1
|
Zorc R, Redmond C, Sylvester M, Maclean M, Yamamoto de Almeida L, Quinn KA, Tomelleri A, Campochiaro C, Dagna L, Gutierrez-Rodrigues F, Wells KV, Rankin C, Hait SH, Palmer C, Corty R, Bick A, Lambert K, Buckner JH, O'Shea JJ, Park JK, Gadina M, Grayson PC. A coding single nucleotide polymorphism in the interleukin-6 receptor enhances IL-6 signalling in CD4 T cells and predicts treatment response to tocilizumab in giant cell arteritis. Ann Rheum Dis 2025:S0003-4967(25)00203-1. [PMID: 40000263 DOI: 10.1016/j.ard.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES The study objective was to determine if a common single nucleotide polymorphism in the interleukin 6 (IL-6) receptor (rs2228145, p.Asp358Ala) predicted treatment response to tocilizumab in giant cell arteritis (GCA). METHODS Genetic sequencing of the rs2228145 locus was performed in 2 independent cohorts of patients with GCA. Peripheral blood mononuclear cells (PBMCs) from patients and controls were evaluated for expression of the interleukin 6 receptor (IL-6R) and its coreceptor, gp130, using flow cytometry. The same PBMCs were stimulated with IL-6 and evaluated for downstream targets of IL-6: STAT3 phosphorylation (pSTAT3) and IL-17A expression. RESULTS In total, 100 patients with GCA were included (derivation cohort n = 58; validation cohort n = 42). The rs2228145 variant predicted tocilizumab response in each cohort. In the derivation cohort, a gene dose-dependent response was observed with a 36% response rate in the homozygous patients and 95% response rate in patients without the variant (P = .003). In the validation cohort, tocilizumab response rates were 50% for homozygotes and 85% for patients without the variant (P = .04). pSTAT3 levels were significantly increased in response to IL-6 stimulation in a gene dose-dependent manner in CD4 T cells from patients with GCA but not controls. CD4 T cells from patients with GCA had significantly higher membrane expression of gp130 than healthy controls, and response to IL-6 correlated with gp130 expression. IL-17 producing CD4 T cells were increased in a gene dose-dependent response to IL-6 (P < .01). CONCLUSIONS The rs2228145 variant is associated with decreased treatment response to tocilizumab and worse outcomes in GCA by enhancing CD4 T cell response to IL-6.
Collapse
Affiliation(s)
- Robert Zorc
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Redmond
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - McKella Sylvester
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Maclean
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luciana Yamamoto de Almeida
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlin A Quinn
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Kristina V Wells
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cameron Rankin
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Helmold Hait
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chloe Palmer
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert Corty
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Alexander Bick
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kathi Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - John J O'Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jin Kyun Park
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA; Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Massimo Gadina
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Yun J, Kim JE. Broccoli Sprout Extract Suppresses Particulate-Matter-Induced Matrix-Metalloproteinase (MMP)-1 and Cyclooxygenase (COX)-2 Expression in Human Keratinocytes by Direct Targeting of p38 MAP Kinase. Nutrients 2024; 16:4156. [PMID: 39683550 DOI: 10.3390/nu16234156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Particulate matter (PM) is an environmental pollutant that negatively affects human health, particularly skin health. In this study, we investigated the inhibitory effects of broccoli sprout extract (BSE) on PM-induced skin aging and inflammation in human keratinocytes. METHODS HaCaT keratinocytes were pretreated with BSE before exposure to PM. Cell viability was assessed using the MTT assay. The expression of skin aging and inflammation markers (MMP-1, COX-2, IL-6) was measured using Western blot, ELISA, and qRT-PCR. Reactive oxygen species levels were determined using the DCF-DA assay. Kinase assays and pull-down assays were conducted to investigate the interaction between BSE and p38α MAPK. RESULTS Our findings demonstrate that BSE effectively suppressed the expression of MMP-1, COX-2, and IL-6-critical skin aging and inflammation markers-by inhibiting p38 MAPK activity. BSE binds directly to p38α without competing with ATP, thereby selectively inhibiting its activity and downstream signaling pathways, including MSK1/2, AP-1, and NF-κB. CONCLUSIONS These results suggest that BSE is a potential functional ingredient in skincare products to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Jaehyeok Yun
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| |
Collapse
|
3
|
Abdalla AM, Miao Y, Ming N, Ouyang C. ADAM10 modulates the efficacy of T-cell-mediated therapy in solid tumors. Immunol Cell Biol 2024; 102:907-923. [PMID: 39417304 DOI: 10.1111/imcb.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy. Tumor-associated protease ADAM10, endothelial cells (ECs) and cytotoxic CD8+ T cells engage in complex communication via adhesion, transmigration and chemotactic mechanisms to facilitate an anti-cancer immune response. The precise impact of ADAM10 on the intricate mechanisms underlying these interactions remains unclear. This paper broadly explores how ADAM10, through different routes, influences the efficacy of T-cell-mediated therapy. ADAM10 cleaves CD8+ T-cell-targeting genes and impacts their expression and specificity. In addition, ADAM10 mediates the interactions of adhesion molecules with T cells and influences CD8+ T-cell activity and trafficking. Thus, understanding the role of ADAM10 in these events may lead to innovative strategies for advancing T-cell-mediated therapies.
Collapse
Affiliation(s)
- Ahmed Me Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Department of Phase 1 Clinical and Research Ward, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ning Ming
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zhang Z, Wang P, Xiong Q, Xu S, Kang D, He Z, Yao C, Jian G. Advancements in the study of IL-6 and its receptors in the pathogenesis of gout. Cytokine 2024; 182:156705. [PMID: 39053079 DOI: 10.1016/j.cyto.2024.156705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Gout is an autoinflammatory disease characterized by the deposition of monosodium urate crystals in or around the joints, primarily manifesting as inflammatory arthritis that recurs and resolves spontaneously. Interleukin-6 (IL-6) is a versatile cytokine with both anti-inflammatory and pro-inflammatory capabilities, linked to a variety of inflammatory diseases such as gouty arthritis, rheumatoid arthritis, inflammatory bowel disease, vasculitis, and several types of cancer. The rapid production of IL-6 during infections and tissue damage aids in host defense. However, excessive synthesis of IL-6 and dysregulation of its receptor signaling (IL-6R) might contribute to the pathology of diseases. Recent advancements in clinical and basic research, along with developments in animal models, have established the significant role of IL-6 and its receptors in the pathogenesis of gout, although the precise mechanisms remain to be fully elucidated. This review discusses the role of IL-6 and its receptors in gout progression and examines contemporary research on modulating IL-6 and its signaling pathways for treatment. It aims to provide insights into the pathogenesis of gout and to advance the development of targeted therapies for gout-related inflammation.
Collapse
Affiliation(s)
- Zeng Zhang
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Peng Wang
- Xichong County People's Hospital, Nanchong 637200, Sichuan, China
| | - Qin Xiong
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Shanshan Xu
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Dong Kang
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Zhengguang He
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Chengjiao Yao
- Affiliated Hospital of Sichuan Bei Medical College, Nanchong 637000, Sichuan, China
| | - Guilin Jian
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China.
| |
Collapse
|
5
|
Chen GQ, Nan Y, Ning N, Huang SC, Bai YT, Zhou ZY, Qian G, Li WQ, Yuan L. Network pharmacology study and in vitro experimental validation of Xiaojianzhong decoction against gastric cancer. World J Gastrointest Oncol 2024; 16:3932-3954. [PMID: 39350988 PMCID: PMC11438770 DOI: 10.4251/wjgo.v16.i9.3932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Cancer is one of the most serious threats to human health worldwide. Conventional treatments such as surgery and chemotherapy are associated with some drawbacks. In recent years, traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians, and has become an indispensable part of the comprehensive treatment for gastric cancer. AIM To investigate the mechanism of Xiaojianzhong decoction (XJZ) in the treatment of gastric cancer (GC) by utilizing network pharmacology and experimental validation, so as to provide a theoretical basis for later experimental research. METHODS We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics. Subsequently, we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8, apoptosis, cell cycle, and clone formation assays. Additionally, we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins. RESULTS XJZ mainly regulates IL6, PTGS2, CCL2, MMP9, MMP2, HMOX1, and other target genes and pathways in cancer to treat GC. The inhibition of cell viability, the increase of apoptosis, the blockage of the cell cycle at the G0/G1 phase, and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment. In addition, XJZ induced a decrease in the mRNA expression of IL6, PTGS2, MMP9, MMP2, and CCL2, and an increase in the mRNA expression of HOMX1. XJZ significantly inhibited the expression of IL6, PTGS2, MMP9, MMP2, and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein. CONCLUSION XJZ exerts therapeutic effects against GC through multiple components, multiple targets, and multiple pathways. Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.
Collapse
Affiliation(s)
- Guo-Qing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shi-Cong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Ting Bai
- Department of Pharmacy, Ningxia Chinese Medicine Research Center, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Zi-Ying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Gu Qian
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wei-Qiang Li
- Department of Chinese Medical Gastroenterology, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong 751100, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Lin G, Lin L, Chen X, Chen L, Yang J, Chen Y, Qian D, Zeng Y, Xu Y. PPAR-γ/NF-kB/AQP3 axis in M2 macrophage orchestrates lung adenocarcinoma progression by upregulating IL-6. Cell Death Dis 2024; 15:532. [PMID: 39060229 PMCID: PMC11282095 DOI: 10.1038/s41419-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Aquaporin 3 (AQP3), which is mostly expressed in pulmonary epithelial cells, was linked to lung adenocarcinoma (LUAD). However, the underlying functions and mechanisms of AQP3 in the tumor microenvironment (TME) of LUAD have not been elucidated. Single-cell RNA sequencing (scRNA-seq) was used to study the composition, lineage, and functional states of TME-infiltrating immune cells and discover AQP3-expressing subpopulations in five LUAD patients. Then the identifications of its function on TME were examined in vitro and in vivo. AQP3 was associated with TNM stages and lymph node metastasis of LUAD patients. We classified inter- and intra-tumor diversity of LUAD into twelve subpopulations using scRNA-seq analyses. The analysis showed AQP3 was mainly enriched in subpopulations of M2 macrophages. Importantly, mechanistic investigations indicated that AQP3 promoted M2 macrophage polarization by the PPAR-γ/NF-κB axis, which affected tumor growth and migration via modulating IL-6 production. Mixed subcutaneous transplanted tumor mice and Aqp3 knockout mice models were further utilized, and revealed that AQP3 played a critical role in mediating M2 macrophage polarization, modulating glucose metabolism in tumors, and regulating both upstream and downstream pathways. Overall, our study demonstrated that AQP3 could regulate the proliferation, migration, and glycometabolism of tumor cells by modulating M2 macrophages polarization through the PPAR-γ/NF-κB axis and IL-6/IL-6R signaling pathway, providing new insight into the early detection and potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Jiansheng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Yanling Chen
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Danwen Qian
- The Tumor Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, UK
| | - Yiming Zeng
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China.
| | - Yuan Xu
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
7
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
9
|
Swaroop AK, Negi P, Kar A, Mariappan E, Natarajan J, Namboori P K K, Selvaraj J. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs. Cytokine Growth Factor Rev 2024; 76:48-76. [PMID: 38220583 DOI: 10.1016/j.cytogfr.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
This concise review navigates the intricate realm of Interleukin-6 (IL-6), an important member of the cytokine family. Beginning with an introduction to cytokines, this narrative review unfolds with the historical journey of IL-6, illuminating its evolving significance. A crucial section unravels the three distinct signaling modes employed by IL-6, providing a foundational understanding of its versatile interactions within cellular landscapes. Moving deeper, the review meticulously dissects IL-6's signaling mechanisms, unraveling the complexities of its pleiotropic effects in both physiological responses and pathological conditions. A significant focus is dedicated to the essential role IL-6 plays in inflammatory diseases, offering insights into its associations and implications for various health conditions. The review also takes a therapeutic turn by exploring the emergence of anti-IL-6 monoclonal inhibitors, marking a profound stride in treatment modalities. Diving into the molecular realm, the review explores small molecules as agents for IL-6 inhibition, providing a nuanced perspective on diverse intervention strategies. As the review embarks on the final chapters, it contemplates future aspects, offering glimpses into potential research trajectories and the evolving landscape of IL-6-related studies.
Collapse
Affiliation(s)
- Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Preeya Negi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Ayushi Kar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research lab, Amrita Vishwavidyapeetham, Amrita Nagar, Ettimadai, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India.
| |
Collapse
|
10
|
Di Y, Song Y, Xu K, Wang Q, Zhang L, Liu Q, Zhang M, Liu X, Wang Y. Chicoric Acid Alleviates Colitis via Targeting the Gut Microbiota Accompanied by Maintaining Intestinal Barrier Integrity and Inhibiting Inflammatory Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6276-6288. [PMID: 38485738 DOI: 10.1021/acs.jafc.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1β, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Kejia Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianxu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Min Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
11
|
Chang YP, Tsai YH, Chen YM, Huang KT, Lee CP, Hsu PY, Chen HC, Lin MC, Chen YC. Upregulated microRNA-125b-5p in patients with asthma-COPD overlap mediates oxidative stress and late apoptosis via targeting IL6R/TRIAP1 signaling. Respir Res 2024; 25:64. [PMID: 38302925 PMCID: PMC10835813 DOI: 10.1186/s12931-024-02703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Among patients with chronic obstructive pulmonary disease (COPD), some have features of both asthma and COPD-a condition categorized as asthma-COPD overlap (ACO). Our aim was to determine whether asthma- or COPD-related microRNAs (miRNAs) play a role in the pathogenesis of ACO. METHODS A total of 22 healthy subjects and 27 patients with ACO were enrolled. We selected 6 miRNAs that were found to correlate with COPD and asthma. The expression of miRNAs and target genes was analyzed using quantitative reverse-transcriptase polymerase chain reaction. Cell apoptosis and intracellular reactive oxygen species production were evaluated using flow cytometry. In vitro human monocytic THP-1 cells and primary normal human bronchial epithelial (NHBE) cells under stimuli with cigarette smoke extract (CSE) or ovalbumin (OVA) allergen or both were used to verify the clinical findings. RESULTS We identified the upregulation of miR-125b-5p in patients with ACO and in THP-1 cells stimulated with CSE plus OVA allergen. We selected 16 genes related to the miR-125b-5p pathway and found that IL6R and TRIAP1 were both downregulated in patients with ACO and in THP-1 cells stimulated with CSE plus OVA. The percentage of late apoptotic cells increased in the THP-1 cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p small interfering RNA (siRNA). The percentage of reactive oxygen species-producing cells increased in the NHBE cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p siRNA. In NHBE cells, siRNA transfection reversed the upregulation of STAT3 under CSE+OVA stimulation. CONCLUSIONS Our study revealed that upregulation of miR-125b-5p in patients with ACO mediated late apoptosis in THP-1 cells and oxidative stress in NHBE cells via targeting IL6R and TRIAP1. STAT3 expression was also regulated by miR-125b-5p.
Collapse
Affiliation(s)
- Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Yi-Hsuan Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Yu-Mu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Hung-Chen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
| | - Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
| |
Collapse
|
12
|
Park EJ, Lee CW. Soluble receptors in cancer: mechanisms, clinical significance, and therapeutic strategies. Exp Mol Med 2024; 56:100-109. [PMID: 38182653 PMCID: PMC10834419 DOI: 10.1038/s12276-023-01150-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024] Open
Abstract
Soluble receptors are soluble forms of receptors found in the extracellular space. They have emerged as pivotal regulators of cellular signaling and disease pathogenesis. This review emphasizes their significance in cancer as diagnostic/prognostic markers and potential therapeutic targets. We provide an overview of the mechanisms by which soluble receptors are generated along with their functions. By exploring their involvement in cancer progression, metastasis, and immune evasion, we highlight the importance of soluble receptors, particularly soluble cytokine receptors and immune checkpoints, in the tumor microenvironment. Although current research has illustrated the emerging clinical relevance of soluble receptors, their therapeutic applications remain underexplored. As the landscape of cancer treatment evolves, understanding and targeting soluble receptors might pave the way for novel strategies for cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Eun-Ji Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Li W, Xu T, Jin H, Li M, Jia Q. Emerging role of cancer-associated fibroblasts in esophageal squamous cell carcinoma. Pathol Res Pract 2024; 253:155002. [PMID: 38056131 DOI: 10.1016/j.prp.2023.155002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Esophageal carcinoma is the sixth leading cause of cancer death globally and the majority of global cases are esophageal squamous cell carcinoma (ESCC). Difficulty in diagnosis exists as more than 70% of ESCC patients are diagnosed at the intermediate or advanced stage. Cancer-associated fibroblasts (CAFs) have been considered one of the crucial components in the process of tumor growth, promoting communications between cancer cells and the tumor microenvironment (TME). CAFs grow alongside malignancies dynamically and interact with ESCC cells to promote their progression, proliferation, invasion, tumor escape, chemo- and radio-resistance, etc. It is believed that CAFs qualify as a promising direction for treatment. Analyzing CAFs' subtypes and functions will elucidate the involvement of CAFs in ESCC and aid in therapeutics. This review summarizes current information on CAFs in ESCC and focuses on the latest interaction between CAFs and ESCC cancer cell discoveries. The origin of CAFs and their communication with ESCC cells and TME are also demonstrated. On the foundation of a thorough analysis, we highlight the clinical prospects and CAFs-related therapies in ESCC in the future.
Collapse
Affiliation(s)
- Wenqing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
14
|
Bi Y, Zhu Y, Tang S. Therapeutic Potential of Downregulated Interleukin-6 Signaling for the Treatment of Chronic Pain: A Mendelian Randomization Study. J Pain Res 2023; 16:4317-4328. [PMID: 38145035 PMCID: PMC10743722 DOI: 10.2147/jpr.s424086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction While numerous studies have emphasized the pivotal involvement of the Interleukin 6 (IL-6) pathway in the development of chronic pain, the causal nature of this relationship remains uncertain. Methods In this study, we opted to include genetic variants situated within the locus of the IL-6 receptor (IL-6R) that exhibited associations with C-reactive protein (CRP) levels. CRP serves as a downstream effector in the IL-6 pathway. Utilizing these variants as genetic proxies, we aimed to modulate IL-6 signaling. Employing a two-sample Mendelian randomization (MR) approach, we investigated the potential link between the genetic proxy and seven distinct subtypes of chronic pain, categorized based on their corresponding body locations. Moreover, we examined the relationship between chronic pain and an alternative instrument of IL-6 signaling that was weighted based on s-IL-6R levels. Furthermore, we conducted exploratory analyses to estimate the plausible causal association between CRP, gp130, and the subtypes of chronic pain. Results Our analysis showed that genetic proxied downregulation of IL-6 signaling, weighted on CRP levels, was linked to a reduced risk of chronic back and knee pain. The sensitivity analyses across various MR methods confirmed the consistency of the findings and showed no evidence of horizontal pleiotropy or heterogeneity. Moreover, the results remained robust with different sets of instrument variables. A genetically increased level of s-IL-6R was also negatively associated with chronic back and knee pain. However, there was no causal relationship between CRP and gp130 with chronic pain. Conclusion Based on our findings, there is evidence to suggest a potential causal relationship between IL-6 signaling and chronic back and knee pain. Consequently, the downregulation of IL-6 signaling holds promise as a potential therapeutic target for addressing chronic back and knee pain.
Collapse
Affiliation(s)
- Yaodan Bi
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yingchao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shuai Tang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Mukherjee S, Ghosh S, Bawali S, Chatterjee R, Saha A, Sengupta A, Keswani T, Sarkar S, Ghosh P, Chakraborty S, Khamaru P, Bhattacharyya A. Administration of soluble gp130Fc disrupts M-1 macrophage polarization, dendritic cell activation, MDSC expansion and Th-17 induction during experimental cerebral malaria. Int Immunopharmacol 2023; 123:110671. [PMID: 37494839 DOI: 10.1016/j.intimp.2023.110671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Regulatory effect of IL-6 on various immune cells plays a crucial role during experimental cerebral malaria pathogenesis. IL-6 neutralization can restore distorted ratios of myeloid dendritic cells and plasmacytoid dendritic cells as well as the balance between Th-17 and T-regulatory cells. IL-6 can also influence immune cells through classical and trans IL-6 signalling pathways. As trans IL-6 signalling is reportedly involved during malaria pathogenesis, we focused on studying the effects of trans IL-6 signalling blockade on various immune cell populations and how they regulate ECM progression. Results show that administration of sgp130Fc recombinant chimera protein lowers the parasitemia, increases the survivability of Plasmodium berghei ANKA infected mice, and restores the distorted ratios of M1/M2 macrophage, mDC/pDC, and Th-17/Treg. IL-6 trans signalling blockade has been found to affect both expansion of myeloid derived suppressor cells (MDSCs) and expression of inflammatory markers on them during Plasmodium berghei ANKA infection indicating that trans IL-6 signalling might regulate various immune cells and their function during ECM. In this work for the first time, we delineate the effect of sgp130Fc administration on influencing the immunological changes within the host secondary lymphoid organ during ECM induced by Plasmodium berghei ANKA infection.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Sriparna Bawali
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Rimbik Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Atreyee Saha
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA 149 13th Street Charlestown, MA 02129, USA
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Pronabesh Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India.
| |
Collapse
|
16
|
Zhang S, Zhang W, Sun H, Xue R, Lv Q. Therapeutic potential of single-nucleotide polymorphism-mediated interleukin-6 receptor blockade in cancer treatment: A Mendelian randomization study. Heliyon 2023; 9:e20474. [PMID: 37810867 PMCID: PMC10556766 DOI: 10.1016/j.heliyon.2023.e20474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Background Interleukin-6 (IL-6) is a crucial member of the cytokine network and plays a pivotal role in the pathogenesis of various diseases, including cancer. IL-6 receptor (IL-6R) blockade is widely employed as a therapeutic strategy; however, its efficacy in anticancer therapy remains ambiguous. Methods An inverse variance-weighted Mendelian randomization (MR) analysis was conducted to assess the causal effects exerted by IL-6R blockade in remediating cancer. Drug-targeted single-nucleotide polymorphisms (SNPs) were introduced within 300 kb of the IL-6R gene. An instrumental variable comprising 26 SNPs represented IL-6 signaling downregulation and C-reactive protein level reduction. Datasets pertaining to the 33 types of cancer investigated in this study were acquired from the FinnGen genome-wide association study. Results The selected instrumental variable lowered fibrinogen levels, confirming its ability to mimic IL-6R blockade. IL-6R blockade exhibited therapeutic effects on five different cancer types documented in the FinnGen database (N = 334,364, including 76,781 cancer patients): bladder (odds ratios (OR) = 0.563), laryngeal (OR = 0.293), eye (OR = 0.098), gallbladder (OR = 0.059), and myeloid leukemia (OR = 0.442); however, it simultaneously elevated the risk of developing basal cell carcinoma (OR = 1.312) and melanoma (OR = 1.311). Sensitivity analyses did not alter the primary results. Conclusion Therefore, this study aimed to evaluate the potential and efficacy of SNP-based IL-6R blockade in treating cancer.
Collapse
Affiliation(s)
- Shuwan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Wenchuan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hanxue Sun
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Rui Xue
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Qingjie Lv
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
17
|
Nolde M, Alayash Z, Reckelkamm SL, Kocher T, Ehmke B, Holtfreter B, Baurecht H, Georgakis MK, Baumeister SE. Downregulation of interleukin 6 signaling might reduce the risk of periodontitis: a drug target Mendelian randomization study. Front Immunol 2023; 14:1160148. [PMID: 37342352 PMCID: PMC10277556 DOI: 10.3389/fimmu.2023.1160148] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023] Open
Abstract
Aim Interleukin 6 (IL-6) is considered to play a role in the dysbiotic host response in the development of periodontitis. While the inhibition of the IL-6 receptor using monoclonal antibodies is a well-established therapy for some diseases, so far, its potential benefit in patients with periodontitis has not been examined. We tested the association of genetically proxied downregulation of IL-6 signaling with periodontitis to explore whether downregulation of IL-6 signaling could represent a viable treatment target for periodontitis. Materials and methods As proxies for IL-6 signaling downregulation, we selected 52 genetic variants in close vicinity of the gene encoding IL-6 receptor that were associated with lower circulating C-reactive protein (CRP) levels in a genome-wide association study (GWAS) of 575 531 participants of European ancestry from the UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Associations with periodontitis were tested with inverse-variance weighted Mendelian randomization in a study of 17 353 cases and 28 210 controls of European descent in the Gene-Lifestyle Interactions in Dental Endpoints (GLIDE) consortium. In addition, the effect of CRP reduction independent of the IL-6 pathway was assessed. Results Genetically proxied downregulation of IL-6 signaling was associated with lower odds of periodontitis (odds ratio (OR) = 0.81 per 1-unit decrement in log-CRP levels; 95% confidence interval (CI): [0.66;0.99]; P = 0.0497). Genetically proxied reduction of CRP independent of the IL-6 pathway had a similar effect (OR = 0.81; 95% CI: [0.68; 0.98]; P = 0.0296). Conclusion In conclusion, genetically proxied downregulation of IL-6 signaling was associated with lower odds of periodontitis and CRP might be a causal target for the effect of IL-6 on the risk of periodontitis.
Collapse
Affiliation(s)
- Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
18
|
Eriksson P, Skoglund O, Hemgren C, Sjöwall C. Clinical experience and safety of Janus kinase inhibitors in giant cell arteritis: a retrospective case series from Sweden. Front Immunol 2023; 14:1187584. [PMID: 37304255 PMCID: PMC10247956 DOI: 10.3389/fimmu.2023.1187584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
The Janus kinase (JAK)-STAT signaling pathway is relevant in both Takayasu and giant cell arteritis (GCA), and the use of JAK inhibitors (JAKi) in arthritis, psoriasis, and inflammatory bowel disease is nowadays common. Some evidence of the clinical efficacy of JAKi in GCA exists and a phase III randomized controlled trial (RCT) of upadacitinib is currently recruiting. In 2017, we started using barcitinib in a GCA patient with inadequate response to corticosteroids, and later on, we treated other 14 GCA patients with baricitinib/tofacitinib during intense follow-up. The retrospective data of these 15 individuals are here summarized. GCA was diagnosed based on the ACR criteria and/or imaging techniques combined with increased C-reactive protein (CRP) and/or erythrocyte sedimentation rate (ESR) followed by a good initial response to corticosteroids. JAKi was initiated based on inflammatory activity, with increased CRP, presumably dependent on GCA with clinical symptoms, despite unsatisfying high doses of prednisolone. The mean age at JAKi initiation was 70.1 years and the mean exposure to JAKi was 19 months. From initiation, significant reductions in CRP were seen already at 3 (p = 0.02) and 6 (p = 0.02) months. A slower decrease was observed regarding ESR at 3 (p = 0.12) and 6 (p = 0.02) months. Furthermore, the daily prednisolone doses were reduced at 3 (p = 0.02) and 6 (p = 0.004) months. No GCA relapses were observed. Two patients were affected by serious infections, but JAKi therapy was retained or reintroduced after recovery. We present encouraging observational data on JAKi in GCA in one of the hitherto largest case series with long-term follow-up. Our clinical experiences will complement the results from the awaited RCT.
Collapse
Affiliation(s)
- Per Eriksson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| | - Oliver Skoglund
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| | - Cecilia Hemgren
- Department of Internal Medicine, Division of Rheumatology, County Hospital Ryhov, Jönköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Jiang M, Chen M, Liu Q, Jin Z, Yang X, Zhang W. SF3B1 mutations in myelodysplastic syndromes: A potential therapeutic target for modulating the entire disease process. Front Oncol 2023; 13:1116438. [PMID: 37007111 PMCID: PMC10063959 DOI: 10.3389/fonc.2023.1116438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematologic malignancies characterized by ineffective hematopoiesis and dysplasia of the myeloid cell lineage and are characterized by peripheral blood cytopenia and an increased risk of transformation to acute myeloid leukemia (AML). Approximately half of the patients with MDS have somatic mutations in the spliceosome gene. Splicing Factor 3B Subunit 1A (SF3B1), the most frequently occurring splicing factor mutation in MDS is significantly associated with the MDS-RS subtype. SF3B1 mutations are intimately involved in the MDS regulation of various pathophysiological processes, including impaired erythropoiesis, dysregulated iron metabolism homeostasis, hyperinflammatory features, and R-loop accumulation. In the fifth edition of the World Health Organization (WHO) classification criteria for MDS, MDS with SF3B1 mutations has been classified as an independent subtype, which plays a crucial role in identifying the disease phenotype, promoting tumor development, determining clinical features, and influencing tumor prognosis. Given that SF3B1 has demonstrated therapeutic vulnerability both in early MDS drivers and downstream events, therapy based on spliceosome-associated mutations is considered a novel strategy worth exploring in the future.
Collapse
|
20
|
IL-6 evoked biochemical changes in prostate cancer cells. Cytokine 2023; 161:156079. [PMID: 36372008 DOI: 10.1016/j.cyto.2022.156079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The pro-inflammatory cytokine IL-6 has been associated with the progression of PCa to a castration-resistant phenotype. In this work, we characterized the biochemical changes evoked by IL-6 in three different models of PCa cells, including LNCaP, C4-2, and PC3. The effect of IL-6 on PCa cells was compared with the effect obtained by co-stimulation with the cAMP-inducing agent forskolin (FSK). Stimulation of LNCaP cells with IL-6 or IL-6 + FSK evoked increased expression of the neuroendocrine marker tubulin IIIβ and Cav3.2 T-type Ca2+ channel subunit. PC3 cells, representing a more advanced state of PCa, had high levels of tubulin IIIβ expression without any further changes observed by treatment with IL-6 or IL-6 + FSK. Elevated expression of the glucocorticoid receptor was observed in PC3, but not in LNCaP or C4-2 cells. Glucocorticoid receptor expression was not regulated by IL-6 stimulation of LNCaP or C4-2 cells. IL-6 acting alone or together with FSK evoked a significant reduction in the expression of the transcription factor REST and retinoblastoma tumor suppressor protein Rb1. In LNCaP cells, IL-6 acting alone or together with FSK had no effect on the expression of several biological markers of advanced PCa, including Aurora kinase A, valosin-containing protein, calcium-sensing receptor, calreticulin, S100A protein, and Protein S. In PC3 cells, co-treatment with IL-6 + FSK evoked increased expression of REST and S100A proteins, as well as a reduction in Protein S levels. These findings reveal a complex pattern of biochemical changes in PCa cells under the influence of IL-6.
Collapse
|
21
|
Hamilton FW, Thomas M, Arnold D, Palmer T, Moran E, Mentzer AJ, Maskell N, Baillie K, Summers C, Hingorani A, MacGowan A, Khandaker GM, Mitchell R, Davey Smith G, Ghazal P, Timpson NJ. Therapeutic potential of IL6R blockade for the treatment of sepsis and sepsis-related death: A Mendelian randomisation study. PLoS Med 2023; 20:e1004174. [PMID: 36716318 PMCID: PMC9925069 DOI: 10.1371/journal.pmed.1004174] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/13/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Sepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin 6 (IL-6). Genetic variants in IL6R known to down-regulate IL-6 signalling are associated with improved Coronavirus Disease 2019 (COVID-19) outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RAs). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. METHODS AND FINDINGS We performed a Mendelian randomisation (MR) analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis (primary outcome), sepsis severity, other infections, and COVID-19 (secondary outcomes). We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP and gp130 in a similar analysis. In the UK Biobank cohort (N = 486,484, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of our primary outcome, sepsis (odds ratio (OR) = 0.80; 95% confidence interval (CI) 0.66 to 0.96, per unit of natural log-transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR = 0.74; 95% CI 0.47 to 1.15); critical care admission with sepsis (OR = 0.48, 95% CI 0.30 to 0.78) and critical care death with sepsis (OR = 0.37, 95% CI 0.14 to 0.98). Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 to 0.97) and for sepsis survival in critical care (OR = 0.22; 95% CI 0.04 to 1.31) in the GainS and GenOSept consortium, although this result had a large degree of imprecision. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR = 0.69, 95% CI 0.57 to 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. These results are subject to the limitations and assumptions of MR, which in this case reflects interpretation of these SNP effects as causally acting through blockade of IL6R, and reflect lifetime exposure to IL6R blockade, rather than the effect of therapeutic IL6R blockade. CONCLUSIONS IL6R blockade is causally associated with reduced incidence of sepsis. Similar but imprecisely estimated results supported a causal effect also on sepsis related mortality and critical care admission with sepsis. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. These data suggest that a randomised trial of IL-6 receptor antagonists in sepsis should be considered.
Collapse
Affiliation(s)
- Fergus W. Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Infection Science, North Bristol NHS Trust, Bristol, United Kingdom
| | - Matt Thomas
- Intensive Care Unit, North Bristol NHS Trust, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, University of Bristol, Bristol, United Kingdom
| | - Tom Palmer
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Ed Moran
- Infection Science, North Bristol NHS Trust, Bristol, United Kingdom
| | - Alexander J. Mentzer
- Wellcome Centre For Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, United Kingdom
| | - Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aroon Hingorani
- UCL Institute for Cardiovascular Science, University College London, London, United Kingdom
- UCL BHF Research Accelerator, University College London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | | | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Ruth Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Peter Ghazal
- Project Sepsis, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
23
|
Blockade of the protease ADAM17 ameliorates experimental pancreatitis. Proc Natl Acad Sci U S A 2022; 119:e2213744119. [PMID: 36215509 PMCID: PMC9586293 DOI: 10.1073/pnas.2213744119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.
Collapse
|
24
|
Li X, Jiang W, Dong S, Li W, Zhu W, Zhou W. STAT3 Inhibitors: A Novel Insight for Anticancer Therapy of Pancreatic Cancer. Biomolecules 2022; 12:1450. [PMID: 36291659 PMCID: PMC9599947 DOI: 10.3390/biom12101450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) is a family of intracellular cytoplasmic transcription factors involved in many biological functions in mammalian signal transduction. Among them, STAT3 is involved in cell proliferation, differentiation, apoptosis, and inflammatory responses. Despite the advances in the treatment of pancreatic cancer in the past decade, the prognosis for patients with pancreatic cancer remains poor. STAT3 has been shown to play a pro-cancer role in a variety of cancers, and inhibitors of STAT3 are used in pre-clinical and clinical studies. We reviewed the relationship between STAT3 and pancreatic cancer and the latest results on the use of STAT3 inhibitors in pancreatic cancer, with the aim of providing insights and ideas around STAT3 inhibitors for a new generation of chemotherapeutic modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Xin Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wenkai Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wancheng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Weixiong Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
25
|
Roles of Interleukin-6-mediated immunometabolic reprogramming in COVID-19 and other viral infection-associated diseases. Int Immunopharmacol 2022; 110:109005. [PMID: 35780641 PMCID: PMC9236983 DOI: 10.1016/j.intimp.2022.109005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/08/2023]
Abstract
Interleukin-6 (IL-6) is a highly pleiotropic glycoprotein factor that can modulate innate and adaptive immunity as well as various aspects of metabolism, including glycolysis, fatty acid oxidation and oxidative phosphorylation. Recently, the expression and release of IL-6 is shown to be significantly increased in numerous diseases related to virus infection, and this increase is positively correlated with the disease severity. Immunity and metabolism are two highly integrated and interdependent systems, the balance between them plays a pivotal role in maintaining body homeostasis. IL-6-elicited inflammatory response is found to be closely associated with metabolic disorder in patients with viral infection. This brief review summarizes the regulatory role of IL-6 in immunometabolic reprogramming among seven viral infection-associated diseases.
Collapse
|
26
|
Yang YC, Fu H, Zhang B, Wu YB. Interleukin-6 Downregulates the Expression of Vascular Endothelial-Cadherin and Increases Permeability in Renal Glomerular Endothelial Cells via the Trans-Signaling Pathway. Inflammation 2022; 45:2544-2558. [DOI: 10.1007/s10753-022-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
AbstractThe pathogenesis of IgA nephropathy (IgAN) is still unknown, but reportedly, interleukin 6 (IL-6) is involved in this process. However, its role in damaging glomerular endothelial cells is still unclear. Therefore, in this study, to clarify the mechanism of the pathogenesis of IgAN, we investigated the effect of IL-6 on the permeability of glomerular endothelial cells. A rat model of IgAN was established, and the animals divided into two groups, namely, the normal and IgAN groups. Glomerular endothelial cell injury was evaluated via electron microscopy. Furthermore, IL-6-induced changes in the permeability of human renal glomerular endothelial cells (HRGECs) were measured via trans-endothelial resistance (TEER) measurements and fluorescein isothiocyanate-dextran fluorescence. Furthermore, vascular endothelial-cadherin (VE-cadherin) was overexpressed to clarify the effect of IL-6 on HRGEC permeability, and to determine the pathway by which it acts. The classical signaling pathway was blocked by silencing IL-6R and the trans-signaling pathway was blocked by sgp30Fc. In IgAN rats, electron microscopy showed glomerular endothelial cell damage and western blotting revealed a significant increase in IL-6 expression, while VE-cadherin expression decreased significantly in the renal tissues. IL-6/IL-6R stimulation also significantly increased the permeability of HRGECs (p < 0.05). This effect was significantly reduced by VE-cadherin overexpression (p < 0.01). After IL-6R was silenced, IL-6/IL-6R still significantly reduced VE-cadherin expression and sgp30Fc blocked the trans-signaling pathway as well as the upregulation of IL-6/IL-6R-induced VE-cadherin expression. This suggests that IL-6 mainly acts via the trans-signaling pathway. IL-6 increased the permeability of HRGECs by decreasing the expression of VE-cadherin via the trans-signaling pathway.
Collapse
|
27
|
Magro G. Satralizumab might not be enough. Olamkicept (sgp130Fc) in Neuromyelitis Optica Spectrum Disorder. Mult Scler Relat Disord 2022; 65:104037. [PMID: 35835028 DOI: 10.1016/j.msard.2022.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Satralizumab, the monoclonal antibody against IL-6R, has been approved not long ago in Neuromyelitis Optica Spectrum Disorder (NMOSD). Nonetheless, inhibiting IL-6 Receptor might not be enough, since Satralizumab results in inhibition of both pro and anti-inflammatory pathways of IL-6. The detrimental role of IL-6 in NMOSD could be mainly played by the trans-signaling. Olamkicept (sgp130Fc) is a recently approved monoclonal antibody that prevents only the trans-signaling pathway of IL-6 to be activated. Targeting only the trans-signaling pathway (the pro-inflammatory one) with Olamkicept/sgp130Fc could lead to avoidance of potential harmful effect of global IL-6 blockade such as profound immunosuppression and it could also mean leaving the “good side” of IL-6 on, while turning the "bad side" off.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Medical, Surgical Sciences, Neurology Unit, University "Magna Græcia" of Catanzaro, Italy.
| |
Collapse
|
28
|
Giuseppe M. Olamkicept(sgp130Fc): The missing trial in Neuromyelitis optica spectrum disorder. Clin Immunol 2022; 241:109072. [DOI: 10.1016/j.clim.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
|
29
|
Hou Y, Chen Z, Wang L, Deng Y, Liu G, Zhou Y, Shi H, Shi X, Jiang Q. Characterization of Immune-Related Genes and Immune Infiltration Features in Epilepsy by Multi-Transcriptome Data. J Inflamm Res 2022; 15:2855-2876. [PMID: 35547834 PMCID: PMC9084924 DOI: 10.2147/jir.s360743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yunqi Hou
- Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
- Correspondence: Yunqi Hou, Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China, Email
| | - Zhen Chen
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| | - Liping Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570102, People’s Republic of China
| | - Yingxin Deng
- Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| | - Genglong Liu
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, 510095, People’s Republic of China
| | - Yongfen Zhou
- Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| | - Haiqin Shi
- Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| | - Xiangqun Shi
- Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| | - Qianhua Jiang
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| |
Collapse
|
30
|
Dritsoula A, Dowsett L, Pilotti C, O'Connor MN, Moss SE, Greenwood J. Angiopathic activity of LRG1 is induced by the IL-6/STAT3 pathway. Sci Rep 2022; 12:4867. [PMID: 35318338 PMCID: PMC8938720 DOI: 10.1038/s41598-022-08516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich α-2-glycoprotein 1 (LRG1) is a secreted glycoprotein that under physiological conditions is produced predominantly by the liver. In disease, its local induction promotes pathogenic neovascularisation while its inhibition leads to reduced dysfunctional angiogenesis. Here we examine the role of interleukin-6 (IL-6) in defective angiogenesis mediated by LRG1. IL-6 treatment induced LRG1 expression in endothelial cells and ex vivo angiogenesis cultures and promoted vascular growth with reduced mural cell coverage. In Lrg1-/- explants, however, IL-6 failed to stimulate angiogenesis and vessels exhibited improved mural cell coverage. IL-6 activated LRG1 transcription through the phosphorylation and binding of STAT3 to a conserved consensus site in the LRG1 promoter, the deletion of which abolished activation. Blocking IL-6 signalling in human lung endothelial cells, using the anti-IL6 receptor antibody Tocilizumab, significantly reduced LRG1 expression. Our data demonstrate that IL-6, through STAT3 phosphorylation, activates LRG1 transcription resulting in vascular destabilisation. This observation is especially timely in light of the potential role of IL-6 in COVID-19 patients with severe pulmonary microvascular complications, where targeting IL-6 has been beneficial. However, our data suggest that a therapy directed towards blocking the downstream angiopathic effector molecule LRG1 may be of greater utility.
Collapse
Affiliation(s)
- Athina Dritsoula
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Laura Dowsett
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Camilla Pilotti
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Marie N O'Connor
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
31
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|