adipocytes. Moreover, A. muciniphila significantly reduced the level of metabolites related to glycolysis, the TCA cycle, and ATP in adipocytes. Interestingly, serine protease inhibitor A3 (SERPINA3) homologs were overexpressed in the 3T3-L1 cells treated with A. muciniphila. Small interfering RNA (siRNA) transfection demonstrated that A. muciniphila upregulates SERPINA3G expression and inhibits lipogenesis in adipocytes. Taken together, our multiomics-based approaches enabled to uncover the molecular mechanism of A. muciniphila for treatment of obesity and provide potent anti-lipogenic agents.
Collapse
Affiliation(s)
- Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, Konkuk University, Seoul, Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| |
Collapse
|
7
|
Liu F, Han K, Blair R, Kenst K, Qin Z, Upcin B, Wörsdörfer P, Midkiff CC, Mudd J, Belyaeva E, Milligan NS, Rorison TD, Wagner N, Bodem J, Dölken L, Aktas BH, Vander Heide RS, Yin XM, Kolls JK, Roy CJ, Rappaport J, Ergün S, Qin X. SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro. Front Cell Infect Microbiol 2021; 11:701278. [PMID: 34307198 PMCID: PMC8292147 DOI: 10.3389/fcimb.2021.701278] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.
Collapse
Affiliation(s)
- Fengming Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kun Han
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Robert Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Kornelia Kenst
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Zhongnan Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Berin Upcin
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Cecily C. Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Joseph Mudd
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Elizaveta Belyaeva
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicholas S. Milligan
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tyler D. Rorison
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute of Virology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute of Virology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bertal H. Aktas
- Division of Hematology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jay K. Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, United States
| | - Chad J. Roy
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jay Rappaport
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
8
|
Qin Z, Liu F, Blair R, Wang C, Yang H, Mudd J, Currey JM, Iwanaga N, He J, Mi R, Han K, Midkiff CC, Alam MA, Aktas BH, Heide RSV, Veazey R, Piedimonte G, Maness NJ, Ergün S, Mauvais-Jarvis F, Rappaport J, Kolls JK, Qin X. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics 2021; 11:8076-8091. [PMID: 34335981 PMCID: PMC8315069 DOI: 10.7150/thno.61810] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Pulmonary vascular endotheliitis, perivascular inflammation, and immune activation are observed in COVID-19 patients. While the initial SARS-CoV-2 infection mainly infects lung epithelial cells, whether it also infects endothelial cells (ECs) and to what extent SARS-CoV-2-mediated pulmonary vascular endotheliitis is associated with immune activation remain to be determined. Methods: To address these questions, we studied SARS-CoV-2-infected K18-hACE2 (K18) mice, a severe COVID-19 mouse model, as well as lung samples from SARS-CoV-2-infected nonhuman primates (NHP) and patient deceased from COVID-19. We used immunostaining, RNAscope, and electron microscopy to analyze the organs collected from animals and patient. We conducted bulk and single cell (sc) RNA-seq analyses, and cytokine profiling of lungs or serum of the severe COVID-19 mice. Results: We show that SARS-CoV-2-infected K18 mice develop severe COVID-19, including progressive body weight loss and fatality at 7 days, severe lung interstitial inflammation, edema, hemorrhage, perivascular inflammation, systemic lymphocytopenia, and eosinopenia. Body weight loss in K18 mice correlated with the severity of pneumonia, but not with brain infection. We also observed endothelial activation and dysfunction in pulmonary vessels evidenced by the up-regulation of VCAM1 and ICAM1 and the downregulation of VE-cadherin. We detected SARS-CoV-2 in capillary ECs, activation and adhesion of platelets and immune cells to the vascular wall of the alveolar septa, and increased complement deposition in the lungs, in both COVID-19-murine and NHP models. We also revealed that pathways of coagulation, complement, K-ras signaling, and genes of ICAM1 and VCAM1 related to EC dysfunction and injury were upregulated, and were associated with massive immune activation in the lung and circulation. Conclusion: Together, our results indicate that SARS-CoV-2 causes endotheliitis via both infection and infection-mediated immune activation, which may contribute to the pathogenesis of severe COVID-19 disease.
Collapse
Affiliation(s)
- Zhongnan Qin
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Fengming Liu
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Robert Blair
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Haoran Yang
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Joseph Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Joshua M Currey
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Naoki Iwanaga
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jibao He
- Coordinated Instrumentation Facility, Tulane University, New Orleans LA 70118, USA
| | - Ren Mi
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kun Han
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | - Bertal H Aktas
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Ronald Veazey
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, Sun Z, Wang W, Jiang H, Hong Z. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging (Albany NY) 2019; 11:7510-7524. [PMID: 31562809 PMCID: PMC6781997 DOI: 10.18632/aging.102263] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/02/2019] [Indexed: 04/18/2023]
Abstract
This study aimed to establish a high-fat diet (HFD)-fed obese mouse model and a cell culture model of insulin resistance (IR) in mature 3T3-L1 adipocytes. A dual-luciferase reporter assay (DLRA) was confirmed interaction between miR-27a and the 3'-untranslated region (UTR) of Peroxisome proliferator-activated receptor (PPAR)-γ. The inhibition of PPAR-γ expression by microRNA (miR)-27a in IR cells at both the protein and mRNA levels was confirmed by a mechanistic investigation. Moreover, the 3'-UTR of PPAR-γ was found to be a direct target of miR-27a, based on the DLRA. Furthermore, antagomiR-27a upregulated the activation of PI3K/Akt signaling and glucose transporter type 4 (GLUT4) expression at the protein and mRNA levels. Additionally, the PPAR inhibitor T0070907 repressed the insulin sensitivity upregulated by antagomiR-27a, which was accompanied by the inhibition of PPAR-γ expression and increased levels of AKT phosphorylation and GLUT4. The PI3K inhibitor wortmannin reduced miR-27a-induced increases in AKT phosphorylation, glucose uptake, and GLUT4. miR-27a is considered to be involved in the PPAR-γ-PI3K/AKT-GLUT4 signaling axis, thus leading to increased glucose uptake and decreased IR in HFD-fed mice and 3T3-L1 adipocytes. Therefore, miR-27a is a novel target for the treatment of IR in obesity and diabetes.
Collapse
Affiliation(s)
- Tianbao Chen
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yilan Liu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Dexiao Zhu
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Yu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Guoqian Li
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Zhichun Sun
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanru Wang
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhenzhen Hong
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
10
|
Tang W, Fan Y. SIRT6 as a potential target for treating insulin resistance. Life Sci 2019; 231:116558. [PMID: 31194993 DOI: 10.1016/j.lfs.2019.116558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to explore the role of SIRT6 in Insulin resistance (IR). We are the first to investigate on this crucial relationship in an obese mouse model fed on a high-fat diet (HFD) and an IR model based on the mature 3T3-L1-derived adipocytes. MAIN METHODS Western blotting (WB) and qPCR analysis were performed to evaluate the SIRT6 protein and mRNA expressions in HFD mice as well as IR cells. Injection of adenovirus encoding SIRT6 gene in HFD mice and transfection of pcDNA3-SIRT6 in IR cells increased the glucose uptake levels and insulin sensitivity. KEY FINDINGS The positive regulatory effects of SIRT6 on transient receptor potential vallinoid 1 (TRPV1) in IR cells were confirmed by a mechanistic investigation at both protein and mRNA levels. Further, the overexpression of SIRT6 was found to activate the TRPV1/Calcitonin gene-related peptide (CGRP) signaling and upregulate the glucose transporter (GLUT) expression at protein and mRNA levels. Additionally, administration of the TRPV1 antagonist, SB-705498 repressed the insulin sensitivity upregulated by SIRT6 overexpression accompanied with the inhibition of CGRP and decrease in GLUT proportions. The results also showed that TRPV1 agonist, Capsaicin boosted the SIRT6-induced glucose uptake, CGRP production, and GLUT4 levels. SIGNIFICANCE Overall, SIRT6 was concluded to be involved in the TRPV1-CGRP-GLUT4 signaling axis thus leading to increased glucose uptake and decreased IR in HFD mice and 3T3-L1 adipocytes. Therefore, in terms of obesity and diabetes, SIRT6 is a novel candidate for treating IR.
Collapse
Affiliation(s)
- Wei Tang
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan, China.
| | - Yingying Fan
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan, China
| |
Collapse
|
11
|
Mahmoud TI, Wang J, Karnell JL, Wang Q, Wang S, Naiman B, Gross P, Brohawn PZ, Morehouse C, Aoyama J, Wasserfall C, Carter L, Atkinson MA, Serreze DV, Braley-Mullen H, Mustelin T, Kolbeck R, Herbst R, Ettinger R. Autoimmune manifestations in aged mice arise from early-life immune dysregulation. Sci Transl Med 2017; 8:361ra137. [PMID: 27798262 DOI: 10.1126/scitranslmed.aag0367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Autoantibodies can be present years to decades before the onset of disease manifestations in autoimmunity. This finding suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which ultimately drives disease pathology in local tissues later in life. We show that Sjögren's syndrome manifestations that develop in aged NOD.H-2h4 mice were driven by and dependent on peripheral dysregulation that arose in early life. Specifically, elimination of spontaneous germinal centers in spleens of young NOD.H-2h4 mice by transient blockade of CD40 ligand (CD40L) or splenectomy abolished Sjögren's pathology of aged mice. Strikingly, a single injection of anti-CD40L at 4 weeks of age prevented tertiary follicle neogenesis and greatly blunted the formation of key autoantibodies implicated in glandular pathology, including anti-muscarinic receptor antibodies. Microarray profiling of the salivary gland characterized the expression pattern of genes that increased with disease progression and showed that early anti-CD40L greatly repressed B cell function while having a broader effect on multiple biological pathways, including interleukin-12 and interferon signaling. A single prophylactic treatment with anti-CD40L also inhibited the development of autoimmune thyroiditis and diabetes in NOD.H-2h4 and nonobese diabetic mice, respectively, supporting a key role for CD40L in the pathophysiology of several autoimmune models. These results strongly suggest that early peripheral immune dysregulation gives rise to autoimmune manifestations later in life, and for diseases predated by autoantibodies, early prophylactic intervention with biologics may prove efficacious.
Collapse
Affiliation(s)
- Tamer I Mahmoud
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jingya Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jodi L Karnell
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Qiming Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Shu Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Brian Naiman
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Phillip Gross
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Philip Z Brohawn
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Chris Morehouse
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jordan Aoyama
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Clive Wasserfall
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Laura Carter
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Tomas Mustelin
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Ronald Herbst
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Rachel Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|