1
|
Tao Q, Zhou Y, Chen G, Sun J. Cisplatin Promotes Hepatotoxicity by cGAS-STING Mediated Innate Immune Response. J Gastroenterol Hepatol 2025; 40:1283-1296. [PMID: 40052344 DOI: 10.1111/jgh.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 05/11/2025]
Abstract
Although platinum-based chemotherapy represented by cisplatin has been widely approved for the management of diverse cancer types, its hepatotoxicity and other adverse effects impact patient prognosis, while currently, there are few effective strategies for prevention or treatment. RNA sequencing analysis indicated that the type I interferon (IFN-I) pathway was significantly upregulated in cisplatin-induced liver injury (CILI) mouse model. The cGAS-STING signaling was found to be significantly activated in vitro and CILI model in vivo. Mechanistically, cisplatin-induced DNA damage triggered the release of double-stranded DNA (dsDNA), which subsequently activated the cGAS-STING pathway. The activated pathway promoted the production of IFN-I and induced apoptosis, ultimately contributing to liver injury. Importantly, inhibition of the cGAS-STING pathway, either by enzymatic digestion of dsDNA or by genetic knockout of cGAS, effectively attenuated IFN-I production and liver injury in response to cisplatin. Overall, our results highlight the cGAS-STING-IFN-I axis as a promising therapeutic target for preventing and treating platinum-based drug-induced liver damage.
Collapse
Affiliation(s)
- Qiongyan Tao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yimin Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianyong Sun
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Vrsaljko N, Radmanic Matotek L, Zidovec-Lepej S, Vince A, Papic N. The Impact of Steatotic Liver Disease on Cytokine and Chemokine Kinetics During Sepsis. Int J Mol Sci 2025; 26:2226. [PMID: 40076848 PMCID: PMC11900930 DOI: 10.3390/ijms26052226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been linked with sepsis outcomes. However, the immune mechanisms by which MASLD aggravates sepsis severity are unknown. This prospective cohort study aimed to analyze serum cytokine and chemokine kinetics in patients with MASLD and community-acquired sepsis. Out of the 124 patients, 68 (55%) were diagnosed with MASLD. There were no differences in age, sex, comorbidities, baseline sepsis severity, or etiology between the groups. Serum concentrations of 27 cytokines and chemokines on admission and day 5 of hospitalization were analyzed using a multiplex bead-based assay. Patients with MASLD had significantly higher serum concentrations of IL17A, IL-23, IL-33, CXCL10 and TGF-β1. Different cytokine kinetics were observed; patients with MASLD had a decrease in IL-10, IL-23, CXCL10 and TGF-β1, and an increase in IL-33, CXCL5 and CXCL1 on day 5. In the non-MASLD group, there was a decrease in IFN-γ, IL-6, IL-23 and CCL20, and an increase in CCL11 and CXCL5. While TGF-β1 significantly increased in non-MASLD, in MASLD, it decreased on day 5. Kinetics of TGF- β1 and CCL11 were associated with mortality in patients with MASLD. In conclusion, MASLD is linked with distinct cytokine and chemokine profiles during sepsis.
Collapse
Affiliation(s)
- Nina Vrsaljko
- Emergency Infectious Diseases Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Leona Radmanic Matotek
- Department for Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (L.R.M.); (S.Z.-L.)
| | - Snjezana Zidovec-Lepej
- Department for Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (L.R.M.); (S.Z.-L.)
| | - Adriana Vince
- Department for Viral Hepatitis, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Neven Papic
- Department for Viral Hepatitis, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Wang T, Liu B, Huang J, Zhao Q, Shen H, Bi T, Liu Z, Dai Y, Sun Q. IFN-γ-mediated inhibition of JAK/STAT signaling via nano-scutellarin treatment is an efficient strategy for ameliorating liver fibrosis. J Transl Med 2025; 23:195. [PMID: 39962553 PMCID: PMC11834254 DOI: 10.1186/s12967-025-06155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a large group of metabolic diseases that are hazardous to human health. Endothelial-to-mesenchymal transition (EndMT) mediated myofibroblast activation is an important factor that aggravates the development of liver fibrosis during MASH. However, the limited understanding of the underlying molecular mechanisms that drive EndMT in MASH has hindered the development of molecularly targeted therapies specifically targeting this pathological process. METHODS We employed wild-type and ifn-γ-deficient mice, MASH models were induced repeated CCl4 injections and a high-fat diet to verify the significance of IFN-γ role in vivo and its impact in EndMT. Male mice models of MASH were used to further analyze the effect of Scutellarin@BSA on the improvement of liver fibrosis during MASH in vivo and HUVECs were used to assess IFN-γ effect on EndMT and its interaction with JAK signaling pathway in vitro. RESULTS The results showed that IFN-γ is revealed as a key regulator of EndMT during MASH, as evidenced by the significantly lower levels of EndMT and reduced pathological damage in the livers of ifn-γ knockout mice. Furthermore, our research has led to the development of Scutellarin@BSA therapy, which targets and mitigates IFN-γ-driven EndMT, which showed excellent therapeutic effects on EndMT and liver fibrosis in vivo and in vitro during MASH. Mechanistically, IFN-γ can directly bind to the JAK protein and activate downstream STAT1 transcription factors, exerting transcriptional activity and further driving the expression of EndMT-associated proteins. Notably, Scutellarin@BSA treatment effectively diminishes the hallmarks of liver fibrosis by modulating the canonical JAK/STAT1 signaling pathway. CONCLUSIONS IFN-γ was identified as a key regulator of EndMT, and Scutellarin@BSA, as an emerging treatment, has been found to effectively inhibit EndMT by directly targeting the regulatory influence of the IFN-γ signaling. This result demonstrates significant therapeutic efficacy in alleviating hepatic fibrosis during MASH, highlighting its great potential as an innovative liver fibrosis treatment.
Collapse
Affiliation(s)
- Ting Wang
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bangguo Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Juan Huang
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qixin Zhao
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongping Shen
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Bi
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 853, China
| | - Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yong Dai
- Sichuan Police College, Luzhou, 646000, Sichuan, China.
| | - Qin Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Fan MW, Tian JL, Chen T, Zhang C, Liu XR, Zhao ZJ, Zhang SH, Chen Y. Role of cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes pathway in diabetes and its complications. World J Diabetes 2024; 15:2041-2057. [PMID: 39493568 PMCID: PMC11525733 DOI: 10.4239/wjd.v15.i10.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus (DM) is one of the major causes of mortality worldwide, with inflammation being an important factor in its onset and development. This review summarizes the specific mechanisms of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway in mediating inflammatory responses. Furthermore, it comprehensively presents related research progress and the subsequent involvement of this pathway in the pathogenesis of early-stage DM, diabetic gastroenteropathy, diabetic cardiomyopathy, non-alcoholic fatty liver disease, and other complications. Additionally, the role of cGAS-STING in autonomic dysfunction and intestinal dysregulation, which can lead to digestive complications, has been discussed. Altogether, this study provides a comprehensive analysis of the research advances regarding the cGAS-STING pathway-targeted therapeutic agents and the prospects for their application in the precision treatment of DM.
Collapse
Affiliation(s)
- Ming-Wei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Jin-Lan Tian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Tan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Can Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Xin-Ru Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Zi-Jian Zhao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Shu-Hui Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Yan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| |
Collapse
|
6
|
Buchynskyi M, Oksenych V, Kamyshna I, Budarna O, Halabitska I, Petakh P, Kamyshnyi O. Genomic insight into COVID-19 severity in MAFLD patients: a single-center prospective cohort study. Front Genet 2024; 15:1460318. [PMID: 39296547 PMCID: PMC11408174 DOI: 10.3389/fgene.2024.1460318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
This study investigated the influence of single nucleotide polymorphisms (SNPs) in genes associated with the interferon pathway (IFNAR2 rs2236757), antiviral response (OAS1 rs10774671, OAS3 rs10735079), and viral entry (ACE2 rs2074192) on COVID-19 severity and their association with nonalcoholic fatty liver disease (MAFLD). We did not observe a significant association between the investigated SNPs and COVID-19 severity. While the IFNAR2 rs2236757 A allele was correlated with higher creatinine levels upon admission and the G allele was correlated with lower band neutrophils upon discharge, these findings require further investigation. The distribution of OAS gene polymorphisms (rs10774671 and rs10735079) did not differ between MAFLD patients and non-MAFLD patients. Our study population's distribution of ACE2 rs2074192 genotypes and alleles differed from that of the European reference population. Overall, our findings suggest that these specific SNPs may not be major contributors to COVID-19 severity in our patient population, highlighting the potential role of other genetic factors and environmental influences.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Olena Budarna
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
7
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
8
|
Gaucher J, Montellier E, Vial G, Chuffart F, Guellerin M, Bouyon S, Lemarie E, Yamaryo-Botté Y, Dirani A, Ben Messaoud R, Faure MJ, Ribuot DG, Costentin C, Tamisier R, Botté CY, Khochbin S, Rousseaux S, Pépin JL. Long-term intermittent hypoxia in mice induces inflammatory pathways implicated in sleep apnea and steatohepatitis in humans. iScience 2024; 27:108837. [PMID: 38303705 PMCID: PMC10830848 DOI: 10.1016/j.isci.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH), an independent risk factor for non-alcoholic fatty liver disease (NAFLD). While the molecular links between IH and NAFLD progression are unclear, immune cell-driven inflammation plays a crucial role in NAFLD pathogenesis. Using lean mice exposed to long-term IH and a cohort of lean OSA patients (n = 71), we conducted comprehensive hepatic transcriptomics, lipidomics, and targeted serum proteomics. Significantly, we demonstrated that long-term IH alone can induce NASH molecular signatures found in human steatohepatitis transcriptomic data. Biomarkers (PPARs, NRFs, arachidonic acid, IL16, IL20, IFNB, TNF-α) associated with early hepatic and systemic inflammation were identified. This molecular link between IH, sleep apnea, and steatohepatitis merits further exploration in clinical trials, advocating for integrating sleep apnea diagnosis in liver disease phenotyping. Our unique signatures offer potential diagnostic and treatment response markers, highlighting therapeutic targets in the comorbidity of NAFLD and OSA.
Collapse
Affiliation(s)
- Jonathan Gaucher
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Emilie Montellier
- Cancers and Biomarkers Team, Institute for Advanced Biosciences, University, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Guillaume Vial
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Florent Chuffart
- Epigenetics Regulation Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Maëlle Guellerin
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Sophie Bouyon
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Emeline Lemarie
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Aya Dirani
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Raoua Ben Messaoud
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Marie Joyeux Faure
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Diane Godin Ribuot
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Charlotte Costentin
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Renaud Tamisier
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Saadi Khochbin
- Epigenetics Regulation Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Sophie Rousseaux
- Epigenetics Regulation Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
9
|
Sawada K, Chung H, Softic S, Moreno-Fernandez ME, Divanovic S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab 2023; 35:1852-1871. [PMID: 37939656 PMCID: PMC10680147 DOI: 10.1016/j.cmet.2023.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Bertran L, Adalid L, Vilaró-Blay M, Barrientos-Riosalido A, Aguilar C, Martínez S, Sabench F, del Castillo D, Porras JA, Alibalic A, Richart C, Auguet T. Expression of STING in Women with Morbid Obesity and Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:metabo13040496. [PMID: 37110154 PMCID: PMC10146769 DOI: 10.3390/metabo13040496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disease. Although mostly benign, this disease can evolve into nonalcoholic steatohepatitis (NASH). The stimulator of interferon genes (STING) plays an important role in the immune response against stressed cells, but this protein may also be involved in liver lipogenesis and microbiota composition. In this study, the role of STING in NAFLD was evaluated by RT–qPCR to analyze STING mRNA abundance and by immunohistochemical analysis to evaluate protein expression in liver biopsies from a cohort composed of 69 women with morbid obesity classified according to their liver involvement (normal liver, n = 27; simple steatosis (SS), n = 26; NASH, n = 16). The results showed that STING mRNA expression in the liver increases with the occurrence of NAFLD, specifically in the SS stage in which the degree of steatosis is mild or moderate. Protein analysis corroborated these results. Positive correlations were observed among hepatic STING mRNA abundance and gamma-glutamyl transferase and alkaline phosphatase levels, hepatic Toll-like receptor 9 expression and some circulating microbiota-derived bile acids. In conclusion, STING may be involved in the outcome and progression of NAFLD and may be related to hepatic lipid metabolism. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Laia Adalid
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Mercè Vilaró-Blay
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Fàtima Sabench
- Servei de Cirurgia i Anestèsia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Daniel del Castillo
- Servei de Cirurgia i Anestèsia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - José Antonio Porras
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
| | - Ajla Alibalic
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
11
|
Yang X, Batmanov K, Hu W, Zhu K, Tom AY, Guan D, Jiang C, Cheng L, McCright SJ, Yang EC, Lanza MR, Liu Y, Hill DA, Lazar MA. Hepatocytes demarcated by EphB2 contribute to the progression of nonalcoholic steatohepatitis. Sci Transl Med 2023; 15:eadc9653. [PMID: 36753562 PMCID: PMC10234568 DOI: 10.1126/scitranslmed.adc9653] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
Current therapeutic strategies for treating nonalcoholic steatohepatitis (NASH) have failed to alleviate liver fibrosis, which is a devastating feature leading to hepatic dysfunction. Here, we integrated single-nucleus transcriptomics and epigenomics to characterize all major liver cell types during NASH development in mice and humans. The bifurcation of hepatocyte trajectory with NASH progression was conserved between mice and humans. At the nonalcoholic fatty liver (NAFL) stage, hepatocytes exhibited metabolic adaptation, whereas at the NASH stage, a subset of hepatocytes was enriched for the signatures of cell adhesion and migration, which were mainly demarcated by receptor tyrosine kinase ephrin type B receptor 2 (EphB2). EphB2, acting as a downstream effector of Notch signaling in hepatocytes, was sufficient to induce cell-autonomous inflammation. Knockdown of Ephb2 in hepatocytes ameliorated inflammation and fibrosis in a mouse model of NASH. Thus, EphB2-expressing hepatocytes contribute to NASH progression and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao Yang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong 510005, China
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander Y. Tom
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sam J. McCright
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, PA19104, USA
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104, USA
| | - Eric C. Yang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R. Lanza
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yifan Liu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David A. Hill
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Lead Contact
| |
Collapse
|
12
|
Mödl B, Moritsch S, Zwolanek D, Eferl R. Type I and II interferon signaling in colorectal cancer liver metastasis. Cytokine 2023; 161:156075. [PMID: 36323190 DOI: 10.1016/j.cyto.2022.156075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Stefan Moritsch
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Fujiwara S, Izawa T, Mori M, Atarashi M, Yamate J, Kuwamura M. Dietary iron overload enhances Western diet induced hepatic inflammation and alters lipid metabolism in rats sharing similarity with human DIOS. Sci Rep 2022; 12:21414. [PMID: 36496443 PMCID: PMC9741655 DOI: 10.1038/s41598-022-25838-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatic iron overload is often concurrent with nonalcoholic fatty liver disease (NAFLD). Dysmetabolic iron overload syndrome (DIOS) is characterized by an increase in the liver and body iron stores and metabolic syndrome components. Increasing evidences suggest an overlap between NAFLD with iron overload and DIOS; however, the mechanism how iron is involved in their pathogenesis remains unclear. Here we investigated the role of iron in the pathology of a rat model of NAFLD with iron overload. Rats fed a Western (high-fat and high-fructose) diet for 26 weeks represented hepatic steatosis with an increased body weight and dyslipidemia. Addition of dietary iron overload to the Western diet feeding further increased serum triglyceride and cholesterol, and enhanced hepatic inflammation; the affected liver had intense iron deposition in the sinusoidal macrophages/Kupffer cells, associated with nuclear translocation of NFκB and upregulation of Th1/M1-related cytokines. The present model would be useful to investigate the mechanism underlying the development and progression of NAFLD as well as DIOS, and to elucidate an important role of iron as one of the "multiple hits" factors.
Collapse
Affiliation(s)
- Sakura Fujiwara
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Mutsuki Mori
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Machi Atarashi
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| |
Collapse
|
14
|
Maretti-Mira AC, Salomon MP, Hsu AM, Kanel GC, Golden-Mason L. Hepatic damage caused by long-term high cholesterol intake induces a dysfunctional restorative macrophage population in experimental NASH. Front Immunol 2022; 13:968366. [PMID: 36159810 PMCID: PMC9495937 DOI: 10.3389/fimmu.2022.968366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive dietary cholesterol is preferentially stored in the liver, favoring the development of nonalcoholic steatohepatitis (NASH), characterized by progressive hepatic inflammation and fibrosis. Emerging evidence indicates a critical contribution of hepatic macrophages to NASH severity. However, the impact of cholesterol on these cells in the setting of NASH remains elusive. Here, we demonstrate that the dietary cholesterol content directly affects hepatic macrophage global gene expression. Our findings suggest that the modifications triggered by prolonged high cholesterol intake induce long-lasting hepatic damage and support the expansion of a dysfunctional pro-fibrotic restorative macrophage population even after cholesterol reduction. The present work expands the understanding of the modulatory effects of cholesterol on innate immune cell transcriptome and may help identify novel therapeutic targets for NASH intervention.
Collapse
Affiliation(s)
- Ana C. Maretti-Mira
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Ana C. Maretti-Mira,
| | - Matthew P. Salomon
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Angela M. Hsu
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Gary C. Kanel
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lucy Golden-Mason
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
The presence of interferon affects the progression of non-alcoholic fatty liver disease. Genes Immun 2022; 23:157-165. [PMID: 35725929 DOI: 10.1038/s41435-022-00176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Inflammation and metabolic dysfunction are hallmarks of the progression of non-alcoholic fatty liver disease (NAFLD), which is the fastest-growing liver disease worldwide. Emerging evidence indicates that innate immune mechanisms are essential drivers of fibrosis development in chronic inflammatory liver diseases, including NAFLD. In this study, 142 NAFLD patients were genotyped for three IFNL4 single-nucleotide variants in order to investigate the genetic relationship between IFNL4 and fibrosis in NAFLD patients. We observed an overrepresentation of the non-functional IFNL4 allele in patients with significant fibrosis (>F2). Next, we investigated the potential protective role of interferon (IFN) in relation to the development of liver fibrosis in an animal model of non-alcoholic steatohepatitis (NASH). In contradiction to our hypothesis, the results showed an increase in fibrosis in IFN treated animals. Our study clearly indicates that IFN is able to affect the development of liver fibrosis, although our clinical and experimental data are conflicting.
Collapse
|
16
|
Wu B, Zheng X, Li X, Wang C, Li L, Tang Z, Cui H, Li Z, Chen L, Ma X. Design, synthesis and activity evaluation of prodrug form JBP485 and Vitamin E for alleviation of NASH. Bioorg Med Chem Lett 2022; 56:128464. [PMID: 34808388 DOI: 10.1016/j.bmcl.2021.128464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD) characterized by liver steatosis with lobular inflammation, hepatocyte injury and pericellular fibrosis. JBP485 is a hydrophilic dipeptide with protective effects on liver through alleviation of oxidative stress and inhibition of hepatocyte apoptosis and ICAM-1 expression. Vitamin E (VE), as a powerful biological antioxidant, exerts a certain protective effect on cell membranes and lipoproteins from lipid peroxidation. In this study, on the basis of the structural characteristics of two agents, the prodrug form target of JBP485 and VE (JBP485-VE) was designed and synthesized via succinic acid linker. The synthesized compound significantly reduced the degree of inflammation and fibrosis according to hematoxylin-eosin (H&E) and sirius red staining assay for the liver tissue in CCl4-induced NASH mouse model. The clear reduction of TG, T-CHO and ALT, AST content also demonstrated its efficacy in the treatment of NASH. In addition, JBP485-VE also reduced the expression of the inflammatory markers IL-2, IL-17A and malondialdehyde (MDA) in liver tissue, which indicated its higher anti-inflammatory and anti-oxidative stress activity. All these evaluated biological properties suggest that the strategy of prodrug design provided an effective method for the treatment of NASH.
Collapse
Affiliation(s)
- Bin Wu
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Xu Zheng
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Xing Li
- Department of Hematology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Lei Li
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Zeyao Tang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Hongxia Cui
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Zhen Li
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Lixue Chen
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China.
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
17
|
Sani MB, Roudbari Z, Karimi O, Banabazi MH, Esmaeilkhanian S, Asadzadeh N, Zare Harofte J, Shafei Naderi A, Burger PA. Gene-Set Enrichment Analysis for Identifying Genes and Biological Activities Associated with Growth Traits in Dromedaries. Animals (Basel) 2022; 12:184. [PMID: 35049806 PMCID: PMC8773174 DOI: 10.3390/ani12020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Growth is an important heritable economic trait for dromedaries and necessary for planning a successful breeding program. Until now, genome-wide association studies (GWAS) and QTL-mapping have identified significant single nucleotide polymorphisms (SNPs) associated with growth in domestic animals, but in dromedaries, the number of studies is very low. This project aimed to find biological themes affecting growth in dromedaries. In the first step, 99 candidate SNPs were chosen from a previously established set of SNPs associated with body weight, gain, and birth weight in Iranian dromedaries. Next, 0.5 kb upstream and downstream of each candidate SNP were selected from NCBI (assembly accession: GCA_000803125.3). The annotation of fragments with candidate SNPs regarding the reference genome was retrieved using the Blast2GO tool. Candidate SNPs associated with growth were mapped to 22 genes, and 25 significant biological themes were identified to be related to growth in dromedaries. The main biological functions included calcium ion binding, protein binding, DNA-binding transcription factor activity, protein kinase activity, tropomyosin binding, myosin complex, actin-binding, ATP binding, receptor signaling pathway via JAK-STAT, and cytokine activity. EFCAB5, MTIF2, MYO3A, TBX15, IFNL3, PREX1, and TMOD3 genes are candidates for improving growth in camel breeding programs.
Collapse
Affiliation(s)
- Morteza Bitaraf Sani
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd 8915813155, Iran; (J.Z.H.); (A.S.N.)
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft 7867155311, Iran;
| | - Omid Karimi
- Department of Animal Viral Diseases Research, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3146618361, Iran;
| | - Mohammad Hossein Banabazi
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj 3146618361, Iran; (M.H.B.); (S.E.); (N.A.)
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007 Uppsala, Sweden
| | - Saeid Esmaeilkhanian
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj 3146618361, Iran; (M.H.B.); (S.E.); (N.A.)
| | - Nader Asadzadeh
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj 3146618361, Iran; (M.H.B.); (S.E.); (N.A.)
| | - Javad Zare Harofte
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd 8915813155, Iran; (J.Z.H.); (A.S.N.)
| | - Ali Shafei Naderi
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd 8915813155, Iran; (J.Z.H.); (A.S.N.)
| | - Pamela Anna Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, 1160 Vienna, Austria;
| |
Collapse
|
18
|
Spremović Rađenović S, Pupovac M, Andjić M, Bila J, Srećković S, Gudović A, Dragaš B, Radunović N. Prevalence, Risk Factors, and Pathophysiology of Nonalcoholic Fatty Liver Disease (NAFLD) in Women with Polycystic Ovary Syndrome (PCOS). Biomedicines 2022; 10:131. [PMID: 35052811 PMCID: PMC8773533 DOI: 10.3390/biomedicines10010131] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Polycystic Ovary Syndrome (PCOS) is one of the most common endocrine disorders in women's reproductive period of life. The presence of nonalcoholic fatty liver disease NAFLD, one of the leading causes of chronic liver disease in the Western world, is increased in women with PCOS. This review aims to present current knowledge in epidemiology, pathophysiology, diagnostics, and treatment of NAFLD in PCOS with an emphasis on the molecular basis of development of NAFLD in PCOS women. Methods: Authors investigated the available data on PCOS and NAFLD by a MEDLINE and Pub Med search during the years 1990-2021 using a combination of keywords such as "PCOS", "NAFLD", "steatohepatitis", "insulin resistance", "hyperandrogenaemia", "inflammation", "adipose tissue", and "obesity". Peer-reviewed articles regarding NAFLD and PCOS were included in this manuscript. Additional articles were identified from the references of relevant papers. Results: PCOS and NAFLD are multifactorial diseases, The development of NAFLD in PCOS women is linked to insulin resistance, hyperandrogenemia, obesity, adipose tissue dysfunction, and inflammation. There is the possible role of the gut microbiome, mitochondrial dysfunction, and endocannabinoid system in the maintenance of NAFLD in PCOS women. Conclusions: There is a need for further investigation about the mechanism of the development of NAFLD in PCOS women. New data about the molecular basis of development of NAFLD in PCOS integrated with epidemiological and clinical information could influence the evolution of new diagnostic and therapeutic approaches of NAFLD in PCOS.
Collapse
Affiliation(s)
- Svetlana Spremović Rađenović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.S.R.); (M.A.); (J.B.); (A.G.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miljan Pupovac
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.S.R.); (M.A.); (J.B.); (A.G.)
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.S.R.); (M.A.); (J.B.); (A.G.)
| | - Jovan Bila
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.S.R.); (M.A.); (J.B.); (A.G.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Svetlana Srećković
- Center for Anesthesiology and Resuscitation, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Aleksandra Gudović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.S.R.); (M.A.); (J.B.); (A.G.)
| | - Biljana Dragaš
- Intermedicus BIS, Specialized Hospital for Infertility, 11000 Belgrade, Serbia; (B.D.); (N.R.)
| | - Nebojša Radunović
- Intermedicus BIS, Specialized Hospital for Infertility, 11000 Belgrade, Serbia; (B.D.); (N.R.)
- Serbian Academy of Science and Art, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Petrelli A, Giovenzana A, Insalaco V, Phillips BE, Pietropaolo M, Giannoukakis N. Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and Yet So Close to Explain Diabetes Endotypes. Curr Diab Rep 2021; 21:54. [PMID: 34902055 PMCID: PMC8668851 DOI: 10.1007/s11892-021-01430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes mellitus can be categorized into two major variants, type 1 and type 2. A number of traits such as clinical phenotype, age at disease onset, genetic background, and underlying pathogenesis distinguish the two forms. RECENT FINDINGS Recent evidence indicates that type 1 diabetes can be accompanied by insulin resistance and type 2 diabetes exhibits self-reactivity. These two previously unknown conditions can influence the progression and outcome of the disease. Unlike most conventional considerations, diabetes appears to consist of a spectrum of intermediate phenotypes that includes monogenic and polygenic loci linked to inflammatory processes including autoimmunity, beta cell impairment, and insulin resistance. Here we discuss why a shift of the classical bi-modal view of diabetes (autoimmune vs. non-autoimmune) is necessary in favor of a model of an immunological continuum of endotypes lying between the two extreme "insulin-resistant" and "autoimmune beta cell targeting," shaped by environmental and genetic factors which contribute to determine specific immune-conditioned outcomes.
Collapse
Affiliation(s)
- Alessandra Petrelli
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Giovenzana
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Vittoria Insalaco
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Brett E. Phillips
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA USA
| | - Massimo Pietropaolo
- grid.39382.330000 0001 2160 926XDivision of Diabetes Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Nick Giannoukakis
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA USA
| |
Collapse
|
20
|
Single nucleotide polymorphisms in PNPLA3, ADAR-1 and IFIH1 are associated with advanced liver fibrosis in patients co-infected with HIV-1//hepatitis C virus. AIDS 2021; 35:2497-2502. [PMID: 34482352 DOI: 10.1097/qad.0000000000003066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), insulin resistance and liver fibrosis are prevalent in individuals co-infected with HIV type 1 (HIV-1)/hepatitis C virus (HCV), even after HCV eradication. Our aim was to evaluate single nucleotide polymorphisms (SNPs) associated with advanced liver fibrosis in HIV-1/HCV co-infected patients. DESIGN/METHODS In a cohort of 102 participants, we genotyped 16 SNPs in 10 genes previously associated with NAFLD and the innate immune response and correlated the genotypes with liver fibrosis and fat accumulation. RESULTS Multinomial logistic regression analysis identified three metabolic parameters that were significantly associated with advanced liver fibrosis (stage F3-F4): albumin [odds ratio (OR) 0.80, 95% confidence interval (CI) 0.69-0.91, P = 0.001], percentage of visceral fat area (PVFA) (OR 1.06, 95% CI 1.01-1.12, P = 0.03) and BMI (OR 1.47, 95% CI 1.22-1.77, P < 0.0001). After adjustment for sex, albumin, PVFA and BMI, we found that three SNPs were significantly associated with advanced fibrosis, one each in PNPLA3/rs738409 (P = 0.016), ADAR-1/rs1127313 (P = 0.029) and IFIH1/rs1990760 (P = 0.033). CONCLUSION Our results indicate that genotyping for these SNPs can be a useful predictive tool for liver fibrosis progression and liver fat accumulation in patients co-infected with HIV-1/HCV.
Collapse
|
21
|
Møhlenberg M, Monrad I, Vibholm LK, Nielsen SSF, Frattari GS, Schleimann MH, Olesen R, Kjolby M, Gunst JD, Søgaard OS, O'Brien TR, Tolstrup M, Hartmann R. The Impact of IFNλ4 on the Adaptive Immune Response to SARS-CoV-2 Infection. J Interferon Cytokine Res 2021; 41:407-414. [PMID: 34788130 DOI: 10.1089/jir.2021.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic polymorphisms at the IFNL4 loci are known to influence the clinical outcome of several different infectious diseases. Best described is the association between the IFNL4 genotype and hepatitis C virus clearance. However, an influence of the IFNL4 genotype on the adaptive immune system was suggested by several studies but never investigated in humans. In this cross-sectional study, we have genotyped 201 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive participants for 3 IFNL4 polymorphisms (rs368234815, rs12979860, and rs117648444) and stratified them according to the IFNλ4 activity. Based on this stratification, we investigated the association between the IFNL4 genotype and the antibody as well as the CD8+ T cell response in the acute phase of the SARS-CoV-2 infection. We observed no differences in the genotype distribution compared with a Danish reference cohort or the 1,000 Genome Project, and we were not able to link the IFNL4 genotype to changes in either the antibody or CD8+ T cell responses of these patients.
Collapse
Affiliation(s)
- Michelle Møhlenberg
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ida Monrad
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Line K Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Stine S F Nielsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Mads Kjolby
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.,DANDRITE, Deptarment of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aalborg, Denmark.,University of Dundee, Scotland, United Kingdom
| | | | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas R O'Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
22
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Barakat B, Almeida MEF. Biochemical and immunological changes in obesity. Arch Biochem Biophys 2021; 708:108951. [PMID: 34102165 DOI: 10.1016/j.abb.2021.108951] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Obesity is a syndemia that promotes high expenditures for public health, and is defined by the excess of adipose tissue that is classified according to its function and anatomical distribution. In obese people, this tissue generates oxidative stress associated with a chronic inflammatory response, in which there is an imbalance in relation to the release of hormones and adipokines that cause loss of body homeostasis and predisposition to the development of some comorbidities. The purpose of this review is to summarize the main events that occur during the onset and progression of obesity with a special focus on biochemical and immunological changes. Hypertrophied and hyperplasia adipocytes have biomarkers and release adipokines capable of regulating pathways and expressing genes that culminate in the development of metabolic changes, such as changes in energy balance and intestinal microbiota, and the development of some comorbidities, diabetes mellitus, dyslipidemias, arterial hypertension, liver disease, cancer, allergies, osteoporosis, sarcopenia and obstructive sleep apnea. Thus, it is necessary to treat and/or prevent pathology, using traditional methods based on healthy eating, and regular physical and leisure activities.
Collapse
Affiliation(s)
- Beatriz Barakat
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Rio Paranaíba Campus, Rio Paranaíba, Minas Gerais, Brazil.
| | - Martha E F Almeida
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Rio Paranaíba Campus, Rio Paranaíba, Minas Gerais, Brazil
| |
Collapse
|
24
|
Stratakis N, Golden-Mason L, Margetaki K, Zhao Y, Valvi D, Garcia E, Maitre L, Andrusaityte S, Basagana X, Borràs E, Bustamante M, Casas M, Fossati S, Grazuleviciene R, Haug LS, Heude B, McEachan RR, Meltzer HM, Papadopoulou E, Roumeliotaki T, Robinson O, Sabidó E, Urquiza J, Vafeiadi M, Varo N, Wright J, Vos MB, Hu H, Vrijheid M, Berhane KT, Conti DV, McConnell R, Rosen HR, Chatzi L. In Utero Exposure to Mercury Is Associated With Increased Susceptibility to Liver Injury and Inflammation in Childhood. Hepatology 2021; 74:1546-1559. [PMID: 33730435 PMCID: PMC8446089 DOI: 10.1002/hep.31809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of liver disease in children. Mercury (Hg), a ubiquitous toxic metal, has been proposed as an environmental factor contributing to toxicant-associated fatty liver disease. APPROACH AND RESULTS We investigated the effect of prenatal exposure to Hg on childhood liver injury by combining epidemiological results from a multicenter mother-child cohort with complementary in vitro experiments on monocyte cells that are known to play a key role in liver immune homeostasis and NAFLD. We used data from 872 mothers and their children (median age, 8.1 years; interquartile range [IQR], 6.5-8.7) from the European Human Early-Life Exposome cohort. We measured Hg concentration in maternal blood during pregnancy (median, 2.0 μg/L; IQR, 1.1-3.6). We also assessed serum levels of alanine aminotransferase (ALT), a common screening tool for pediatric NAFLD, and plasma concentrations of inflammation-related cytokines in children. We found that prenatal Hg exposure was associated with a phenotype in children that was characterized by elevated ALT (≥22.1 U/L for females and ≥25.8 U/L for males) and increased concentrations of circulating IL-1β, IL-6, IL-8, and TNF-α. Consistently, inflammatory monocytes exposed in vitro to a physiologically relevant dose of Hg demonstrated significant up-regulation of genes encoding these four cytokines and increased concentrations of IL-8 and TNF-α in the supernatants. CONCLUSIONS These findings suggest that developmental exposure to Hg can contribute to inflammation and increased NAFLD risk in early life.
Collapse
Affiliation(s)
- Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lucy Golden-Mason
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Katerina Margetaki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Erika Garcia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Léa Maitre
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra, Barcelona, Spain,Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mariona Bustamante
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Maribel Casas
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Serena Fossati
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | | | | | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Rosemary R.C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Oliver Robinson
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra, Barcelona, Spain,Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Urquiza
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Nerea Varo
- Laboratorio de Bioquímica, Clínica Universidad de Navarra, Pamplona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Miriam B. Vos
- Department of Pediatrics, School of Medicine and Nutrition Health Sciences, Emory University, Atlanta, GA,Children’s Healthcare of Atlanta, Atlanta, GA
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martine Vrijheid
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Kiros T. Berhane
- Mailman School of Public Health, Columbia University, New York, NY
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hugo R. Rosen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
25
|
Novel Facets of the Liver Transcriptome Are Associated with the Susceptibility and Resistance to Lipid-Related Metabolic Disorders in Periparturient Holstein Cows. Animals (Basel) 2021; 11:ani11092558. [PMID: 34573524 PMCID: PMC8470208 DOI: 10.3390/ani11092558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Energy and nutrient demands of the early lactation period can result in the development of metabolic disorders, such as ketosis and fatty liver, in dairy cows. Variability in the incidence of these disorders suggests that some cows have an ability to adapt. The objective of this study was to discover differences in liver gene expression that are associated with a cow’s susceptibility (disposition to disorder during typical conditions) or resistance (disposition to disorder onset and severity when presented a challenge) to metabolic disorders. Cows in a control treatment and a ketosis induction protocol treatment were retrospectively grouped into susceptibility and resistance groups, respectively, by a machine learning algorithm using lipid biomarker concentrations. Whole-transcriptome RNA sequencing was performed on liver samples from these cows. More susceptible cows had lower expression of glutathione metabolism genes, while less resistant cows had greater expression of eicosanoid-metabolism-related genes. Additionally, differentially expressed genes suggested a role for immune-response-related genes in conferring susceptibility and resistance to metabolic disorders. The overall inferred metabolism suggests that responses to oxidative stress may determine susceptibility and resistance to metabolic disorders, with novel implications for immunometabolism. Abstract Lipid-related metabolic disorders (LRMD) are prevalent in early lactation dairy cows, and have detrimental effects on productivity and health. Our objectives were to identify cows resistant or susceptible to LRMD using a ketosis induction protocol (KIP) to discover differentially expressed liver genes and metabolic pathways associated with disposition. Clustering cows based on postpartum lipid metabolite concentrations within dietary treatments identified cows more or less susceptible (MS vs. LS) to LRMD within the control treatment, and more or less resistant (MR vs. LR) within the KIP treatment. Whole-transcriptome RNA sequencing was performed on liver samples (−28, +1, and +14 days relative to calving) to assess differential gene and pathway expression (LS vs. MS; MR vs. LR; n = 3 cows per cluster). Cows within the MS and LR clusters had evidence of greater blood serum β-hydroxybutyrate concentration and liver triglyceride content than the LS and MR clusters, respectively. The inferred metabolism of differentially expressed genes suggested a role of immune response (i.e., interferon-inducible proteins and major histocompatibility complex molecules). Additionally, unique roles for glutathione metabolism and eicosanoid metabolism in modulating susceptibility and resistance, respectively, were implicated. Overall, this research provides novel insight into the role of immunometabolism in LRMD pathology, and suggests the potential for unique control points for LRMD progression and severity.
Collapse
|
26
|
Abstract
Helicobacter pylori is the most prevalent infection worldwide, while non-alcoholic fatty liver disease emerged as the most frequent liver disease. The common occurrence can be either by chance or due to certain pathogenetic factors. Epidemiologic studies revealed that the risk of non-alcoholic liver disease is increased in patients infected with Helicobacter pylori. DNA fragments of Helicobacter pylori were rarely identified in human samples of liver carcinoma and fatty liver. Helicobacter pylori could influence the development of non-alcoholic fatty liver either by hormonal (ghrelin? gastrin? insulin?), or by effect of pro-inflammatory cytokines (interleukin 1 and 8, tumor necrosis factor ɑ, interferon ɣ) and by changes of gut microbiome as well. Probiotic supplementation could improve some clinical parameters of non-alcoholic fatty liver disease and eradication rates of Helicobacter pylori. Regimens used for eradication can be safely administered, although non-alcoholic fatty liver increases the risk of drug-induced liver damage. Controlled studies of the effect of eradication on the development and progression of non-alcoholic fatty liver are warranted.
Collapse
Affiliation(s)
- György M Buzás
- Department of Gastroenterology, Ferencváros Health Center, Budapest, Hungary -
| |
Collapse
|
27
|
Tarantino G, Citro V, Cataldi M. Findings from Studies Are Congruent with Obesity Having a Viral Origin, but What about Obesity-Related NAFLD? Viruses 2021; 13:1285. [PMID: 34372491 PMCID: PMC8310150 DOI: 10.3390/v13071285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Infection has recently started receiving greater attention as an unusual causative/inducing factor of obesity. Indeed, the biological plausibility of infectobesity includes direct roles of some viruses to reprogram host metabolism toward a more lipogenic and adipogenic status. Furthermore, the probability that humans may exchange microbiota components (virome/virobiota) points out that the altered response of IFN and other cytokines, which surfaces as a central mechanism for adipogenesis and obesity-associated immune suppression, is due to the fact that gut microbiota uphold intrinsic IFN signaling. Last but not least, the adaptation of both host immune and metabolic system under persistent viral infections play a central role in these phenomena. We hereby discuss the possible link between adenovirus and obesity-related nonalcoholic fatty liver disease (NAFLD). The mechanisms of adenovirus-36 (Ad-36) involvement in hepatic steatosis/NAFLD consist in reducing leptin gene expression and insulin sensitivity, augmenting glucose uptake, activating the lipogenic and pro-inflammatory pathways in adipose tissue, and increasing the level of macrophage chemoattractant protein-1, all of these ultimately leading to chronic inflammation and altered lipid metabolism. Moreover, by reducing leptin expression and secretion Ad-36 may have in turn an obesogenic effect through increased food intake or decreased energy expenditure via altered fat metabolism. Finally, Ad-36 is involved in upregulation of cAMP, phosphatidylinositol 3-kinase, and p38 signaling pathways, downregulation of Wnt10b expression, increased expression of CCAAT/enhancer binding protein-beta, and peroxisome proliferator-activated receptor gamma 2 with consequential lipid accumulation.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, 80131 Napoli, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore (Sa), 84014 Nocera Inferiore, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, “Federico II” University of Naples, 80131 Napoli, Italy;
| |
Collapse
|
28
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
29
|
Eslam M, Sanyal AJ, George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020; 158:1999-2014.e1. [PMID: 32044314 DOI: 10.1053/j.gastro.2019.11.312] [Citation(s) in RCA: 2125] [Impact Index Per Article: 425.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 12/02/2022]
Abstract
Fatty liver associated with metabolic dysfunction is common, affects a quarter of the population, and has no approved drug therapy. Although pharmacotherapies are in development, response rates appear modest. The heterogeneous pathogenesis of metabolic fatty liver diseases and inaccuracies in terminology and definitions necessitate a reappraisal of nomenclature to inform clinical trial design and drug development. A group of experts sought to integrate current understanding of patient heterogeneity captured under the acronym nonalcoholic fatty liver disease (NAFLD) and provide suggestions on terminology that more accurately reflects pathogenesis and can help in patient stratification for management. Experts reached consensus that NAFLD does not reflect current knowledge, and metabolic (dysfunction) associated fatty liver disease "MAFLD" was suggested as a more appropriate overarching term. This opens the door for efforts from the research community to update the nomenclature and subphenotype the disease to accelerate the translational path to new treatments.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Arun J Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
30
|
The IFNL4 Gene Is a Noncanonical Interferon Gene with a Unique but Evolutionarily Conserved Regulation. J Virol 2020; 94:JVI.01535-19. [PMID: 31776283 DOI: 10.1128/jvi.01535-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023] Open
Abstract
Interferon lambda 4 (IFN-λ4) is a recently identified enigmatic member of the interferon (IFN) lambda family. Genetic data suggest that the IFNL4 gene acts in a proviral and anti-inflammatory manner in patients. However, the protein is indistinguishable in vitro from the other members of the interferon lambda family. We have investigated the gene regulation of IFNL4 in detail and found that it differs radically from that of canonical antiviral interferons. Being induced by viral infection is a defining characteristic of interferons, but viral infection or overexpression of members of the interferon regulatory factor (IRF) family of transcription factors only leads to a minute induction of IFNL4 This behavior is evolutionarily conserved and can be reversed by inserting a functional IRF3 binding site into the IFNL4 promoter. Thus, the regulation of the IFNL4 gene is radically different and might explain some of the atypical phenotypes associated with the IFNL4 gene in humans.IMPORTANCE Recent genetic evidence has highlighted how the IFNL4 gene acts in a counterintuitive manner, as patients with a nonfunctional IFNL4 gene exhibit increased clearance of hepatitis C virus (HCV) but also increased liver inflammation. This suggests that the IFNL4 gene acts in a proviral and anti-inflammatory manner. These surprising but quite clear genetic data have prompted an extensive examination of the basic characteristics of the IFNL4 gene and its gene product, interferon lambda 4 (IFN-λ4). We have investigated the expression of the IFNL4 gene and found it to be poorly induced by viral infections. A thorough investigation of the IFNL4 promoter revealed a highly conserved and functional promoter, but also one that lacks the defining characteristic of interferons (IFNs), i.e., the ability to be effectively induced by viral infections. We suggest that the unique function of the IFNL4 gene is related to its noncanonical transcriptional regulation.
Collapse
|
31
|
Huang Z, Wu L, Zhang J, Sabri A, Wang S, Qin G, Guo C, Wen H, Du B, Zhang D, Kong L, Tian X, Yao R, Li Y, Liang C, Li P, Wang Z, Guo J, Li L, Dong J, Zhang Y. Dual Specificity Phosphatase 12 Regulates Hepatic Lipid Metabolism Through Inhibition of the Lipogenesis and Apoptosis Signal-Regulating Kinase 1 Pathways. Hepatology 2019; 70:1099-1118. [PMID: 30820969 PMCID: PMC6850665 DOI: 10.1002/hep.30597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide. Due to the growing economic burden of NAFLD on public health, it has become an emergent target for clinical intervention. DUSP12 is a member of the dual specificity phosphatase (DUSP) family, which plays important roles in brown adipocyte differentiation, microbial infection, and cardiac hypertrophy. However, the role of DUSP12 in NAFLD has yet to be clarified. Here, we reveal that DUSP12 protects against hepatic steatosis and inflammation in L02 cells after palmitic acid/oleic acid treatment. We demonstrate that hepatocyte specific DUSP12-deficient mice exhibit high-fat diet (HFD)-induced and high-fat high-cholesterol diet-induced hyperinsulinemia and liver steatosis and decreased insulin sensitivity. Consistently, DUSP12 overexpression in hepatocyte could reduce HFD-induced hepatic steatosis, insulin resistance, and inflammation. At the molecular level, steatosis in the absence of DUSP12 was characterized by elevated apoptosis signal-regulating kinase 1 (ASK1), which mediates the mitogen-activated protein kinase (MAPK) pathway and hepatic metabolism. DUSP12 physically binds to ASK1, promotes its dephosphorylation, and inhibits its action on ASK1-related proteins, JUN N-terminal kinase, and p38 MAPK in order to inhibit lipogenesis under high-fat conditions. Conclusion: DUSP12 acts as a positive regulator in hepatic steatosis and offers potential therapeutic opportunities for NAFLD.
Collapse
Affiliation(s)
- Zhen Huang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Lei‐Ming Wu
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jie‐Lei Zhang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPA
| | - Shou‐Jun Wang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Gui‐Jun Qin
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Chang‐Qing Guo
- Gastroenterology Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Hong‐Tao Wen
- Gastroenterology Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Bin‐Bin Du
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Dian‐Hong Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling‐Yao Kong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xin‐Yu Tian
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ya‐Peng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Peng‐Cheng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zheng Wang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jin‐Yan Guo
- Department of Rheumatology and Immunologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jian‐Zeng Dong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yan‐Zhou Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| |
Collapse
|