1
|
Zouali M. Swaying the advantage: multifaceted functions of inflammasomes in adaptive immunity. FEBS J 2025; 292:1817-1832. [PMID: 38922787 DOI: 10.1111/febs.17204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Eukaryotic cells are equipped with cytoplasmic sensors that recognize diverse pathogen- or danger-associated molecular patterns. In cells of the myeloid lineage, activation of these sensors leads to the assembly of a multimeric protein complex, called the inflammasome, that culminates in the production of inflammatory cytokines and pyroptosis. Recently, investigation of the inflammasomes in lymphocytes led to the discovery of functional pathways that were initially believed to be confined to the innate arm of the immune system. Thus, the adapter protein apoptosis-associated speck-like protein containing a CARD (ASC) was documented to play a critical role in antigen uptake by dendritic cells, and regulation of T- and B-cell motility at several stages, and absent in melanoma 2 (AIM2) was found to act as a modulator of regulatory T-cell differentiation. Remarkably, NLRP3 was demonstrated to act as a transcription factor that controls Th2 cell polarization, and as a negative regulator of regulatory T-cell differentiation by limiting Foxp3 expression. In B lymphocytes, NLRP3 plays a role in the transcriptional network that regulates B-cell development and homing, and its activation is essential for germinal center formation and maturation of high-affinity antibody responses. Such recently discovered inflammasome-mediated functions in T and B lymphocytes offer multiple cross-talk opportunities for the innate and adaptive arms of the immune system. A better understanding of the dialog between inflammasomes and intracellular components could be beneficial for therapeutic purposes in restoring immune homeostasis and mitigating inflammation in a wide range of disorders.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Xie ZF, Liu HM, Zhao JF, Gao Y, Zhao YL, Zheng JY, Pei XW, Zhang N, Tian G. AMD1, a cardiotoxicity target for Maduramicin. BMC Pharmacol Toxicol 2025; 26:55. [PMID: 40069794 PMCID: PMC11895246 DOI: 10.1186/s40360-025-00897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The aim of this study was to investigate AMD1 cardiotoxicity function for Maduramicin (Mad). METHODS SD rats were divided into control (Control) group and Mad treatment (3.5 mg/kg) group (Mad). After treatment with Mad for seven days, the levels of LDH and CK-MB in serum were detected, H&E staining and TUNEL staining were performed. In vitro, 1.0 μm Mad was used for the subsequently experiment, observing cell apoptosis from Flow cytometry. Caspase-3 and AMD1 were detected in Western blotting. Flow cytometry and Western blotting were also performed after use of siRNA-AMD1-1. Then, analysis AMD1 potential function in cardiotoxicity from bioinformatics techniques including GO, KEGG, PPI, immune infiltration and molecular docking. RESULT Maduramicin has myocardial toxic effects in vivo and vitro, which with AMD1 raised. When AMD1 was knocked down, toxic effects of Mad were alleviated. Apoptosis, proliferation and inflammation were the major pathophysiological changes in myocardial apoptosis process with AMD1-knockdown. This process involved in IL1A, IL1B, PTGS2, VEGFA, VEGFC and HBEFG, as hub genes related AMD1 cardiotoxicity function for Maduramicin. AMD1 was knocked down, their microenvironment changes: Effector memory CD4 T cell and Natural killer cell were more infiltrated, and Mast cell were less infiltrated. CONCLUSION Mad exerted cardiotoxic effects by upregulating the AMD1 gene, which may be associated with cell apoptosis, proliferation and inflammatory response. AMD1 also had cardiotoxicity function, by the impact of both myocardial cells and the microenvironment they live.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Han-Meng Liu
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Fan Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan-Long Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Yue Zheng
- Stomatology Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiao-Wei Pei
- Department of Physical Medicine and Rehabilitation, Linghai Daling River Hospital, Linghai, Liaoning, 121200, China
| | - Ning Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China.
| |
Collapse
|
3
|
Engel M, Shiel EA, Chelko SP. Basic and translational mechanisms in inflammatory arrhythmogenic cardiomyopathy. Int J Cardiol 2024; 397:131602. [PMID: 37979796 DOI: 10.1016/j.ijcard.2023.131602] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial, nonischemic heart disease typically inherited via an autosomal dominant pattern (Nava et al., [1]; Wlodarska et al., [2]). Often affecting the young and athletes, early diagnosis of ACM can be complicated as incomplete penetrance with variable expressivity are common characteristics (Wlodarska et al., [2]; Corrado et al., [3]). That said, of the five desmosomal genes implicated in ACM, pathogenic variants in desmocollin-2 (DSC2) and desmoglein-2 (DSG2) have been discovered in both an autosomal-recessive and autosomal-dominant pattern (Wong et al., [4]; Qadri et al., [5]; Chen et al., [6]). Originally known as arrhythmogenic right ventricular dysplasia (ARVD), due to its RV prevalence and manifesting in the young, the disease was first described in 1736 by Giovanni Maria Lancisi in his book "De Motu Cordis et Aneurysmatibus" (Lancisi [7]). However, the first comprehensive clinical description and recognition of this dreadful disease was by Guy Fontaine and Frank Marcus in 1982 (Marcus et al., [8]). These two esteemed pathologists evaluated twenty-two (n = 22/24) young adult patients with recurrent ventricular tachycardia (VT) and RV dysplasia (Marcus et al., [8]). Initially, ARVD was thought to be the result of partial or complete congenital absence of ventricular myocardium during embryonic development (Nava et al., [9]). However, further research into the clinical and pathological manifestations revealed acquired progressive fibrofatty replacement of the myocardium (McKenna et al., [10]); and, in 1995, ARVD was classified as a primary cardiomyopathy by the World Health Organization (Richardson et al., [11]). Thus, now classifying ACM as a cardiomyopathy (i.e., ARVC) rather than a dysplasia (i.e., ARVD). Even more recently, ARVC has shifted from its recognition as a primarily RV disease (i.e., ARVC) to include left-dominant (i.e., ALVC) and biventricular subtypes (i.e., ACM) as well (Saguner et al., [12]), prompting the use of the more general term arrhythmogenic cardiomyopathy (ACM). This review aims to discuss pathogenesis, clinical and pathological phenotypes, basic and translational research on the role of inflammation, and clinical trials aimed to prevent disease onset and progression.
Collapse
Affiliation(s)
- Morgan Engel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America; Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, United States of America
| | - Emily A Shiel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
| | - Stephen P Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
4
|
Nikaein N, Tuerxun K, Cedersund G, Eklund D, Kruse R, Särndahl E, Nånberg E, Thonig A, Repsilber D, Persson A, Nyman E. Mathematical models disentangle the role of IL-10 feedbacks in human monocytes upon proinflammatory activation. J Biol Chem 2023; 299:105205. [PMID: 37660912 PMCID: PMC10556785 DOI: 10.1016/j.jbc.2023.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Inflammation is one of the vital mechanisms through which the immune system responds to harmful stimuli. During inflammation, proinflammatory and anti-inflammatory cytokines interplay to orchestrate fine-tuned and dynamic immune responses. The cytokine interplay governs switches in the inflammatory response and dictates the propagation and development of the inflammatory response. Molecular pathways underlying the interplay are complex, and time-resolved monitoring of mediators and cytokines is necessary as a basis to study them in detail. Our understanding can be advanced by mathematical models that enable to analyze the system of interactions and their dynamical interplay in detail. We, therefore, used a mathematical modeling approach to study the interplay between prominent proinflammatory and anti-inflammatory cytokines with a focus on tumor necrosis factor and interleukin 10 (IL-10) in lipopolysaccharide-primed primary human monocytes. Relevant time-resolved data were generated by experimentally adding or blocking IL-10 at different time points. The model was successfully trained and could predict independent validation data and was further used to perform simulations to disentangle the role of IL-10 feedbacks during an acute inflammatory event. We used the insight to obtain a reduced predictive model including only the necessary IL-10-mediated feedbacks. Finally, the validated reduced model was used to predict early IL-10-tumor necrosis factor switches in the inflammatory response. Overall, we gained detailed insights into fine-tuning of inflammatory responses in human monocytes and present a model for further use in studying the complex and dynamic process of cytokine-regulated acute inflammation.
Collapse
Affiliation(s)
- Niloofar Nikaein
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Kedeye Tuerxun
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Gunnar Cedersund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Daniel Eklund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Robert Kruse
- Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Department of Clinical Research Laboratory, Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eewa Nånberg
- Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Faculty of Medicine and Health, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Antje Thonig
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alexander Persson
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Talley S, Rademacher DJ, Campbell EM. Inflammasome activation occurs in CD4 + and CD8 + T cells during graft-versus-host disease. Cell Death Dis 2023; 14:632. [PMID: 37749127 PMCID: PMC10519954 DOI: 10.1038/s41419-023-06138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
A severe complication of hematopoietic stem cell transplantation is graft-versus-host disease (GvHD), a reaction that occurs following the transfer of donor immune cells (the graft) into an allogeneic host. Transplanted cells recognize host alloantigens as foreign, resulting in the activation of donor T cells and migration of these pathological cells into host tissues. In this study, we found that caspase-1 is activated in alloreactive murine and human CD4+ and CD8+ T cells early during acute GvHD (aGvHD). The presence of inflammasome-bound active caspase-1 (p33) and ASC-speck formation confirmed inflammasome activation in these cells. We further measured gasdermin D (GSDMD) cleavage and IL-18 secretion from alloreactive T cells ex vivo. Isolated T cells with high levels of active caspase-1 had a strong inflammatory transcriptional signature and a metabolic phenotype similar to inflammatory myeloid cells, including the upregulation of proinflammatory cytokines and metabolic switch from oxidative phosphorylation to aerobic glycolysis. We also observed oxidative stress, mitochondrial dysfunction, and cell death phenotypes consistent with inflammatory cell death in alloreactive T cells. For the first time, this study characterizes caspase-1 activation in transplanted T cells during aGvHD, using mouse and human models, adding to a body of literature supporting inflammasome function in cells of the adaptive immune system.
Collapse
Affiliation(s)
- Sarah Talley
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - David J Rademacher
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
6
|
Mestre-Durán C, Martín-Cortázar C, García-Solís B, Pernas A, Pertíñez L, Galán V, Sisinni L, Clares-Villa L, Navarro-Zapata A, Al-Akioui K, Escudero A, Ferreras C, Pérez-Martínez A. Ruxolitinib does not completely abrogate the functional capabilities of TLR4/9 ligand-activated NK cells. Front Immunol 2023; 13:1045316. [PMID: 36685552 PMCID: PMC9851469 DOI: 10.3389/fimmu.2022.1045316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Natural killer (NK) cells are lymphocytes from the innate immune system part of the first defense barrier against infected and transformed cells, representing 5%-15% of peripheral blood lymphocytes. The cytotoxic capacity of NK cells is controlled by a balance between inhibitory and activating NK receptors expressed on their surface, which recognize and interact with the ligands on stressed cells. The cytokines involved in NK cell activation, proliferation, survival, and cytotoxicity are signaled mainly through the Janus kinase and signal transducer and activator of transcription proteins (JAK/STAT) pathway. NK cells are also activated in response to pathogens through Toll-like receptors (TLRs) expressed on their surface. Ruxolitinib is a specific JAK1/2 inhibitor approved for treating myelofibrosis and for steroid-refractory acute and chronic graft-versus-host disease (SR-GvHD). Methods Purified NK cells from healthy donors were stimulated with two TOLL-like receptor ligands, LPS and CpG, in the presence of different concentrations of Ruxolitinib. Results This study showed the effects of ruxolitinib on TLR4 and TLR9 ligand-activated NK cells from healthy donors. Ruxolitinib did not completely inhibit STAT3 phosphorylation and had a moderate effect on NK cell cytokine activation via the TLR pathway. Only the highest doses of ruxolitinib led to a decrease in the pro-inflammatory cytokines tumor necrosis factor α, interferon-γ, interleukin-6, and interleukin-1β. The cytotoxic capacity of stimulated NK cells versus K562, SEM, and MV-4-11 cell lines was reduced by increasing doses of ruxolitinib, but it was not completely abolished and we observed no major changes in degranulation capacity. Phenotypic changes were observed in activated NK cells in the presence of ruxolitinib. In a small cohort of pediatric patients treated with ruxolitinib for SR-GvHD, we observed no decrease in NK cell counts; however, further prospective studies with larger cohorts are necessary to confirm this finding. Discussion In summary, our results showed that the functional capabilities and phenotype of NK cells activated through TLR4/9 agonists were not completely abolished by the inhibition of the JAK-STAT pathway by ruxolitinib.
Collapse
Affiliation(s)
- Carmen Mestre-Durán
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Carla Martín-Cortázar
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Alicia Pernas
- Department of Genetics, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Lidia Pertíñez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Víctor Galán
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
| | - Laura Clares-Villa
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Karima Al-Akioui
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Adela Escudero
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Department of Genetics, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Zheng PF, Zou QC, Chen LZ, Liu P, Liu ZY, Pan HW. Identifying patterns of immune related cells and genes in the peripheral blood of acute myocardial infarction patients using a small cohort. J Transl Med 2022; 20:321. [PMID: 35864510 PMCID: PMC9306178 DOI: 10.1186/s12967-022-03517-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-related genes involved in AMI. Methods CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key modules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key immune-modules. The protein–protein interaction (PPI) network was constructed and Molecular Complex Detection (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an important role in the occurrence and progression of AMI. Results The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta (γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identified, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI. Conclusions Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are key immune-related genes that are potential novel targets for the prevention and treatment of AMI. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03517-1.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
| | - Qiong-Chao Zou
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
| | - Lu-Zhu Chen
- Department of Cardiology, The Central Hospital of ShaoYang, No.36 QianYuan lane, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Peng Liu
- Department of Cardiology, The Central Hospital of ShaoYang, No.36 QianYuan lane, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Zheng-Yu Liu
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.
| | - Hong-Wei Pan
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.
| |
Collapse
|
8
|
Cui L, Shao X, Sun W, Zheng F, Dong J, Li J, Wang H, Li J. Anti-inflammatory effects of progesterone through NF-κB and MAPK pathway in lipopolysaccharide- or Escherichia coli-stimulated bovine endometrial stromal cells. PLoS One 2022; 17:e0266144. [PMID: 35476705 PMCID: PMC9045630 DOI: 10.1371/journal.pone.0266144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Postpartum uterine infection in dairy cows is commonly caused by pathogenic bacteria such as Escherichia coli (E. coli). Progesterone elicits immunosuppressive function within bovine endometrium, and has been suggested to be related to postpartum uterine infection. Endometrial stroma is exposed to bacteria due to the disruption of epithelium during parturition, but the effect and mechanism of progesterone on innate immune response of stromal cells has not been reported. This study evaluated the impact of progesterone on inflammatory response of primary endometrial stromal cells stimulated by lipopolysaccharide or heat-killed E. coli. Quantitative PCR analysis revealed that progesterone repressed mRNA induction of IL1B, IL6, TNF, CXCL8, NOS2, and PTGS2 in stromal cells in response to lipopolysaccharide or E. coli challenge. Consistently, Western blot and immunofluorescence staining results showed that progesterone suppressed lipopolysaccharide- or E. coli-induced MAPK and NF-κB activations characterized with decreased phosphorylations of ERK1/2, JNK, P38, IκBα, and P65, and inhibition of P65 nuclear translocation. In unstimulated stromal cells, progesterone alone did not affect the mRNA transcription for IL6, TNF, CXCL8, NOS2, and PTGS2, and the signaling cascade of MAPK and NF-κB, but decreased IL1B mRNA expression. These results revealed that the anti-inflammatory effect of progesterone in lipopolysaccharide- or E. coli-challenged endometrial stromal cells was probably mediated through MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
| | - Xinyu Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
| | - Wenye Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
| | - Fangling Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- * E-mail: (HW); (JL)
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- * E-mail: (HW); (JL)
| |
Collapse
|
9
|
Chen L, Mei Z, Guo W, Ding S, Huang T, Cai YD. Recognition of Immune Cell Markers of COVID-19 Severity with Machine Learning Methods. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6089242. [PMID: 35528178 PMCID: PMC9073549 DOI: 10.1155/2022/6089242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 is hypothesized to be linked to the host's excessive inflammatory immunological response to SARS-CoV-2 infection, which is regarded to be a major factor in disease severity and mortality. Numerous immune cells play a key role in immune response regulation, and gene expression analysis in these cells could be a useful method for studying disease states, assessing immunological responses, and detecting biomarkers. Here, we developed a machine learning procedure to find biomarkers that discriminate disease severity in individual immune cells (B cell, CD4+ cell, CD8+ cell, monocyte, and NK cell) using single-cell gene expression profiles of COVID-19. The gene features of each profile were first filtered and ranked using the Boruta feature selection method and mRMR, and the resulting ranked feature lists were then fed into the incremental feature selection method to determine the optimal number of features with decision tree and random forest algorithms. Meanwhile, we extracted the classification rules in each cell type from the optimal decision tree classifiers. The best gene sets discovered in this study were analyzed by GO and KEGG pathway enrichment, and some important biomarkers like TLR2, ITK, CX3CR1, IL1B, and PRDM1 were validated by recent literature. The findings reveal that the optimal gene sets for each cell type can accurately classify COVID-19 disease severity and provide insight into the molecular mechanisms involved in disease progression.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Zi Mei
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Ohashi A, Uemura Y, Yoshimori M, Wada N, Imadome KI, Yudo K, Koyama T, Shimizu N, Nishio M, Arai A. The Plasma Level of Interleukin-1β Can Be a Biomarker of Angiopathy in Systemic Chronic Active Epstein-Barr Virus Infection. Front Microbiol 2022; 13:874998. [PMID: 35464987 PMCID: PMC9019545 DOI: 10.3389/fmicb.2022.874998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
Systemic chronic active Epstein-Barr virus infection (sCAEBV) is an EBV-positive T- or NK-cell neoplasm revealing persistent systemic inflammation. Twenty-five percent of sCAEBV patients accompany angiopathy. It is crucial to clarify the mechanisms of angiopathy development in sCAEBV because angiopathy is one of the main causes of death. Interleukin-1β (IL-1β) is reported to be involved in angiopathy onset. We investigated if IL-1β plays a role as the inducer of angiopathy of sCAEBV. We detected elevated IL-1β levels in four out of 17 sCAEBV patient's plasma. Interestingly, three out of the four had clinically associated angiopathy. None of the other patients with undetectable level of IL-1β had angiopathy. In all patients with high plasma levels of IL-1β and vascular lesions, EBV-infected cells were CD4-positive T cells. In one patient with high plasma IL-1β, the level of IL-1β mRNA of the monocytes was 17.2 times higher than the level of the same patient's EBV-infected cells in peripheral blood. In Ea.hy926 cells, which are the models of vascular endothelial cells, IL-1β inhibited the proliferation and induced the surface coagulation activity. IL-1β is a potent biomarker and a potent therapeutic target to treat sCAEBV accompanying angiopathy.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan.,Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yu Uemura
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Mayumi Yoshimori
- Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naomi Wada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takatoshi Koyama
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Norio Shimizu
- Center of Stem Cell and Regenerative Medicine, Advanced Multidisciplinary Research Cluster, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miwako Nishio
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayako Arai
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan.,Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
11
|
Ahmed SM, Nasr MA, Elshenawy SE, Hussein AE, El-Betar AH, Mohamed RH, El-Badri N. BCG vaccination and the risk of COVID 19: A possible correlation. Virology 2022; 565:73-81. [PMID: 34742127 PMCID: PMC8552046 DOI: 10.1016/j.virol.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 01/04/2023]
Abstract
Bacillus Calmette-Guérin (BCG) vaccine is currently used to prevent tuberculosis infection. The vaccine was found to enhance resistance to certain types of infection including positive sense RNA viruses. The current COVID-19 pandemic is caused by positive sense RNA, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A higher mortality rate of COVID-19 patients was reported in countries where BCG vaccination is not routinely administered, when compared to the vaccinated ones. We hypothesized that BCG vaccine may control SARS-CoV2 infection via modulating the monocyte immune response. We analyzed GSE104149 dataset to investigate whether human monocytes of BCG-vaccinated individuals acquire resistance to SARS-CoV-2 infection. Differentially expressed genes obtained from the dataset were used to determine enriched pathways, biological processes, and molecular functions for monocytes post BCG vaccination. Our data show that BCG vaccine promotes a more effective immune response of monocytes against SARS-CoV2, but probably not sufficient to prevent the infection.
Collapse
Affiliation(s)
- Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Alaa E Hussein
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Ahmed H El-Betar
- Department of Urology, Ahmed Maher Teaching Hospital, Cairo, Egypt
| | | | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt.
| |
Collapse
|
12
|
Panebianco CJ, Dave A, Charytonowicz D, Sebra R, Iatridis JC. Single-cell RNA-sequencing atlas of bovine caudal intervertebral discs: Discovery of heterogeneous cell populations with distinct roles in homeostasis. FASEB J 2021; 35:e21919. [PMID: 34591994 PMCID: PMC8496998 DOI: 10.1096/fj.202101149r] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Back and neck pain are significant healthcare burdens that are commonly associated with pathologies of the intervertebral disc (IVD). The poor understanding of the cellular heterogeneity within the IVD makes it difficult to develop regenerative IVD therapies. To address this gap, we developed an atlas of bovine (Bos taurus) caudal IVDs using single-cell RNA-sequencing (scRNA-seq). Unsupervised clustering resolved 15 unique clusters, which we grouped into the following annotated partitions: nucleus pulposus (NP), outer annulus fibrosus (oAF), inner AF (iAF), notochord, muscle, endothelial, and immune cells. Analyzing the pooled gene expression profiles of the NP, oAF, and iAF partitions allowed us to identify novel markers for NP (CP, S100B, H2AC18, SNORC, CRELD2, PDIA4, DNAJC3, CHCHD7, and RCN2), oAF (IGFBP6, CTSK, LGALS1, and CCN3), and iAF (MGP, COMP, SPP1, GSN, SOD2, DCN, FN1, TIMP3, WDR73, and GAL) cells. Network analysis on subpopulations of NP and oAF cells determined that clusters NP1, NP2, NP4, and oAF1 displayed gene expression profiles consistent with cell survival, suggesting these clusters may uniquely support viability under the physiological stresses of the IVD. Clusters NP3, NP5, oAF2, and oAF3 expressed various extracellular matrix (ECM)-associated genes, suggesting their role in maintaining IVD structure. Lastly, transcriptional entropy and pseudotime analyses found that clusters NP3 and NP1 had the most stem-like gene expression signatures of the NP partition, implying these clusters may contain IVD progenitor cells. Overall, results highlight cell type diversity within the IVD, and these novel cell phenotypes may enhance our understanding of IVD development, homeostasis, degeneration, and regeneration.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arpit Dave
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Sema4, a Mount Sinai venture, Stamford, CT
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Linder A, Hornung V. Inflammasomes in T cells. J Mol Biol 2021; 434:167275. [PMID: 34599941 DOI: 10.1016/j.jmb.2021.167275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
The concept of non-self recognition through germ-line encoded pattern recognition receptors (PRRs) has been well-established for professional innate immune cells. However, there is growing evidence that also T cells employ PRRs and associated effector functions in response to certain non-self or damage signals. Inflammasomes constitute a special subgroup of PRRs that is hardwired to a signaling cascade that culminates in the activation of caspase-1. Active caspase-1 processes pro-inflammatory cytokines of the IL-1 family and also triggers a lytic programmed cell death pathway known as pyroptosis. An increasing body of literature suggests that inflammasomes are also functional in T cells. On the one hand, conventional inflammasome signaling cascades have been described that operate similarly to pathways characterized in innate immune cells. On the other hand, unconventional functions have been suggested, in which certain inflammasome components play a role in unrelated processes, such as cell fate decisions and functions of T helper cells. In this review, we discuss our current knowledge on inflammasome functions in T cells and the biological implications of these findings for health and disease.
Collapse
Affiliation(s)
- Andreas Linder
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany. https://twitter.com/AndreasLinder7
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
14
|
Shelyakin PV, Lupyr KR, Egorov ES, Kofiadi IA, Staroverov DB, Kasatskaya SA, Kriukova VV, Shagina IA, Merzlyak EM, Nakonechnaya TO, Latysheva EA, Manto IA, Khaitov MR, Lukyanov SA, Chudakov DM, Britanova OV. Naïve Regulatory T Cell Subset Is Altered in X-Linked Agammaglobulinemia. Front Immunol 2021; 12:697307. [PMID: 34489944 PMCID: PMC8417104 DOI: 10.3389/fimmu.2021.697307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia R Lupyr
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Kofiadi
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valeriia V Kriukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Irina A Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana O Nakonechnaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Irina A Manto
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Musa R Khaitov
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Sergey A Lukyanov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Zhang Y, Ideguchi H, Aoyagi H, Yamashiro K, Yamamoto T, Nishibori M, Takashiba S. Malnutrition delayed wound healing after tooth extraction by HMGB1-related prolonged inflammation. Int Immunopharmacol 2021; 96:107772. [PMID: 34162142 DOI: 10.1016/j.intimp.2021.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Malnutrition causes prolonged inflammation, resulting in delayed wound healing. High mobility group box-1 (HMGB1) is a damage-associated molecular pattern that is present in the nuclei of macrophages and is secreted into the extracellular milieu in response to stimuli. It stimulates the production of interleukin-1β (IL-1β) through the receptors for advanced glycation end products (RAGE), inducing an inflammatory response, which is an essential response to initiate wound healing. We hypothesized that malnutrition may interfere with this cascade, causing abnormal inflammation and ultimately delaying wound healing. We used tooth-extracted mice with malnutrition fed with low-casein diet for two weeks. On days 3 and 7 after tooth extraction, the wound tissue was histologically observed and analyzed for several factors in the inflammation-regeneration lineage, including IL-1β, mesenchymal stem cells, myeloperoxidase activity, HMGB1, macrophage polarization, and adenosine 5-triphosphate (ATP). On day 7, delayed wound healing was observed with the following findings under malnutrition conditions: decreased mRNA expression of genes for regeneration and mesenchymal stem cell (MSC) accumulation, an obvious increase in myeloperoxidase and IL-1β mRNA expression, an increase in HMGB1 levels, and an increase in ATP concentration in tissues with elevated proportion of M2 macrophages. These results suggest that the significantly increased secretion of HMGB1 associated with the upregulated production of ATP and IL-1β secretion via the RAGE pathway may interfere with the resolution of inflammation and wound healing under the state of malnutrition.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Aoyagi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan; Present address: Department of Oral Health, Kobe Tokiwa University, Hyogo, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
16
|
Liu T. miR-937 serves as an inflammatory inhibitor in cigarette smoke extract-induced human bronchial epithelial cells by targeting IL1B and regulating TNF-α/IL-17 signaling pathway. Tob Induc Dis 2021; 19:55. [PMID: 34220411 PMCID: PMC8231861 DOI: 10.18332/tid/138227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION This study aimed to elucidate the biological implication of miR-937 in cigarette smoke extract (CSE)-induced human bronchial epithelial (HBE) cells and to further investigate its possible regulatory mechanism. METHODS Public datasets were downloaded to identify differentially expressed genes and subjected to Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis in chronic obstructive pulmonary disease (COPD). Online prediction site and luciferase reporter assay were applied to determine the target correlation between miR-937 and IL1B. RT-qPCR, Western blot and Enzyme-Linked Immunosorbent Assays (ELISA) analyses were used to evaluate the expressions of indicated molecules. HBE cells were exposed with CSE (20 μg/mL) to construct the in vitro COPD model. Cell proliferation and apoptosis were measured through cell counting kit 8 and Annexin-V/propidium iodide (PI) staining assays. RESULTS IL1B was found to be up-regulated in COPD samples compared with healthy controls and had a high correlation with the TNF and IL-17 pathways according to the data from GSE57148. Moreover, IL1B was predicted to be a target of miR-937, and it was negatively regulated by miR-937. CSE treatment reduced the miR-937 expression, meanwhile decreased the HBE cells proliferation, enhanced cells apoptosis, and elevated the expression of IL-6, IL-17, and TNF-α. Moreover, in the CSE model, upregulation of miR-937 promoted cells viability, restrained cells apoptosis, and decreased levels of IL-6, IL-17, and TNF-α were noted, which could be abolished by overexpression IL1B. In contrast, inhibiting miR-937 impeded cells proliferation, promoted cells apoptosis and elevated levels of IL-6, IL-17 and TNF-α, which could be rescued by IL1B-knockdown in CSE-induced HBEs. CONCLUSIONS These findings suggest that miR-937 plays a protective role on the HBEs after CSE damage, which may be achieved via targeting IL1B and inhibiting the TNF-α/IL-17 signaling pathway.
Collapse
Affiliation(s)
- Teng Liu
- Department of Respiratory Medicine, Shandong Provincial Chest Hospital, Shandong University, Jinan, China
| |
Collapse
|
17
|
Su A, Guo Y, Tian H, Zhou Y, Li W, Tian Y, Li K, Sun G, Jiang R, Yan F, Kang X. Analysis of miRNA and mRNA reveals core interaction networks and pathways of dexamethasone-induced immunosuppression in chicken bursa of Fabricius. Mol Immunol 2021; 134:34-47. [PMID: 33711668 DOI: 10.1016/j.molimm.2021.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Stress-induced immunosuppression is a serious problem affecting the production value of poultry, but its specific molecular mechanism has not yet been elucidated. We selected 7-day-old Gushi cocks as test animals and successfully established a stress-induced immunosuppression model by injecting 2.0 mg/kg (body weight) dexamethasone (Dex). We then constructed six cDNA libraries and two small RNA libraries of Bursa of Fabricius from the control group and the Dex group. RNA-seq results revealed 21,028 transcripts including 3920 novel transcripts; 500 miRNAs including 68 novel miRNAs were identified. Correlation analysis of miRNA, target genes and mRNA results indicated that the gga-miR-15 family, gga-miR-103-3p, gga-miR-456-3p, and gga-miR-27b-3p, as core differentially expressed miRNAs, may potentially regulate multiple genes which are involved in immune-related pathways; and that the core genes Suppressor of IKBKE 1 (SIKE1) and high mobility group AT-hook 2 (HMGA2) are associated with the miR-17 family (gga-miR-20a-5p, gga-miR-20b-5p, gga-miR-106-5p, and gga-miR-17-5p) and gga-let -7 family (gga-let-7b, gga-let-7i, gga-let-7c-5p, and gga-let-7f-5p). The interaction networks of mRNAs of significantly enrichment pathways and PPI (protein-protein interaction) networks showed that IL6, IL1B, IL8L1, CCL5, SOCS3, SOCS1, ITGB5, GSTA3, SQLE, FDFT1, FN1, IL18, IL10, MAPK11 and MAPK12 are network core nodes and that most of them are strongly associated with immune response. One of the candidate miRNAs, gga-miR-20b-5p, may play an important role in stress-induced immunosuppression. Luciferase assay and over-expression experiments suggested that gga-miR-20b-5p negatively regulated the expression of target gene SIKE1. These results provide better understanding of the mechanism of stress-induced immunosuppression in Gushi chicken bursa, and provide novel targets for subsequent research to improve poultry anti-stress capability.
Collapse
Affiliation(s)
- Aru Su
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yujie Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Huihui Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yanting Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China.
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China.
| | - Kui Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China.
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China.
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China.
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China.
| |
Collapse
|
18
|
Chen Z, Xie X, Jiang N, Li J, Shen L, Zhang Y. CCR5 signaling promotes lipopolysaccharide-induced macrophage recruitment and alveolar developmental arrest. Cell Death Dis 2021; 12:184. [PMID: 33589608 PMCID: PMC7883330 DOI: 10.1038/s41419-021-03464-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of bronchopulmonary dysplasia (BPD), involves inflammatory, mechanisms that are not fully characterized. Here we report that overexpression of C-C chemokine receptor 5 (CCR5) and its ligands is associated with BPD development. Lipopolysaccharide-induced BPD rats have increased CCR5 and interleukin-1β (IL-1β) levels, and decreased alveolarization, while CCR5 or IL-1β receptor antagonist treatments decreased inflammation and increased alveolarization. CCR5 enhances macrophage migration, macrophage infiltration in the lungs, IL-1β levels, lysyl oxidase activity, and alveolar development arrest. CCR5 expression on monocytes, and its ligands in blood samples from BPD infants, are elevated. Furthermore, batyl alcohol supplementation reduced CCR5 expression and IL-1β production in lipopolysaccharide-exposed rat lungs. Moreover, receptor-interacting kinase 3 (RIP3) upstream regulator of CCR5-cultured RIP3−/− macrophages exhibited partly blocked lipopolysaccharide-induced CCR5 expression. We conclude that increased CCR5 expression is a key mechanism in BPD development and represents a novel therapeutic target for treatment.
Collapse
Affiliation(s)
- Ze Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China
| | - Xiaohua Xie
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China
| | - Na Jiang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China
| | - Jianhui Li
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Building No. 5(West Area), No. 280 South Chongqing Road, 200025, Shanghai, China.
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China.
| |
Collapse
|
19
|
Idris AB, Idris EB, Ataelmanan AE, Mohamed AEA, Osman Arbab BM, Ibrahim EAM, Hassan MA. First insights into the molecular basis association between promoter polymorphisms of the IL1B gene and Helicobacter pylori infection in the Sudanese population: computational approach. BMC Microbiol 2021; 21:16. [PMID: 33413117 PMCID: PMC7792167 DOI: 10.1186/s12866-020-02072-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infects nearly half of the world's population with a variation in incidence among different geographic regions. Genetic variants in the promoter regions of the IL1B gene can affect cytokine expression and creates a condition of hypoacidity which favors the survival and colonization of H. pylori. Therefore, the aim of this study was to characterize the polymorphic sites in the 5'- region [-687_ + 297] of IL1B in H. pylori infection using in silico tools. RESULTS A total of five nucleotide variations were detected in the 5'-regulatory region [-687_ + 297] of IL1B which led to the addition or alteration of transcription factor binding sites (TFBSs) or composite regulatory elements (CEs). Genotyping of IL1B - 31 C > T revealed a significant association between -31 T and susceptibility to H. pylori infection in the studied population (P = 0.0363). Comparative analysis showed conservation rates of IL1B upstream [-368_ + 10] region above 70% in chimpanzee, rhesus monkey, a domesticated dog, cow and rat. CONCLUSIONS In H. pylori-infected patients, three detected SNPs (- 338, - 155 and - 31) located in the IL1B promoter were predicted to alter TFBSs and CE, which might affect the gene expression. These in silico predictions provide insight for further experimental in vitro and in vivo studies of the regulation of IL1B expression and its relationship to H. pylori infection. However, the recognition of regulatory motifs by computer algorithms is fundamental for understanding gene expression patterns.
Collapse
Affiliation(s)
- Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Einas Babiker Idris
- Medical Laboratory Specialist, Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | - Amany Eltayib Ataelmanan
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Al-Gazirah, Wad Madani, Sudan
| | | | | | - El-Amin Mohamed Ibrahim
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mohamed A. Hassan
- Department of Bioinformatics, Africa city of technology, Khartoum, Sudan
- Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey
- Department of Translation Bioinformatics, Detavax Biotech, Kayseri, Turkey
| |
Collapse
|
20
|
Transcriptional Regulation of Inflammasomes. Int J Mol Sci 2020; 21:ijms21218087. [PMID: 33138274 PMCID: PMC7663688 DOI: 10.3390/ijms21218087] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are multimolecular complexes with potent inflammatory activity. As such, their activity is tightly regulated at the transcriptional and post-transcriptional levels. In this review, we present the transcriptional regulation of inflammasome genes from sensors (e.g., NLRP3) to substrates (e.g., IL-1β). Lineage-determining transcription factors shape inflammasome responses in different cell types with profound consequences on the responsiveness to inflammasome-activating stimuli. Pro-inflammatory signals (sterile or microbial) have a key transcriptional impact on inflammasome genes, which is largely mediated by NF-κB and that translates into higher antimicrobial immune responses. Furthermore, diverse intrinsic (e.g., circadian clock, metabolites) or extrinsic (e.g., xenobiotics) signals are integrated by signal-dependent transcription factors and chromatin structure changes to modulate transcriptionally inflammasome responses. Finally, anti-inflammatory signals (e.g., IL-10) counterbalance inflammasome genes induction to limit deleterious inflammation. Transcriptional regulations thus appear as the first line of inflammasome regulation to raise the defense level in front of stress and infections but also to limit excessive or chronic inflammation.
Collapse
|
21
|
Gu L, Ni J, Sheng S, Zhao K, Sun C, Wang J. Microarray analysis of long non-coding RNA expression profiles in Marfan syndrome. Exp Ther Med 2020; 20:3615-3624. [PMID: 32855713 PMCID: PMC7444390 DOI: 10.3892/etm.2020.9093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/29/2020] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a crucial role in every aspect of cell biological functions as well as in a variety of diseases, including cardiovascular disease, cancer and nervous system disease. However, the differential expression profiles of lncRNAs in Marfan syndrome (MFS) have not been reported. The aim of the present study was to identify potential target genes behind the pathogenesis of MFS by analyzing microarray profiles of lncRNA in aortic tissues from individuals with MFS and normal aortas (NA). The differentially expressed lncRNA profiles between MFS (n=3) and NA (n=4) tissues were analyzed using microarrays. Bioinformatics analyses were used to further investigate the candidate lncRNAs. Reverse transcription-quantitative (RT-qPCR) was applied to validate the results. In total, the present study identified 294 lncRNAs (245 upregulated and 49 downregulated) and 644 mRNAs (455 upregulated and 189 downregulated) which were differential expressed between MFS and NA tissues (fold change ≥1.5; P<0.05). Gene Ontology enrichment analysis indicated that the differentially expressed mRNAs were involved in cell adhesion, elastic fiber assembly, extracellular matrix (ECM) organization, the response to virus and the inflammatory response. Kyoto Encyclopedia of Gene and Genomes pathway analysis indicated that the differentially expressed mRNAs were mainly associated with focal adhesion, the ECM-receptor interaction, the mitogen-activated protein kinase signaling pathway and the tumor necrosis factor signaling pathway. The lncRNA-mRNA coexpression network analysis further elucidated the interaction between the lncRNAs and mRNAs. A total of five lncRNAs (uc003jka.1, uc003jox.1, X-inactive specific transcript, linc-lysophosphatidic acid receptor 1 and linc-peptidylprolyl isomerase domain and WD repeat containing 1) with the highest degree of coexpression were selected and confirmed using RT-qPCR. In the present study, expression profiles of lncRNA and mRNA in MFS were revealed using microarray analysis. These results provided novel candidates for further investigation of the molecular mechanisms and effective targeted therapies for MFS.
Collapse
Affiliation(s)
- Lizhong Gu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Sunpeng Sheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaixiang Zhao
- Department of Cardiothoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Chengchao Sun
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jue Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
22
|
Li J, Li W, Wang Z, Khalique A, Wang J, Yang M, Ni X, Zeng D, Zhang D, Zeng Y, Luo Q, Jing B, Pan K. Screening of immune-related differentially expressed genes from primary lymphatic organs of broilers fed with probiotic bacillus cereus PAS38 based on suppression subtractive hybridization. PLoS One 2020; 15:e0235476. [PMID: 32609751 PMCID: PMC7329121 DOI: 10.1371/journal.pone.0235476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
To explore the molecular mechanism of the effect of Bacillus cereus PAS38 on the immunity of broilers, sixty 7-day-old broilers were divided into two groups with three replicates. The control group was fed with basal diet, and the treatment group was fed with basal diet containing Bacillus cereus PAS38 1×106 CFU/g. Thymus and bursa of fabricius were taken from two groups of broilers at the age of 42 days, total RNA was extracted, differential gene library was constructed by SSH technology, and immune-related differential genes were screened. Then, we used siRNA to interfere with the expression of some differential genes in the original generation lymphocytes of broiler blood to detect the change of cytokines mRNA expression level. A total of 42 immune-related differentially expressed genes were screened, including 22 up-regulated genes and 20 down-regulated genes. When 7 differentially up-regulated genes associated with enhanced immune function were interfered with in lymphocytes, some immune-promoting cytokines were down-regulated. These results showed that Bacillus cereus PAS38 might up-regulate the expression of JCHAIN, PRDX1, CD3E, CDK6 and other genes in immune organs of broilers, thereby affecting the development of immune organs, the expression of various cytokines and the transduction of immune signals, improving the immune capacity of broilers.
Collapse
Affiliation(s)
- Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Zhenhua Wang
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Junrui Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Miao Yang
- Technology Centre of Chengdu Custom, Chengdu, Sichuan Province, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
23
|
Bannon DI, Bao W, Turner SD, McCain WC, Dennis W, Wolfinger R, Perkins E, Abounader R. Gene expression in mouse muscle over time after nickel pellet implantation. Metallomics 2020; 12:528-538. [PMID: 32065191 DOI: 10.1039/c9mt00289h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The transition metal nickel is used in a wide variety of alloys and medical devices. Nickel can cause a range of toxicities from allergy in humans to tumors when implanted in animals. Several microarray studies have examined nickel toxicity, but so far none have comprehensively profiled expression over an extended period. In this work, male mice were implanted with a single nickel pellet in the muscle of the right leg with the left leg used as a control. At 3 week intervals up to 12 months, nickel concentrations in bioflulids and microarrays of surrounding tissue were used to track gene expression patterns. Pellet biocorrosion resulted in varying levels of systemic nickel over time, with peaks of 600 μg L-1 in serum, while global gene expression was cyclical in nature with immune related genes topping the list of overexpressed genes. IPA and KEGG pathway analyses was used to attribute overall biological function to changes in gene expression levels, supported by GO enrichment analysis. IPA pathways identified sirtuin, mitochondria, and oxidative phosphorylation as top pathways, based predominantly on downregulated genes, whereas immune processes were associated with upregulated genes. Top KEGG pathways identified were lysosome, osteoclast differentiation, and phasgosome. Both pathway approaches identified common immune responses, as well as hypoxia, toll like receptor, and matrix metalloproteinases. Overall, pathway analysis identified a negative impact on energy metabolism, and a positive impact on immune function, in particular the acute phase response. Inside the cell the impacts were on mitochondria and lysosome. New pathways and genes responsive to nickel were identified from the large dataset in this study which represents the first long-term analysis of the effects of chronic nickel exposure on global gene expression.
Collapse
Affiliation(s)
- Desmond I Bannon
- U.S. Army Public Health Centre, Toxicology Directorate, 8988 Willoughby Road, Aberdeen Proving Ground, Maryland 21010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lawson KS, Prasad A, Groopman JE. Methamphetamine Enhances HIV-1 Replication in CD4 + T-Cells via a Novel IL-1β Auto-Regulatory Loop. Front Immunol 2020; 11:136. [PMID: 32117283 PMCID: PMC7025468 DOI: 10.3389/fimmu.2020.00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (Meth) abuse is a worldwide public health problem and contributes to HIV-1 pathobiology and poor adherence to anti-retroviral therapies. Specifically, Meth is posited to alter molecular mechanisms to provide a more conducive environment for HIV-1 replication and spread. Enhanced expression of inflammatory cytokines, such as Interleukin-1β (IL-1β), has been shown to be important for HIV-1 pathobiology. In addition, microRNAs (miRNAs) play integral roles in fine-tuning the innate immune response. Notably, the effects of Meth abuse on miRNA expression are largely unknown. We studied the effects of Meth on IL-1β and miR-146a, a well-characterized member of the innate immune signaling network. We found that Meth induces miR-146a and triggers an IL-1β auto-regulatory loop to modulate innate immune signaling in CD4+ T-cells. We also found that Meth enhances HIV-1 replication via IL-1 signaling. Our results indicate that Meth activates an IL-1β feedback loop to alter innate immune pathways and favor HIV-1 replication. These observations offer a framework for designing targeted therapies in HIV-infected, Meth using hosts.
Collapse
Affiliation(s)
- Kaycie S Lawson
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Shi L, Song L, Maurer K, Dou Y, Patel VR, Su C, Leonard ME, Lu S, Hodge KM, Torres A, Chesi A, Grant SFA, Wells AD, Zhang Z, Petri MA, Sullivan KE. IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins. THE JOURNAL OF IMMUNOLOGY 2020; 204:1334-1344. [PMID: 31953354 DOI: 10.4049/jimmunol.1900650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023]
Abstract
The IL1A and IL1B genes lie in close proximity on chromosome 2 near the gene for their natural inhibitor, IL1RN Despite diverse functions, they are all three inducible through TLR4 signaling but with distinct kinetics. This study analyzed transcriptional induction kinetics, chromosome looping, and enhancer RNA production to understand the distinct regulation of these three genes in human cells. IL1A, IL1B, and IL1RN were rapidly induced after stimulation with LPS; however, IL1B mRNA production was less inhibitable by iBET151, suggesting it does not use pause-release regulation. Surprisingly, chromatin looping contacts between IL1A and IL1B were highly intermingled, although those of IL1RN were distinct, and we focused on comparing IL1A and IL1B transcriptional pathways. Our studies demonstrated that enhancer RNAs were produced from a subset of the regulatory regions, that they were critical for production of the mRNAs, and that they bound a diverse array of RNA binding proteins, including p300 but not CBP. We, furthermore, demonstrated that recruitment of p300 was dependent on MAPKs. Integrator is another RNA binding protein recruited to the promoters and enhancers, and its recruitment was more dependent on NF-κB than MAPKs. We found that integrator and NELF, an RNA polymerase II pausing protein, were associated with RNA in a manner that facilitated interaction. We conclude that IL1A and IL1B share many regulatory contacts, signaling pathways, and interactions with enhancer RNAs. A complex of protein interactions with enhancer RNAs emphasize the role of enhancer RNAs and the overall structural aspects of transcriptional regulation.
Collapse
Affiliation(s)
- Lihua Shi
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Li Song
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kelly Maurer
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ying Dou
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Vishesh R Patel
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Annabel Torres
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
| |
Collapse
|