1
|
Spahn MA, Loy TV, Celen S, Koole M, Deroose CM, Cawthorne C, Vanduffel W, Schols D, Bormans G, Cleeren F. Selective PET imaging of CXCR4 using the Al 18F-labeled antagonist LY2510924. Eur J Nucl Med Mol Imaging 2025; 52:1723-1738. [PMID: 39658737 PMCID: PMC11928405 DOI: 10.1007/s00259-024-07025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND [68Ga]PentixaFor detects C-X-C chemokine receptor type 4 (CXCR4) overexpression in various malignancies, such as multiple myeloma and non-Hodgkin lymphomas, as well as in endocrine and inflammatory disorders. This study aimed to develop an Al18F-labeled radiotracer derived from LY2510924 for CXCR4-targeted imaging, leveraging the physical and logistical advantages of fluorine-18. METHODS We designed a CXCR4-specific radioprobe, [18F]AlF-NOTA-SC, based on LY2510924 by incorporating a triglutamate linker and NOTA chelator to enable Al18F-labeling. The in vitro CXCR4 affinity was assessed using cell-based binding assays. Subsequently, in vivo pharmacokinetics and tumor uptake of [18F]AlF-NOTA-SC were assessed in naïve mice and mice with xenografts derived from U87.CD4/U87.CD4.CXCR4 and MM.1 S cells. Finally, biodistribution was determined in a non-human primate using PET-MR. RESULTS Compared to Ga-PentixaFor, AlF-NOTA-SC demonstrated similar in vitro affinity for human CXCR4. [18F]AlF-NOTA-SC was produced with a decay-corrected radiochemical yield of 21.0 ± 7.1% and an apparent molar activity of 16.4 ± 3.6 GBq/µmol. In [18F]AlF-NOTA-SC binding assays on U87.CD4.CXCR4 cells, the total bound fraction was 7.1 ± 0.5% (58% blocking by AMD3100). In naïve mice, the radiotracer did not accumulate in any organs; however, it showed a significant CXCR4-specific uptake in xenografted tumors (SUVmeanU87.CD4 = 0.04 ± 0.00 (n = 3); SUVmeanU87.CD4.CXCR4 = 3.04 ± 0.65 (n = 3); SUVmeanMM.1 S = 1.95 ± 0.11 (n = 3)). In a non-human primate, [18F]AlF-NOTA-SC accumulated in CXCR4 expressing organs, such as the spleen and bone marrow. CONCLUSION [18F]AlF-NOTA-SC exhibited CXCR4-specific uptake in vitro and in vivo, with fast and persistent tumor accumulation, making it a strong candidate for clinical translation as an 18F-alternative to [68Ga]PentixaFor.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, B-3000, Belgium
| | - Sofie Celen
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, B-3000, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Zhen PX, Su HJ, Yang SJ, Chen X, Lin ZM, Liu SN. Comparison of clinical efficacy between tibial cortex transverse transport and platelet-rich plasma treatment for severe diabetic foot ulcers. Front Surg 2025; 12:1507982. [PMID: 40166622 PMCID: PMC11955506 DOI: 10.3389/fsurg.2025.1507982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Objective This study aims to compare the effects of tibial cortex transverse transport (TTT) and platelet-rich plasma (PRP) on the healing of severe diabetic foot ulcers, evaluate the clinical efficacy of TTT, and explore its potential impact on lower limb circulation. Methods A retrospective analysis was conducted on two patient groups treated at our hospital between July 2019 and June 2022. One group underwent TTT, while the other received PRP therapy. Both groups had Wagner level 3 or higher ulcers. An 18-month follow-up was performed for both groups, during which we documented wound healing progress and healing times to assess clinical efficacy. To investigate lower limb blood flow recovery, lower limb arterial ultrasound was used to measure blood flow velocities in the affected popliteal and dorsalis pedis arteries. Additionally, ELISA was employed to measure the stromal cell-derived factor-1 (SDF-1) levels of angiogenic factors in peripheral blood. Results A total of 60 diabetic foot ulcers (DFUs) patients were enrolled in our study, with 30 patients in each group: TTT-treated and PRP-treated. During the 18-month follow-up, the wound healing rate in the TTT-treated group was significantly higher than in the PRP-treated group [96.67% (29/30) vs. 80% (24/30), p < 0.05]. Furthermore, the healing time in the TTT-treated group was shorter (3.02 ± 0.84 vs. 6.04 ± 0.85 months, p < 0.001). The amputation rate [3.33% (1/30) vs. 20% (6/30), p < 0.05] and recurrence rate [6.67% (2/30) vs. 26.67% (8/30), p < 0.05] in the TTT-treated group were lower than those in the PRP-treated group. After 1 month and 18 months of treatment, the flow velocities in the popliteal artery (68.93 ± 2.69 vs. 58.14 ± 2.48 cm/s, p < 0.001; 55.68 ± 3.43 vs. 46.07 ± 3.02 cm/s, p < 0.001) and dorsalis pedis artery (46.45 ± 2.77 vs. 36.46 ± 2.83 cm/s, p < 0.001; 38.63 ± 2.40 vs. 29.82 ± 2.15 cm/s, p < 0.001) in the TTT-treated group were significantly higher than in the PRP-treated group. Additionally, the TTT-treated group showed higher levels of SDF-1 expression (375.36 ± 13.52 vs. 251.93 ± 9.82 pg/ml, p < 0.001; 256.62 ± 13.19 vs. 239.96 ± 10.78 pg/ml, p < 0.001). Conclusion Our results suggest that TTT treatment is more clinically effective than PRP for treating severe DFUs. This increased efficacy may be attributed to enhanced lower limb blood flow, which is potentially driven by elevated SDF-1 levels.
Collapse
Affiliation(s)
- Pu-Xiang Zhen
- National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hong-Jie Su
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Si-Jie Yang
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Chen
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhan-Ming Lin
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Sai-Nan Liu
- Department of Ultrasound Medicine, The Second Hospital Affiliated to Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
3
|
Lee CW, Wang BYH, Wong SH, Chen YF, Cao Q, Hsiao AWT, Fung SH, Chen YF, Wu HH, Cheng PY, Chou ZH, Lee WYW, Tsui SKW, Lee OKS. Ginkgolide B increases healthspan and lifespan of female mice. NATURE AGING 2025; 5:237-258. [PMID: 39890935 DOI: 10.1038/s43587-024-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Various anti-aging interventions show promise in extending lifespan, but many are ineffective or even harmful to healthspan. Ginkgolide B (GB), derived from Ginkgo biloba, reduces aging-related morbidities such as osteoporosis, yet its effects on healthspan and longevity have not been fully understood. In this study, we found that continuous oral administration of GB to female mice beginning at 20 months of age extended median survival and median lifespan by 30% and 8.5%, respectively. GB treatment also decreased tumor incidence; enhanced muscle quality, physical performance and metabolism; and reduced systemic inflammation and senescence. Single-nucleus RNA sequencing of skeletal muscle tissue showed that GB ameliorated aging-associated changes in cell type composition, signaling pathways and intercellular communication. GB reduced aging-induced Runx1+ type 2B myonuclei through the upregulation of miR-27b-3p, which suppresses Runx1 expression. Using functional analyses, we found that Runx1 promoted senescence and cell death in muscle cells. Collectively, these findings suggest the translational potential of GB to extend healthspan and lifespan and to promote healthy aging.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Fan Chen
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Allen Wei-Ting Hsiao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Cheng
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Zong-Han Chou
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
4
|
Sá AF, Diniz IMA, Oliveira RBD, Diniz MG, Cortés ME, Souza LLD, Olórtegui CDC, Lages FS. Effect of curcumin and three analogues on pre-osteoblast cells' viability, differentiation, and gene expression. Braz Oral Res 2024; 38:e123. [PMID: 39661796 DOI: 10.1590/1807-3107bor-2024.vol38.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/13/2024] [Indexed: 12/13/2024] Open
Abstract
Curcumin, found in turmeric rhizomes (Curcuma longa L.), has been widely studied for its potential health benefits, including anti-inflammatory, antioxidant, and wound-healing properties. However, due to its low bioavailability and unfavorable pharmacokinetics, analogous compounds have been developed to obtain better biopharmaceutical characteristics and enhanced biological effects. In this study, we evaluated the activity of curcumin and three of its synthetic analogues (DMAD, DMAM, and RI75) on the viability and differentiation of a pre-osteoblastic cell line (MC3T3-E1). We also assessed the expression of key genes involved in tissue regeneration: vascular endothelial growth factor (vegf), stromal-derived growth factor 1 (SDF-1/CXCL12), and runt-related transcription factor 2 (runx2). The cells were treated with curcumin and the three analogues at concentrations of 10, 30, or 50 μM. All tested analogues and curcumin exhibited moderate to no cell toxicity compared to the cells treated under standard conditions across all concentrations after 24, 48, and 72 hours. Only the RI75 analogue showed upregulation of SDF-1, a crucial factor in tissue regeneration. Compared to curcumin, the DMAM and RI75 analogues also upregulated runx2 and vegf, both associated with osteodifferentiation. The RI75 analogue demonstrated greater mineralization than curcumin, and both promoted more nodule formation than the untreated control. Our data suggest that the curcumin analogue RI75 at 50 μM presents similar toxicity but enhanced biological activity compared to natural curcumin, making it a promising substance for material biomodifications.
Collapse
Affiliation(s)
- Ana Flor Sá
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Ivana Márcia Alves Diniz
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Renata Barbosa de Oliveira
- Universidade Federal de Minas Gerais - UFMG, School of Pharmacy, Department of Pharmaceutical Products, Belo Horizonte, MG, Brazil
| | - Marina Gonçalves Diniz
- Universidade Federal de Minas Gerais - UFMG, Department of Pathology, Biological Sciences Institute, Belo Horizonte, MG, Brazil
| | - Maria Esperanza Cortés
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Letícia Lopes de Souza
- Universidade Federal de Minas Gerais - UFMG, Department of Biochemistry and Immunology, Biological Sciences Institute, Belo Horizonte, MG, Brazil
| | - Carlos Delfin Chávez Olórtegui
- Universidade Federal de Minas Gerais - UFMG, Department of Biochemistry and Immunology, Biological Sciences Institute, Belo Horizonte, MG, Brazil
| | - Frederico Santos Lages
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Tao L, Huang W, Li Z, Wang W, Lei X, Chen J, Song X, Lu F, Fan S, Zhang L. Transcriptome Analysis of Differentially Expressed Genes and Molecular Pathways Involved in C2C12 Cells Myogenic Differentiation. Mol Biotechnol 2024:10.1007/s12033-024-01259-7. [PMID: 39289290 DOI: 10.1007/s12033-024-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Muscles are essential tissues responsible for movement, stability, and metabolism, playing a crucial role in human health and well-being. A comprehensive understanding of muscle differentiation processes is imperative for combating muscle degenerative diseases such as muscular dystrophy. In this study, C2C12 cells were induced to differentiate into myotubes in vitro. Phenotypic changes were observed utilizing Gimsa and immunofluorescent staining techniques. RNA sequencing was conducted at distinct time points (0, 2, 4, and 7 days) during the differentiation process. To elucidate the underlying molecular mechanisms, differential expression analysis, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis (GSEA) were performed. Soft clustering of time series gene expression was employed to establish the expression patterns of differentially expressed genes (DEGs) at various time points during myogenesis. Additionally, quantitative reverse transcription PCR was utilized to validate gene expression from RNA-seq data at the mRNA level. Throughout the myogenic differentiation of C2C12 cells, notable morphological changes were observed, with myoblasts forming multinucleated myotubes by day 4 and plump elongated structures by day 7. Gene expression analysis revealed a substantial increase in DEGs as differentiation progressed, with a significant rise in DEGs from day 0 to day 7. Enrichment analysis highlighted key biological processes and pathways involved, including signal transduction and immune system processes, as well as pathways like chemokine and calcium signaling. Noise-robust soft clustering identified distinct temporal gene expression patterns, categorizing genes into upregulated, downregulated, and biphasic response clusters. The MYH family exhibited diverse expression changes, with Myh3, Myh13, Myh6, Myh7, Myh2, Myh8, Myh14, Myh7b, Myh1, and Myh4 upregulated, Myh10, Myh9, and Myh12 downregulated. Key transcription factors displayed dynamic expression patterns, which was crucial for the regulation of myoblast differentiation. A comprehensive and dynamic transcriptomic analysis of the C2C12 myoblast differentiation process has significantly enhanced our understanding of the key genes and biological pathways involved in myogenesis.
Collapse
Affiliation(s)
- Lingjian Tao
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Weixing Huang
- General Surgical Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, 317000, China
- Department of Nursing, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310000, China
| | - Zhiyan Li
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Wei Wang
- Department of Nursing, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310000, China
| | - Xinhuan Lei
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Jiangjie Chen
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Xiaoting Song
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Fangying Lu
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Shaohua Fan
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China.
| | - Liwei Zhang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
6
|
Kim S, Ayan B, Shayan M, Rando TA, Huang NF. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem Cell Reports 2024; 19:1061-1073. [PMID: 39059375 PMCID: PMC11368695 DOI: 10.1016/j.stemcr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Microgravity has been shown to lead to both muscle atrophy and impaired muscle regeneration. The purpose was to study the efficacy of microgravity to model impaired muscle regeneration in an engineered muscle platform and then to demonstrate the feasibility of performing drug screening in this model. Engineered human muscle was launched to the International Space Station National Laboratory, where the effect of microgravity exposure for 7 days was examined by transcriptomics and proteomics approaches. Gene set enrichment analysis of engineered muscle cultured in microgravity, compared to normal gravity conditions, highlighted a metabolic shift toward lipid and fatty acid metabolism, along with increased apoptotic gene expression. The addition of pro-regenerative drugs, insulin-like growth factor-1 (IGF-1) and a 15-hydroxyprostaglandin dehydrogenase inhibitor (15-PGDH-i), partially inhibited the effects of microgravity. In summary, microgravity mimics aspects of impaired myogenesis, and the addition of these drugs could partially inhibit the effects induced by microgravity.
Collapse
Affiliation(s)
- Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA 94304, USA.
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA 94304, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
9
|
Wen L, Fan J, Shi X, Zhou H, Yang Y, Jia X. Causal association of rheumatoid arthritis with frailty and the mediation role of inflammatory cytokines: A Mendelian randomization study. Arch Gerontol Geriatr 2024; 122:105348. [PMID: 38460264 DOI: 10.1016/j.archger.2024.105348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Previous observational studies have suggested the association between rheumatoid arthritis (RA) and frailty. However, it remains obscure whether this association is causal. This study aims to investigate the causal association of RA with frailty and the mediation effect of inflammatory cytokines using Mendelian randomization (MR) design. METHODS Summary-level data for RA (N = 58,284), frailty index (FI) (N = 175,226), Fried frailty score (FFS) (N = 386,565), and 41 inflammatory cytokines (N = 8,293) were obtained from recent genome-wide association studies. Univariable and multivariable MR analyses were conducted to investigate and verify the causal association of RA with frailty. The potential mediation effects of inflammatory cytokines were estimated using two-step MR. RESULTS Univariable inverse variance weighted MR analysis suggested that genetically determined RA was associated with increased FI (beta=0.021; 95 % CI: 0.012, 0.03; p = 2.2 × 10-6) and FFS (beta=0.011; 95 %CI: 0.007, 0.015; p = 8.811 × 10-8). The consistent results were observed in multivariable MR analysis after adjustment for asthma, smoking, BMI, physical activity, telomere length, and depression. Mediation analysis showed evidence of an indirect effect of RA on FI through monokine induced by interferon-gamma (MIG) with a mediated proportion of 9.8 % (95 %CI: 4.76 %, 19.05 %), on FFS via MIG and stromal cell-derived factor-1 alpha with a mediated proportion of 9.6 % (95 %CI: 0 %, 18.18 %) and 8.44 % (95 %CI: 0 %, 18.18 %), respectively. CONCLUSION This study provided credible evidence that genetically predicted RA was associated with a higher risk of frailty. Additionally, inflammatory cytokines were involved in the mechanism of RA-induced frailty.
Collapse
Affiliation(s)
- Long Wen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jingwen Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Huiping Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
10
|
Shawl M, Geetha T, Burnett D, Babu JR. Omega-3 Supplementation and Its Effects on Osteoarthritis. Nutrients 2024; 16:1650. [PMID: 38892583 PMCID: PMC11174396 DOI: 10.3390/nu16111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of the articular cartilage, resulting in a pro-inflammatory response. The progression of OA is multifactorial and is influenced by the underlying cause of inflammation, which includes but is not limited to trauma, metabolism, biology, comorbidities, and biomechanics. Although articular cartilage is the main tissue affected in osteoarthritis, the chronic inflammatory environment negatively influences the surrounding synovium, ligaments, and subchondral bone, further limiting their functional abilities and enhancing symptoms of OA. Treatment for osteoarthritis remains inconsistent due to the inability to determine the underlying mechanism of disease onset, severity of symptoms, and complicating comorbidities. In recent years, diet and nutritional supplements have gained interest regarding slowing the disease process, prevention, and treatment of OA. This is due to their anti-inflammatory properties, which result in a positive influence on pain, joint mobility, and cartilage formation. More specifically, omega-3 polyunsaturated fatty acids (PUFA) have demonstrated an influential role in the progression of OA, resulting in the reduction of cartilage destruction, inhibition of pro-inflammatory cytokine cascades, and production of oxylipins that promote anti-inflammatory pathways. The present review is focused on the assessment of evidence explaining the inflammatory processes of osteoarthritis and the influence of omega-3 supplementation to modulate the progression of osteoarthritis.
Collapse
Affiliation(s)
- Megan Shawl
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
11
|
Maji S, Kumar A, Emdad L, Fisher PB, Das SK. Molecular landscape of prostate cancer bone metastasis. Adv Cancer Res 2024; 161:321-365. [PMID: 39032953 DOI: 10.1016/bs.acr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
Li X, Chen W, Liu D, Chen P, Wang S, Li F, Chen Q, Lv S, Li F, Chen C, Guo S, Yuan W, Li P, Hu Z. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front Med 2024; 18:237-257. [PMID: 38619691 DOI: 10.1007/s11684-024-1061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 04/16/2024]
Abstract
Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.
Collapse
Affiliation(s)
- Xuefei Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pinghua Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shiyun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangfang Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qian Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shunyi Lv
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangyu Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Suxia Guo
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weina Yuan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pan Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhijun Hu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
13
|
Abe F, Nakano A, Hirata I, Tanimoto K, Kato K. Structure and function of engineered stromal cell-derived factor-1α. Dent Mater J 2024; 43:286-293. [PMID: 38417858 DOI: 10.4012/dmj.2023-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
To design biologically active, collagen-based scaffolds for bone tissue engineering, we have synthesized chimeric proteins consisting of stromal cell-derived factor-1α (SDF) and the von Willebrand factor A3 collagen-binding domain (CBD). The chimeric proteins were used to evaluate the effect of domain linkage and its order on the structure and function of the SDF and CBD. The structure of the chimeric proteins was analyzed by circular dichroism spectroscopy, while functional analysis was performed by a cell migration assay for the SDF domain and a collagen-binding assay for the CBD domain. Furthermore, computational structural prediction was conducted for the chimeric proteins to examine the consistency with the results of structural and functional analyses. Our structural and functional analyses as well as structural prediction revealed that linking two domains can affect their functions. However, their order had minor effects on the three-dimensional structure of CBD and SDF in the chimeric proteins.
Collapse
Affiliation(s)
- Fumika Abe
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ayana Nakano
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Isao Hirata
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Koichi Kato
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Nanomedicine Research Division, Research Institute for Nanodevices, Hiroshima University
| |
Collapse
|
14
|
Parwani KK, Branella GM, Burnham RE, Burnham AJ, Bustamante AYS, Foppiani EM, Knight KA, Petrich BG, Horwitz EM, Doering CB, Spencer HT. Directing the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells. Front Immunol 2024; 15:1331322. [PMID: 38487542 PMCID: PMC10937339 DOI: 10.3389/fimmu.2024.1331322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies. Thus, there is a need to better characterize human γδ T-cell migration in vivo and develop strategies to direct these cells to in vivo sites of therapeutic interest. To better understand the migration of these cells and possibly influence their migration, NSG mice were conditioned with agents to clear BM cellular compartments, i.e., busulfan or total body irradiation (TBI), or promote T-cell migration to inflamed BM, i.e., incomplete Freund's adjuvant (IFA), prior to administering γδ T cells. Conditioning with TBI, unlike busulfan or IFA, increases the percentage and number of γδ T cells accumulating in the mouse BM, and cells in the peripheral blood (PB) and BM display identical surface protein profiles. To better understand the mechanism by which cells migrate to the BM, mice were conditioned with TBI and administered γδ T cells or tracker-stained red blood cells. The mechanism by which γδ T cells enter the BM after radiation is passive migration from the circulation, not homing. We tested if these ex vivo-expanded cells can migrate based on chemokine expression patterns and showed that it is possible to initiate homing by utilizing highly expressed chemokine receptors on the expanded γδ T cells. γδ T cells highly express CCR2, which provides chemokine attraction to C-C motif chemokine ligand 2 (CCL2)-expressing cells. IFNγ-primed mesenchymal stromal cells (MSCs) (γMSCs) express CCL2, and we developed in vitro and in vivo models to test γδ T-cell homing to CCL2-expressing cells. Using an established neuroblastoma NSG mouse model, we show that intratumorally-injected γMSCs increase the homing of γδ T cells to this tumor. These studies provide insight into the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells in NSG mice, which is critical to understanding the fundamental properties of these cells.
Collapse
Affiliation(s)
- Kiran K Parwani
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Gianna M Branella
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Rebecca E Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Andre J Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Austre Y Schiaffino Bustamante
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Elisabetta Manuela Foppiani
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Kristopher A Knight
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | | | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
15
|
Sadeghi Z, Wu YX, Vu A, Song L, Phan W, Kim J, Keast JR, Balis U, DeLancey J, Villalta SA, Zi X. Dysfunction of the aging female mouse urethra is associated with striated muscle loss and increased fibrosis: an initial report. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:516-529. [PMID: 38148939 PMCID: PMC10749384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 12/28/2023]
Abstract
The decline of urethral function with advancing age plays a major role in urinary incontinence in women, impairing quality of life and economically burdening the health care system. However, none of the current urinary incontinence treatments address the declining urethral function with aging, and the mechanisms by which aging impacts urethra physiology remain little known or explored. Here, we have compared functional, morphometric, and global gene expression of urethral tissues between young and old female mice. Bladder leak point pressure (LPP) measurement showed that the aged female mice had 26.55% lower LPP compared to younger mice. Vectorized Scale-Invariant Pattern Recognition (VIPR) analysis of the relative abundance of different tissue components revealed that the mid-urethra of old female mice contains less striated muscle, more extracellular matrix/fibrosis, and diminished elastin fibers ratio compared to young mice. Gene expression profiling analysis (bulk RNA-seq of the whole urethra) showed more down-regulated genes in aged than young mice. Immune response and muscle-related (striated and smooth) pathways were predominantly enriched. In contrast, keratinization, skin development, and cell differentiation pathways were significantly downregulated in aged urethral tissues compared to those from young female mice. These results suggest that molecular pathways (i.e., ACVR1/FST signaling and CTGF/TGF-β signaling) leading to a decreased striated muscle mass and an increase in fibrous extracellular matrix in the process of aging deserve further investigation for their roles in the declined urethral function.
Collapse
Affiliation(s)
- Zhina Sadeghi
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
- Muscle Biology and Disease Research Center, University of CaliforniaIrvine, CA 92868, USA
| | - Yi Xi Wu
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
| | - Amberly Vu
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
| | - William Phan
- Department of Cell Biology and Neuroscience, University of CaliforniaRiverside, CA 92521, USA
| | - Jeffery Kim
- Department of Pathology and Laboratory Medicine, University of CaliforniaIrvine, CA 92868, USA
- Experimental Tissue Resource, University of CaliforniaIrvine, CA 92868, USA
| | - Janet R Keast
- Department of Anatomy and Physiology, University of MelbourneParkville, VIC 3010, Australia
| | - Ulysses Balis
- Department of Pathology-Bioinformatics, University of MichiganAnn Arbor, MI 48109, USA
| | - John DeLancey
- Department of Gynecology, University of MichiganAnn Arbor, MI 48109, USA
| | - S Armando Villalta
- Muscle Biology and Disease Research Center, University of CaliforniaIrvine, CA 92868, USA
- Department of Physiology and Biophysics, University of CaliforniaIrvine, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of CaliforniaIrvine, CA 92868, USA
- Veterans Affairs Long Beach Healthcare SystemLong Beach, CA 90822, USA
| |
Collapse
|
16
|
Wang X, Ouyang L, Chen W, Cao Y, Zhang L. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system. Stem Cell Res Ther 2023; 14:284. [PMID: 37794520 PMCID: PMC10552362 DOI: 10.1186/s13287-023-03514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) are widely used in cell therapy due to their robust immunomodulatory and tissue regenerative capabilities. Currently, the predominant method for obtaining hUC-MSCs for clinical use is through planar culture expansion, which presents several limitations. Specifically, continuous cell passaging can lead to cellular aging, susceptibility to contamination, and an absence of process monitoring and control, among other limitations. To overcome these challenges, the technology of microcarrier-bioreactor culture was developed with the aim of ensuring the therapeutic efficacy of cells while enabling large-scale expansion to meet clinical requirements. However, there is still a knowledge gap regarding the comparison of biological differences in cells obtained through different culture methods. METHODS We developed a culture process for hUC-MSCs using self-made microcarrier and stirred bioreactor. This study systematically compares the biological properties of hUC-MSCs amplified through planar culture and microcarrier-bioreactor systems. Additionally, RNA-seq was employed to compare the differences in gene expression profiles between the two cultures, facilitating the identification of pathways and genes associated with cell aging. RESULTS The findings revealed that hUC-MSCs expanded on microcarriers exhibited a lower degree of cellular aging compared to those expanded through planar culture. Additionally, these microcarrier-expanded hUC-MSCs showed an enhanced proliferation capacity and a reduced number of cells in the cell cycle retardation period. Moreover, bioreactor-cultured cells differ significantly from planar cultures in the expression of genes associated with the cytoskeleton and extracellular matrix. CONCLUSIONS The results of this study demonstrate that our microcarrier-bioreactor culture method enhances the proliferation efficiency of hUC-MSCs. Moreover, this culture method exhibits the potential to delay the process of cell aging while preserving the essential stem cell properties of hUC-MSCs.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wenxia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yulin Cao
- Beijing Tang Yi Hui Kang Biomedical Technology Co., LTD, Beijing, 100032, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
17
|
Xu R, Ma LL, Cui S, Chen L, Xu H. Bioinformatics and Systems Biology Approach to Identify the Pathogenetic Link between Heart Failure and Sarcopenia. Arq Bras Cardiol 2023; 120:e20220874. [PMID: 37909603 PMCID: PMC10586817 DOI: 10.36660/abc.20220874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023] Open
Abstract
Despite increasing evidence that patients with heart failure (HF) are susceptible to sarcopenia, the reason for the association is not well understood. The purpose of this study is to explore further the molecular mechanism of the occurrence of this complication. Gene expression datasets for HF (GSE57345) and Sarcopenia (GSE1428) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using 'edgeR' and "limma" packages of R, and their functions were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-protein interaction (PPI) networks were constructed and visualized using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Hub genes were selected using the plugin cytoHubba and validation with GSE76701 for HF and GSE136344 for Sarcopenia. The related pathways and molecular mechanisms of the hub genes were performed by Gene set enrichment analysis (GSEA). The statistical analyses were performed using R software. P < 0.05 was considered statistically significant. A total of 114 common DEGs were found. Pathways related to growth factor, Insulin secretion and cGMP-PKG were enriched in both HF and Sarcopenia. CYP27A1, KCNJ8, PIK3R5, TIMP2, CXCL12, KIT, and VCAM1 were found to be significant hub genes after validation, with GSEA emphasizing the importance of the hub genes in the regulation of the inflammatory response. Our study reveals that HF and Sarcopenia share common pathways and pathogenic mechanisms. These findings may suggest new directions for future research into the underlying pathogenesis.
Collapse
Affiliation(s)
- Rui Xu
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Ling-ling Ma
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Shuai Cui
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Ling Chen
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Hong Xu
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| |
Collapse
|
18
|
Mierzejewski B, Grabowska I, Michalska Z, Zdunczyk K, Zareba F, Irhashava A, Chrzaszcz M, Patrycy M, Streminska W, Janczyk-Ilach K, Koblowska M, Iwanicka-Nowicka R, Gromadka A, Kowalski K, Ciemerych MA, Brzoska E. SDF-1 and NOTCH signaling in myogenic cell differentiation: the role of miRNA10a, 425, and 5100. Stem Cell Res Ther 2023; 14:204. [PMID: 37582765 PMCID: PMC10426160 DOI: 10.1186/s13287-023-03429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Skeletal muscle regeneration is a complex process regulated by many cytokines and growth factors. Among the important signaling pathways regulating the myogenic cell identity are these involving SDF-1 and NOTCH. SDF-1 participates in cell mobilization and acts as an important chemoattractant. NOTCH, on the other hand, controls cell activation and myogenic determination of satellite cells. Knowledge about the interaction between SDF-1 and NOTCH signaling is limited. METHODS We analyzed two populations of myogenic cells isolated from mouse skeletal muscle, that is, myoblasts derived from satellite cells (SCs) and muscle interstitial progenitor cells (MIPCs). First, microRNA level changes in response to SDF-1 treatment were analyzed with next-generation sequencing (NGS). Second, myogenic cells, i.e., SC-derived myoblasts and MIPCs were transfected with miRNA mimics, selected on the basis of NGS results, or their inhibitors. Transcriptional changes, as well as proliferation, migration, and differentiation abilities of SC-derived myoblasts and MIPCs, were analyzed in vitro. Naive myogenic potential was assessed in vivo, using subcutaneous engrafts and analysis of cell contribution to regeneration of the skeletal muscles. RESULTS SDF-1 treatment led to down-regulation of miR10a, miR151, miR425, and miR5100 in myoblasts. Interestingly, miR10a, miR425, and miR5100 regulated the expression of factors involved in the NOTCH signaling pathway, including Dll1, Jag2, and NICD. Furthermore, miR10a, miR425, and miR5100 down-regulated the expression of factors involved in cell migration: Acta1, MMP12, and FAK, myogenic differentiation: Pax7, Myf5, Myod, Mef2c, Myog, Musk, and Myh3. However, these changes did not significantly affect myogenic cell migration or fusion either in vitro or in vivo, except when miR425 was overexpressed, or miR5100 inhibitor was used. These two molecules increased the fusion of MIPCs and myoblasts, respectively. Furthermore, miR425-transfected MIPC transplantation into injured skeletal muscle resulted in more efficient regeneration, compared to control cell transplantation. However, skeletal muscles that were injected with miR10a transfected myoblasts regenerated less efficiently. CONCLUSIONS SDF-1 down-regulates miR10a, miR425, and miR5100, what could affect NOTCH signaling, differentiation of myogenic cells, and their participation in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Zuzanna Michalska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Kamila Zdunczyk
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Franciszek Zareba
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aliksandra Irhashava
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Chrzaszcz
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Magdalena Patrycy
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
19
|
Chen X, Hao D, Becker N, Müller A, Pishnamaz M, Bollheimer LC, Hildebrand F, Nourbakhsh M. Unsaturated Long-Chain Fatty Acids Activate Resident Macrophages and Stem Cells in a Human Skeletal Muscle Tissue Model. BIOLOGY 2023; 12:1111. [PMID: 37626996 PMCID: PMC10452335 DOI: 10.3390/biology12081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Phenotypically heterogeneous populations of tissue-resident macrophages and stem cells play important roles in the regeneration of the skeletal muscle tissue. Previous studies using animal and cell culture models implied a beneficial effect of fatty acid (FA) species on tissue regeneration. Here, we applied a human experimental model using excised muscle tissues from reconstructive surgeries to study the effects of FAs on resident macrophages and stem cells in the natural environment of human skeletal muscle tissue. Muscle tissue samples from 20 donors were included in this study. The expression of 34 cytokines/chemokines was determined, using multiplex protein analysis. The phenotypes of macrophages and stem cells were determined immunohistochemically. The numbers of CD80+ macrophages correlated with the expression levels of IL-1α, IL-1RA, IL-8, IL-17A, and MCP-1, while the PAX7+ and MyoD+ stem cell counts were positively correlated with the expression level of CXCL12α, a recognized chemoattractant for muscle stem cells. Treatment of additional tissue sections with FAs revealed that CD80+ or MARCO+ macrophages- and PAX7+ or MyoD+ stem cells were simultaneously increased by unsaturated long-chain FAs. Taken together, this is the first experimental demonstration of a coordinated activation of macrophages and stem cells in human skeletal muscle tissue.
Collapse
Affiliation(s)
- Xiaoying Chen
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Dandan Hao
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Nils Becker
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.B.); (M.P.); (F.H.)
| | - Aline Müller
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Miguel Pishnamaz
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.B.); (M.P.); (F.H.)
| | - Leo Cornelius Bollheimer
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| | - Frank Hildebrand
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (N.B.); (M.P.); (F.H.)
| | - Mahtab Nourbakhsh
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (D.H.); (A.M.); (L.C.B.)
| |
Collapse
|
20
|
Liu Q, Zhao Y, Wang Q, Yan L, Fu X, Xiao R. Convergent alteration of the mesenchymal stem cell heterogeneity in adipose tissue during aging. FASEB J 2023; 37:e23114. [PMID: 37498236 DOI: 10.1096/fj.202300807r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Adipose-derived stem cells (ASCs) from distinct age groups possess different characteristics; however, the age-associated changes in ASCs heterogenicity remain largely unknown. In this study, several publicly available single-cell RNA sequencing (RNA-seq) data cohorts of inguinal adipose tissues, including young (2 weeks), adult (8 weeks), and old (18 months) C57BL/6 mice, were analyzed. Transcriptomic clustering of integrated single-cell RNA-seq data from different age groups revealed the existence of five ASCs subtypes. Interestingly, ASCs showed a loss of heterogeneity with aging, and ASCs subtype 4 (ASC-4) was the dominant subpopulation accounting for more than 98% of aged ASCs converging to the terminal differentiation state. The multidirectional differentiation potentials of different ASCs subtypes were largely distinct while the adipogenic ability of ASC-4 increased with age persistently. Regulon analysis of ASC subtypes further identified Cebpb as the ASC-4-specific transcription factor, which was known as one of the major adipogenic regulators. Analysis of ligand-receptor pairs between ASCs and other cell types in adipose tissue identified age-associated upregulation of inflammatory responses-associated factors including CCL2 and CCL7. Treatment with 100 ng/mL CCL2 in vitro could significantly promote the adipogenesis of ASCs through enhanced phosphorylation of AKT and decreased expression of β-catenin. In addition, supplementation of 100 ng/mL CCL7 could significantly increase the expression of inflammatory genes and ASC-4-specific transcriptional factors in 2-week-old ASCs, potentially acting as a driver of ASCs convergence. Our findings help to delineate the complex biological processes of ASCs aging and shed light on better regenerative and therapeutic applications of ASCs.
Collapse
Affiliation(s)
- Qiwei Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Yu Zhao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
21
|
Chen Z, Laurentius T, Fait Y, Müller A, Mückter E, Bollheimer LC, Nourbakhsh M. Associations of Serum CXCL12α and CK Levels with Skeletal Muscle Mass in Older Adults. J Clin Med 2023; 12:jcm12113800. [PMID: 37297995 DOI: 10.3390/jcm12113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia, a condition characterized by gradual loss of skeletal muscle mass and function, is a complex diagnosis; the decisive criterion in this diagnosis is the measurement of appendicular skeletal muscle index (ASMI). To identify potential serum markers predictive of sarcopenia in older adults, we evaluated correlations between ASMI, clinical data, and 34 serum inflammation markers in 80 older adults. Pearson's correlation analyses confirmed that ASMI was positively correlated with nutritional status (p = 0.001) and serum creatine kinase (CK) (p = 0.019) but negatively correlated with serum CXCL12α (p = 0.023), a chemoattractant for muscle stem cells. In the case group, ASMI was negatively correlated with serum interleukin (IL)-7 (p = 0.024), a myokine expressed and secreted from skeletal muscle cells in vitro. Multivariate binary logistic regression analyses identified four risk factors for sarcopenia in our study: advanced age (p = 0.012), malnutrition (p = 0.038), low serum CK levels (p = 0.044), and high serum CXCL12α levels (p = 0.029). Low CK and high CXCL12α levels serve as combinatorial serum markers of sarcopenia in older adults. The linear correlation between ASMI and CXCL12α levels may facilitate the development of new regression models for future studies on sarcopenia.
Collapse
Affiliation(s)
- Ze Chen
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thea Laurentius
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yvonne Fait
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Aline Müller
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Eva Mückter
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | | | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
22
|
Tang J, Ouyang H, Chen X, Jiang D, Tian Y, Huang Y, Shen X. Comparative Transcriptome Analyses of Leg Muscle during Early Growth between Geese ( Anser cygnoides) Breeds Differing in Body Size Characteristics. Genes (Basel) 2023; 14:genes14051048. [PMID: 37239409 DOI: 10.3390/genes14051048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Goose is an important poultry commonly raised for meat. The early growth performance of geese significantly influences their market weight and slaughter weight, affecting the poultry industry's economic benefits. To identify the growth surge between the Shitou goose and the Wuzong goose, we collected the early growth body traits from 0 to 12 weeks. In addition, we investigated the transcriptomic changes in leg muscles at the high growth speed period to reveal the difference between the two geese breeds. We also estimated the growth curve parameters under three models, including the logistic, von Bertalanffy, and Gompertz models. The results showed that except for body length and keel length, the best-fitting model between the body weight and body size of the Shitou and Wuzong was the logistic model. The growth turning points of Shitou and Wuzong were 5.954 and 4.944 weeks, respectively, and the turning point of their body weight was 1459.01 g and 478.54 g, respectively. Growth surge occurred at 2-9 weeks in Shitou goose and at 1-7 weeks in Wuzong goose. The body size traits of the Shitou goose and Wuzong goose showed a trend of rapid growth in the early stage and slow growth in the later stage, and the Shitou goose growth was higher than the Wuzong goose. For transcriptome sequencing, a total of 87 differentially expressed genes (DEGs) were identified with a fold change ≥ 2 and a false discovery rate < 0.05. Many DEGs have a potential function for growth, such as CXCL12, SSTR4, FABP5, SLC2A1, MYLK4, and EIF4E3. KEGG pathway analysis identified that some DEGs were significantly enriched in the calcium signaling pathway, which may promote muscle growth. The gene-gene interaction network of DEGs was mainly related to the transmission of cell signals and substances, hematological system development, and functions. This study can provide theoretical guidance for the production and breeding management of the Shitou goose and Wuzong goose and help reveal the genetic mechanisms underlying diverse body sizes between two goose breeds.
Collapse
Affiliation(s)
- Jun Tang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Xiaomei Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| |
Collapse
|
23
|
Yorozu A, Sekiguchi S, Takasawa A, Okazaki F, Niinuma T, Kitajima H, Yamamoto E, Kai M, Toyota M, Hatanaka Y, Nishiyama K, Ogi K, Dehari H, Obata K, Kurose M, Kondo A, Osanai M, Miyazaki A, Takano K, Suzuki H. CXCL12 is expressed by skeletal muscle cells in tongue oral squamous cell carcinoma. Cancer Med 2023; 12:5953-5963. [PMID: 36300800 PMCID: PMC10028106 DOI: 10.1002/cam4.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The CXCL12/CXCR4 axis plays a pivotal role in the progression of various malignancies, including oral squamous cell carcinoma (OSCC). In this study, we aimed to clarify the biological and clinical significance of CXCL12 in the tumor microenvironment of OSCCs. METHODS Publicly available single-cell RNA-sequencing (RNA-seq) datasets were used to analyze CXCL12 expression in head and neck squamous cell carcinomas (HNSCC). Immunohistochemical analysis of CXCL12, α-smooth muscle antigen (α-SMA), fibroblast activation protein (FAP) and CD8 was performed in a series of 47 surgically resected primary tongue OSCCs. Human skeletal muscle cells were co-cultured with or without OSCC cells, after which CXCL12 expression was analyzed using quantitative reverse-transcription PCR. RESULTS Analysis of the RNA-seq data suggested CXCL12 is abundantly expressed in stromal cells within HNSCC tissue. Immunohistochemical analysis showed that in grade 1 primary OSCCs, CXCL12 is expressed in both tumor cells and muscle cells. By contrast, grade 3 tumors were characterized by disruption of muscle structure and reduced CXCL12 expression. Quantitative analysis of CXCL12-positive areas within tumors revealed that reduced CXCL12 expression correlated with poorer overall survival. Levels of CXCL12 expression tended to inversely correlate α-SMA expression and positively correlate with infiltration by CD8+ lymphocytes, though these relations did not reach statistical significance. CXCL12 was significantly upregulated in muscle cells co-cultured with OSCC cells. CONCLUSION Our results suggest that tongue OSCC cells activate CXCL12 expression in muscle cells, which may contribute to tumor progression. However, CXCL12 is reduced in advanced OSCCs due to muscle tissue destruction.
Collapse
Affiliation(s)
- Akira Yorozu
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shohei Sekiguchi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumika Okazaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yui Hatanaka
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazufumi Obata
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Kurose
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kondo
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
24
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
25
|
Zhao Y, Pu G, Li Y, Jiang H, Zhang Q, Chen P, Lu Q, Wang M, Yang R. Serum Levels of CXCR4, SDF-1, MCP-1, NF-κB and ERK1/2 in Patients with Skeletal Fluorosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16555. [PMID: 36554439 PMCID: PMC9778822 DOI: 10.3390/ijerph192416555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
C-X-C motif chemokine receptor 4 (CXCR4), stromal cell-derived factor-1 (SDF-1), monocyte chemoattractant protein-1 (MCP-1), extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) affect bone cells and play an important role in bone and joint diseases, but the data on CXCR4, SDF-1, MCP-1, ERK1/2 and NF-κB in the serum of skeletal fluorosis (SF) patients are inconclusive. Thus, according to the "Diagnostic Criteria for Endemic Skeletal Fluorosis" (WS 192-2008), we enrolled patients with SF (n = 60) as the SF group and those without SF as the controls (n = 60). Serum levels of CXCR4, SDF-1, MCP-1, ERK1/2 and NF-κB were detected by enzyme-linked immunosorbent assays (ELISAs). Serum SDF-1, CXCR4, MCP-1 and NF-κB levels were significantly higher in the SF group than in the control group. Within the serum of SF patients, CXCR4 and SDF-1 levels were positively correlated with NF-κB levels. There was no correlation between MCP-1 levels and those of ERK1/2 or NF-κB. SDF-1 and CXCR4 may activate the NF-κB pathway, and MCP-1 affects the occurrence and development of SF by regulating osteocytes through other pathways. The SDF-1/CXCR4 axis and MCP-1 signalling pathway provide a new theoretical basis for the occurrence and development of SF.
Collapse
Affiliation(s)
- Yaqian Zhao
- Department of Public Health, Medical College, Qinghai University, Xi’ning 810016, China
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Guanglan Pu
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Yanan Li
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Hong Jiang
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Qiang Zhang
- Department of Public Health, Medical College, Qinghai University, Xi’ning 810016, China
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Ping Chen
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Qing Lu
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Mingjun Wang
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| | - Rui Yang
- Department of Public Health, Medical College, Qinghai University, Xi’ning 810016, China
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning 811602, China
| |
Collapse
|
26
|
Ma XY, Liu HM, Lv WQ, Qiu C, Xiao HM, Deng HW. A bi-directional Mendelian randomization study of the sarcopenia-related traits and osteoporosis. Aging (Albany NY) 2022; 14:5681-5698. [PMID: 35780076 PMCID: PMC9365559 DOI: 10.18632/aging.204145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022]
Abstract
Both sarcopenia and osteoporosis are common geriatric diseases causing huge socioeconomic burdens, and clinically, they often occur simultaneously. Observational studies have found a controversial correlation between sarcopenia and osteoporosis and their causal relationship is not clear. Therefore, we performed a bi-directional two-sample Mendelian randomization (MR) analysis to assess the potential causal relationship between sarcopenia-related traits (hand grip strength, lean mass, walking pace) and osteoporosis. Our analysis was performed by applying genetic variants obtained from the UK Biobank and the GEnetic Factors for OSteoporosis (GEFOS) datasets. We used inverse-variance weighted (IVW) and several sensitivity analyses to estimate and cross-validate the potential causal relationship in this study. We found that bone mineral density (BMD) was causally positively associated with left-hand grip strength (β = 0.017, p-value = 0.001), fat-free mass (FFM; right leg FFM, β = 0.014, p-value = 0.003; left arm FFM, β = 0.014, p-value = 0.005), but not walking pace. Higher hand grip strength was potentially causally associated with increased LS-BMD (right-hand grip strength, β = 0.318, p-value = 0.001; left-hand grip strength, β = 0.358, p-value = 3.97 × 10-4). In conclusion, osteoporosis may be a risk factor for sarcopenia-related traits and muscle strength may have a site-specific effect on BMD.
Collapse
Affiliation(s)
- Xue-Ying Ma
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Hui-Min Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Wan-Qiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
27
|
Sabatini C, Ayenew L, Khan T, Hall R, Lee T. Dental Pulp Cells Conditioning Through Poly(I:C) Activation of Toll-Like Receptor 3 (TLR3) for Amplification of Trophic Factors. J Endod 2022; 48:872-879. [PMID: 35447294 DOI: 10.1016/j.joen.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Regeneration of the pulp-dentin complex hinges on functionally diverse growth factors, cytokines, chemokines, signaling molecules, and other secreted factors collectively referred to as trophic factors. Delivery of exogenous factors and induced release of endogenous dentin-bound factors by conditioning agents have been explored towards these goals. The aim of this study was to investigate a promising regeneration strategy based on the conditioning of dental pulp cells (DPCs) with polyinosinic-polycytidylic acid [poly(I:C)] for amplification of endogenous trophic factors. METHODS DPCs were isolated from human dental pulps, propagated in culture, and treated with an optimized dose of poly(I:C). MTT assay and metabolite analysis were conducted to monitor the cytotoxicity of poly(I:C). ELISA and qPCR assays were performed to quantify induction of trophic factors in response to DPC conditioning. Statistical significance was P < .05. RESULTS Analysis of 32 trophic factors involved in Wnt signaling, cell migration and chemotaxis, cell proliferation and differentiation, extracellular matrix (ECM) remodeling and angiogenesis, and immunoregulation revealed that DPCs abundantly express many trophic factors including AMF, BDNF, BMP2, FGF1, FGF2, FGF5, HGF, MCP1, NGF, SDF1, TGFβ1, TIMP1, TIMP2, TIMP3, and VEGF-A, many of which were further induced by DPC conditioning; induction, which was significant for BDNF, EGF, HGF, LIF, MCP1, SDF1, IL6, IL11, MMP9 and TIMP1. Both DPCs proliferation and lactate production (P < .05) were inhibited by 8 μg/ml poly(I:C) relative to the control. CONCLUSIONS In vitro DPC conditioning through poly(I:C) activation of TLR3 led to amplification of trophic factors involved in tissue repair. The strategy offers promise for endodontic regeneration and tooth repair and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Techung Lee
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
28
|
Pun FW, Leung GHD, Leung HW, Liu BHM, Long X, Ozerov IV, Wang J, Ren F, Aliper A, Izumchenko E, Moskalev A, de Magalhães JP, Zhavoronkov A. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging (Albany NY) 2022; 14:2475-2506. [PMID: 35347083 PMCID: PMC9004567 DOI: 10.18632/aging.203960] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.
Collapse
Affiliation(s)
- Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Xi Long
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ju Wang
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Feng Ren
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alexey Moskalev
- School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
29
|
Shen F, Shi Y. Recent Advances in Single-Cell View of Mesenchymal Stem Cell in Osteogenesis. Front Cell Dev Biol 2022; 9:809918. [PMID: 35071243 PMCID: PMC8766509 DOI: 10.3389/fcell.2021.809918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoblasts continuously replenished by osteoblast progenitor cells form the basis of bone development, maintenance, and regeneration. Mesenchymal stem cells (MSCs) from various tissues can differentiate into the progenitor cell of osteogenic lineage and serve as the main source of osteoblasts. They also respond flexibly to regenerative and anabolic signals emitted by the surrounding microenvironment, thereby maintaining bone homeostasis and participating in bone remodeling. However, MSCs exhibit heterogeneity at multiple levels including different tissue sources and subpopulations which exhibit diversified gene expression and differentiation capacity, and surface markers used to predict cell differentiation potential remain to be further elucidated. The rapid advancement of lineage tracing methods and single-cell technology has made substantial progress in the characterization of osteogenic stem/progenitor cell populations in MSCs. Here, we reviewed the research progress of scRNA-seq technology in the identification of osteogenic markers and differentiation pathways, MSC-related new insights drawn from single-cell technology combined with experimental technology, and recent findings regarding the interaction between stem cell fate and niche in homeostasis and pathological process.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Rauen M, Hao D, Müller A, Mückter E, Bollheimer LC, Nourbakhsh M. Free Fatty Acid Species Differentially Modulate the Inflammatory Gene Response in Primary Human Skeletal Myoblasts. BIOLOGY 2021; 10:biology10121318. [PMID: 34943232 PMCID: PMC8698660 DOI: 10.3390/biology10121318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Epidemiological studies show that obesity increases the risk of muscle mass loss with age, a syndrome called sarcopenic obesity. Obesity leads to increased free fatty acids (FFAs) and excessive fat deposits, which impair the integrity of skeletal muscles by unknown mechanisms. This report indicates that FFAs directly affect human skeletal muscle cell replication and inflammatory gene expression. The structural characteristics of FFAs play a decisive role in triggering both processes. Thus, the characterization of abundant FFA species in the skeletal muscle of obese individuals may become a useful tool to predict the progression of sarcopenic obesity. Abstract Age-related loss of skeletal muscle is associated with obesity and inflammation. In animal models, intramuscular fat deposits compromise muscle integrity; however, the relevant fat components that mediate muscular inflammation are not known. Previously, we hypothesized that free fatty acids (FFAs) may directly induce inflammatory gene expression in skeletal muscle cells of obese rats. Here, we examined this hypothesis in primary human skeletal myoblasts (SkMs) using multiplex expression analysis of 39 inflammatory proteins in response to different FFA species. Multiplex mRNA quantification confirmed that the IL6, IL1RA, IL4, LIF, CXCL8, CXCL1, CXCL12 and CCL2 genes were differentially regulated by saturated and unsaturated C16 or C18 FFAs. Fluorescence staining revealed that only saturated C16 and C18 strongly interfere with myoblast replication independent of desmin expression, mitochondrial abundance and oxidative activity. Furthermore, we addressed the possible implications of 71 human receptor tyrosine kinases (RTKs) in FFA-mediated effects. Phosphorylated EphB6 and TNK2 were associated with impaired myoblast replication by saturated C16 and C18 FFAs. Our data suggest that abundant FFA species in human skeletal muscle tissue may play a decisive role in the progression of sarcopenic obesity by affecting inflammatory signals or myoblast replication.
Collapse
|
31
|
Lin B, Pan Z. Consensus gene modules related to levels of bone mineral density (BMD) among smokers and nonsmokers. Bioengineered 2021; 12:10134-10146. [PMID: 34743649 PMCID: PMC8810040 DOI: 10.1080/21655979.2021.2000746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Osteoporosis, as a common metabolic disorder characterized by the decrease of bone mass, can cause fractures, thereby threatening the life quality of females, especially postmenopausal women. Thus, it is necessary to reveal the genes involved in osteoporosis and explore biomarkers for osteoporosis. In this study, two groups, smokers and nonsmokers with different bone mineral density (BMD) levels, were collected from the Gene Expression Omnibus (GEO) database GSE13850. Consensus modules of the two groups were identified; the variety of gene modules between smokers and nonsmokers with different BMD levels was observed; and a consensus module, including 390 genes significantly correlated with different BMD levels, was identified. Function analysis revealed the significantly enriched osteoporosis-related pathways, such as the PI3K-Akt signaling pathway. Hub genes analysis revealed the critical role of CXCL12 and CHRM2 in modules related to BMD levels. Based on the support vector machine recursive feature elimination (SVM-RFE) analysis, the model containing 10 genes (TNS4, IRF2, BSG, GZMM, ARRB2, COX15, RALY, TP53, RPS6KA3, and SYNPO) with good performance in identifying people with different BMD levels was constructed. Among them, the roles of RALY and SYNPO in the osteogenic differentiation of hBMSCs were verified experimentally. Overall, this study provides a strategy to explore the biomarkers for osteoporosis through analysis of consensus modules.
Collapse
Affiliation(s)
- Bingyuan Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhijun Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
lncRNA HHIP-AS1 Promotes the Osteogenic Differentiation Potential and Inhibits the Migration Ability of Periodontal Ligament Stem Cells. Stem Cells Int 2021; 2021:5595580. [PMID: 34721591 PMCID: PMC8554619 DOI: 10.1155/2021/5595580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Alveolar bone remodeling under orthodontic force is achieved by periodontal ligament stem cells (PDLSCs), which are sensitive to mechanical loading. How to regulate functions of PDLSCs is a key issue in bone remodeling during orthodontic tooth movement. This study is aimed at investigating the roles of lncRNA Hedgehog-interacting protein antisense RNA 1 (HHIP-AS1) in the functional regulation of PDLSCs. First, HHIP-AS1 expression was downregulated in PDLSCs under continuous compressive pressure. Then, we found that the alkaline phosphatase activity, in vitro mineralization, and expression levels of bone sialoprotein, osteocalcin, and osterix were increased in PDLSCs by HHIP-AS1. The results of scratch migration and transwell chemotaxis assays revealed that HHIP-AS1 inhibited the migration and chemotaxis abilities of PDLSCs. In addition, the RNA sequencing data showed that 356 mRNAs and 14 lncRNAs were upregulated, including receptor tyrosine kinase-like orphan receptor 2 and nuclear-enriched abundant transcript 1, while 185 mRNAs and 6 lncRNAs were downregulated, including fibroblast growth factor 5 and LINC00973, in HHIP-AS1-depleted PDLSCs. Bioinformatic analysis revealed several biological processes and signaling pathways related to HHIP-AS1 functions, including the PI3K-Akt signaling pathway and JAK-STAT signaling pathway. In conclusion, our findings indicated that HHIP-AS1 was downregulated in PDLSCs under compressive pressure, and it promoted the osteogenic differentiation potential and inhibited the migration and chemotaxis abilities of PDLSCs. Thus, HHIP-AS1 may be a potential target for accelerating tooth movement during orthodontic treatment.
Collapse
|
33
|
Potter ML, Smith K, Vyavahare S, Kumar S, Periyasamy-Thandavan S, Hamrick M, Isales CM, Hill WD, Fulzele S. Characterization of Differentially Expressed miRNAs by CXCL12/SDF-1 in Human Bone Marrow Stromal Cells. Biomol Concepts 2021; 12:132-143. [PMID: 34648701 DOI: 10.1515/bmc-2021-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
Stromal cell-derived factor 1 (SDF-1) is known to influence bone marrow stromal cell (BMSC) migration, osteogenic differentiation, and fracture healing. We hypothesize that SDF-1 mediates some of its effects on BMSCs through epigenetic regulation, specifically via microRNAs (miRNAs). MiRNAs are small non-coding RNAs that target specific mRNA and prevent their translation. We performed global miRNA analysis and determined several miRNAs were differentially expressed in response to SDF-1 treatment. Gene Expression Omnibus (GEO) dataset analysis showed that these miRNAs play an important role in osteogenic differentiation and fracture healing. KEGG and GO analysis indicated that SDF-1 dependent miRNAs changes affect multiple cellular pathways, including fatty acid biosynthesis, thyroid hormone signaling, and mucin-type O-glycan biosynthesis pathways. Furthermore, bioinformatics analysis showed several miRNAs target genes related to stem cell migration and differentiation. This study's findings indicated that SDF-1 induces some of its effects on BMSCs function through miRNA regulation.
Collapse
Affiliation(s)
| | - Kathryn Smith
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA
| | - Sagar Vyavahare
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA
| | | | - Mark Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA.,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA.,Institute of Healthy Aging, Augusta University, Augusta, GA
| | - Carlos M Isales
- Institute of Healthy Aging, Augusta University, Augusta, GA.,Departments of Medicine, Augusta University, Augusta, GA
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403.,Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA.,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA.,Institute of Healthy Aging, Augusta University, Augusta, GA.,Departments of Medicine, Augusta University, Augusta, GA.,Department of Orthopedics, Augusta University, Augusta, GA
| |
Collapse
|
34
|
Wang S, Mobasheri A, Zhang Y, Wang Y, Dai T, Zhang Z. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology 2021; 29:695-704. [PMID: 34085175 PMCID: PMC8233244 DOI: 10.1007/s10787-021-00814-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/24/2021] [Indexed: 01/21/2023]
Abstract
Objective NLRP3 inflammasome may play a key role in OA pathogenesis. Stromal cell-derived factor-1 (SDF-1) is a homeostatic CXC chemokine. Since the role of SDF-1 in OA has not been explored, this study aimed to examine the effect of SDF-1 on NLRP3 inflammasome and pyroptosis in synoviocytes from OA joints. Materials and methods Human synovium was obtained from OA patients for isolation of primary synoviocytes and a murine model of collagenase-induced OA was established for testing intra-articular injections of SDF-1. Immunoblotting assays were used to examine the effects and underlying mechanism of action of SDF-1 on NLRP3 inflammasome and synoviocyte pyroptosis in synoviocytes. Inhibitors of AMPK and PI3K–mTOR were utilized to investigate the key signaling pathways involved in SDF-1-mediated OA inflammasome formation and pyroptosis. Results Synoviocytes from OA joints exhibited significantly higher expression of NLRP3 inflammasome and biomarkers of synoviocyte pyroptosis relative to healthy individuals. This was confirmed in the collagenase-induced OA model, where OA synoviocytes had a significantly lower SDF-1 expression than healthy ones. SDF-1 treatment in synoviocytes of OA patients and collagenase-induced OA led to significant downregulation in the expression of NLRP3 inflammasome and synoviocyte pyroptosis biomarkers. Inhibition of the AMPK signaling pathway significantly suppressed the inhibitory effect of SDF-1 on NLRP3 inflammasome expression of OA synoviocytes. However, blocking the SDF-1-activated PI3K–mTOR signaling pathway could still suppress the expression of NLRP3 inflammasome and synoviocyte pyroptosis biomarkers. Conclusions SDF-1 ameliorates NLRP3 inflammasome and pyroptosis in OA synoviocytes through activation of the AMPK signaling pathway. Therefore, SDF-1 may be a novel therapeutic target for OA. Supplementary Information The online version contains supplementary material available at 10.1007/s10787-021-00814-x.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Ali Mobasheri
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania. .,Department of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| | - Yue Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Yanli Wang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Tianqi Dai
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China.
| |
Collapse
|
35
|
Chen CC, Chen RF, Wang YC, Li YT, Chuang JH, Kuo YR. Combination of a CD26 Inhibitor, G-CSF, and Short-term Immunosuppressants Modulates Allotransplant Survival and Immunoregulation in a Rodent Hindlimb Allotransplant Model. Transplantation 2021; 105:1250-1260. [PMID: 33093401 DOI: 10.1097/tp.0000000000003504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent studies have demonstrated that inhibition of CD26 potentiates stromal cell-derived factor-1α (SDF-1α), promotes tissue regeneration, and suppresses the rejection of organ transplants. This study investigated whether the combination of a CD26 inhibitor (CD26i) with granulocyte colony-stimulating factor (G-CSF) and short-term immunosuppressants modulates vascularized composite tissue allotransplant survival in a rodent orthotopic hindlimb allotransplant model. METHODS The hindlimb allotransplantation from Brown-Norway to Lewis rats was divided into 4 groups. Group 1 (controls) did not receive any treatment. Group 2 was treated with short-term antilymphocyte serum (ALS) and cyclosporine-A (CsA). Group 3 was administrated CD26i and G-CSF. Group 4 received a combination of CD26i/G-CSF/ALS/CsA. Each subgroup comprised 10 rats. Peripheral blood and sampling of transplanted tissues were collected for immunological and histological analysis. RESULTS The results revealed that allotransplant survival was found to be significantly prolonged in group 4 with CD26i/G-CSF/ALS/CsA treatment compared with those in the other groups. The interleukin-10 and transforming growth factor-βl levels, the percentage of CD4+/CD25+/FoxP3+ T cells, as well as the levels of SDF-1α expressions were significantly increased in group 4 compared with those in the other groups. Group 4 revealed a statistical increase in the percentage of donor cells (RT1n) expression in the recipient peripheral blood, and the mixed lymphocyte reaction showed hyporesponsiveness of the T cells to donor alloantigens. CONCLUSION The combination of CD26i/G-CSF and short-term immunosuppressants prolongs allotransplant survival by inducing immunoregulatory effects and enhancing the percentage of SDF-1α expression. This immunomodulatory approach has great potential as a strategy to increase vascularized composite allotransplantation survival.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Rong-Fu Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chi Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Ting Li
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
36
|
Liu H, Yi X, Tu S, Cheng C, Luo J. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol Cell Endocrinol 2021; 520:111074. [PMID: 33157164 DOI: 10.1016/j.mce.2020.111074] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Kaempferol has improved the functions of various human diseases. Here, we aimed to probe into the potential molecular mechanism of Kaempferol to ameliorate osteoporosis. METHODS Micro-computed tomography scanning was applied to assess the bone density of osteoporosis rats induced by ovariectomized. Quantitative real-time PCR was applied to detect the expressions of RUNX2, Osterix, CXCL12, and miR-10a-3p. Western blot, Alizarin red staining, Alkaline Phosphatase Diethanolamine Activity Kit were applied to confirm the in vitro functions of Kaempferol. RNA Immunoprecipitation and dual-luciferase reporter gene experiments were applied to study the potential mechanism. RESULTS The treatment of Kaempferol raised bone density in osteoporosis rats induced by ovariectomized, and boosted the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and raised the expressions of RUNX2, Osterix, and CXCL12, and lessened miR-10a-3p. From the potential mechanism analysis, we corroborated that miR-10a-3p and CXCL12 bound to each other, and Kaempferol boosted BMSC osteogenic differentiation and ameliorated osteoporosis by lessening miR-10a-3p and raising CXCL12. CONCLUSION Our data expounded that Kaempferol boosted BMSC osteogenic differentiation and ameliorated osteoporosis by lessening miR-10a-3p and raising CXCL12.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin Yi
- Medical College of Yichun Vocational and Technical College, Yichun, China
| | - ShuTing Tu
- College of Medicine, Nanchang University, Nanchang, China
| | - Chong Cheng
- College of Medicine, Nanchang University, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
37
|
Verheijen N, Suttorp CM, van Rheden REM, Regan RF, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice. Front Cell Dev Biol 2020; 8:771. [PMID: 32974338 PMCID: PMC7471603 DOI: 10.3389/fcell.2020.00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cranial neural crest cells (CNCCs), identified by expression of transcription factor Sox9, migrate to the first branchial arch and undergo proliferation and differentiation to form the cartilage and bone structures of the orofacial region, including the palatal bone. Sox9 promotes osteogenic differentiation and stimulates CXCL12-CXCR4 chemokine-receptor signaling, which elevates alkaline phosphatase (ALP)-activity in osteoblasts to initiate bone mineralization. Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion. Since we earlier demonstrated chemokine-receptor mediated signaling by the MES, we hypothesized that chemokine CXCL12 is expressed by the disintegrating MES to promote the formation of an osteogenic center by CXCR4-positive osteoblasts. Disturbed migration of CNCCs by excess oxidative and inflammatory stress is associated with increased risk of cleft lip and palate (CLP). The cytoprotective heme oxygenase (HO) enzymes are powerful guardians harnessing injurious oxidative and inflammatory stressors and enhances osteogenic ALP-activity. By contrast, abrogation of HO-1 or HO-2 expression promotes pregnancy pathologies. We postulate that Sox9, CXCR4, and HO-1 are expressed in the ALP-activity positive osteogenic regions within the CNCCs-derived palatal mesenchyme. To investigate these hypotheses, we studied expression of Sox9, CXCL12, CXCR4, and HO-1 in relation to palatal osteogenesis between E15 and E16 using (immuno)histochemical staining of coronal palatal sections in wild-type (wt) mice. In addition, the effects of abrogated HO-2 expression in HO-2 KO mice and inhibited HO-1 and HO-2 activity by administrating HO-enzyme activity inhibitor SnMP at E11 in wt mice were investigated at E15 or E16 following palatal fusion. Overexpression of Sox9, CXCL12, CXCR4, and HO-1 was detected in the ALP-activity positive osteogenic regions within the palatal mesenchyme. Overexpression of Sox9 and CXCL12 by the disintegrating MES was detected. Neither palatal fusion nor MES disintegration seemed affected by either HO-2 abrogation or inhibition of HO-activity. Sox9 progenitors seem important to maintain the CXCR4-positive osteoblast pool to drive osteogenesis. Sox9 expression may facilitate MES disintegration and palatal fusion by promoting epithelial-to-mesenchymal transformation (EMT). CXCL12 expression by the MES and the palatal mesenchyme may promote osteogenic differentiation to create osteogenic centers. This study provides novel evidence that CXCL12-CXCR4 interplay facilitates palatal osteogenesis and palatal fusion in mice.
Collapse
Affiliation(s)
- Nanne Verheijen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christiaan M Suttorp
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René E M van Rheden
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria P A C Helmich
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland.,Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
38
|
Kondrikov D, Elmansi A, Bragg RT, Mobley T, Barrett T, Eisa N, Kondrikova G, Schoeinlein P, Aguilar-Perez A, Shi XM, Fulzele S, Lawrence MM, Hamrick M, Isales C, Hill W. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Exp Gerontol 2020; 130:110805. [PMID: 31812582 PMCID: PMC7861134 DOI: 10.1016/j.exger.2019.110805] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
Osteoporosis is an age-related deterioration in bone health that is, at least in part, a stem cell disease. The different mechanisms and signaling pathways that change with age and contribute to the development of osteoporosis are being identified. One key upstream mechanism that appears to target a number of osteogenic pathways with age is kynurenine, a tryptophan metabolite and an endogenous Aryl hydrocarbon receptor (AhR) agonist. The AhR signaling pathway has been reported to promote aging phenotypes across species and in different tissues. We previously found that kynurenine accumulates with age in the plasma and various tissues including bone and induces bone loss and osteoporosis in mice. Bone marrow mesenchymal stem cells (BMSCs) are responsible for osteogenesis, adipogenesis, and overall bone regeneration. In the present study, we investigated the effect of kynurenine on BMSCs, with a focus on autophagy and senescence as two cellular processes that control BMSCs proliferation and differentiation capacity. We found that physiological levels of kynurenine (10 and 100 μM) disrupted autophagic flux as evidenced by the reduction of LC3B-II, and autophagolysosomal production, as well as a significant increase of p62 protein level. Additionally, kynurenine also induced a senescent phenotype in BMSCs as shown by the increased expression of several senescence markers including senescence associated β-galactosidase in BMSCs. Additionally, western blotting reveals that levels of p21, another marker of senescence, also increased in kynurenine-treated BMSCs, while senescent-associated aggregation of nuclear H3K9me3 also showed a significant increase in response to kynurenine treatment. To validate that these effects are in fact due to AhR signaling pathway, we utilized two known AhR antagonists: CH-223191, and 3',4'-dimethoxyflavone to try to block AhR signaling and rescue kynurenine /AhR mediated effects. Indeed, AhR inhibition restored kynurenine-suppressed autophagy levels as shown by levels of LC3B-II, p62 and autophagolysosomal formation demonstrating a rescuing of autophagic flux. Furthermore, inhibition of AhR signaling prevented the kynurenine-induced increase in senescence associated β-galactosidase and p21 levels, as well as blocking aggregation of nuclear H3K9me3. Taken together, our results suggest that kynurenine inhibits autophagy and induces senescence in BMSCs via AhR signaling, and that this may be a novel target to prevent or reduce age-associated bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Robert Tailor Bragg
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Tanner Mobley
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Thomas Barrett
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nada Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Patricia Schoeinlein
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Alexandra Aguilar-Perez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Xing-Ming Shi
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Meghan McGee Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Mark Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Carlos Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America.
| |
Collapse
|