1
|
Van Roy Z, Kak G, Fallet RW, Kielian T. Interferon-gamma receptor signaling regulates innate immunity during Staphylococcus aureus craniotomy infection. J Neuroinflammation 2025; 22:46. [PMID: 39987156 PMCID: PMC11847343 DOI: 10.1186/s12974-025-03376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
A craniotomy is a neurosurgical procedure performed to access the intracranial space. In 3-5% of cases, infections can develop, most caused by Staphylococcus aureus biofilm formation on the skull surface. Medical management of this infection is difficult, as biofilm properties confer immune and antimicrobial recalcitrance to the infection and necessitate additional surgical procedures. Furthermore, treatment failure rates can be appreciably high. These factors, compounded with rapidly expanding rates of antimicrobial resistance, highlight the need to develop alternative treatment strategies to target and reverse the immune dysfunction that occurs during biofilm infection. Our recent work has identified CD4+ Th1 and Th17 cells as potent regulators of innate immune cell activation during craniotomy infection. Here, we report the role of IFN-γ, versus other Th1- and Th17-derived cytokines, in programing the immune response to biofilm infection using both global and cell type-specific IFN-γR1-deficient (Ifngr1-/-) mice. Bacterial burdens were significantly higher in Ifngr1-/- relative to WT animals despite few changes in immune cell abundance. Single-cell transcriptomics identified candidate explanations for this phenotype as alterations in cell death pathways, innate immune cell activation, MHC-II expression, and T cell responses were significantly reduced in Ifngr1-/- mice. While caspase-1 activation in PMNs and macrophage/microglial MHC-II expression were regulated by IFN-γ signaling, no phenotypes were observed with either granulocyte- or macrophage/microglia Ifngr1-/- conditional knockout mice, suggestive of redundancy. Instead, a decreased Th1/Th17 ratio was identified in Ifngr1-/- animals that was corroborated by elevated IL-17 levels and correlated with dysfunctional T cell-innate immune communication. Further, Th17 cells were less effective than Th1 cells in promoting S. aureus bactericidal activity in microglia and macrophages. Collectively, this work identifies a key protective role for IFN-γ during craniotomy infection by enhancing macrophage and microglial antibacterial activity. Therefore, controlled programming of IFN-γ responses may represent a novel therapeutic strategy for chronic craniotomy infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Gunjan Kak
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rachel W Fallet
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA.
| |
Collapse
|
2
|
Lotsios NS, Keskinidou C, Karagiannis SP, Papavassiliou KA, Papavassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE, Vassiliou AG. Expression and Regulation of Hypoxia-Inducible Factor Signalling in Acute Lung Inflammation. Cells 2024; 14:29. [PMID: 39791730 PMCID: PMC11719729 DOI: 10.3390/cells14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are central regulators of gene expression in response to oxygen deprivation, a common feature in critical illnesses. The significant burden that critical illnesses place on global healthcare systems highlights the need for a deeper understanding of underlying mechanisms and the development of innovative treatment strategies. Among critical illnesses, impaired lung function is frequently linked to hypoxic conditions. This review focuses on the expression and regulation of HIF signalling in experimental models of acute lung injury (ALI) and clinical studies in critically ill patients with acute respiratory distress syndrome (ARDS). We explore the potential dual role of HIF signalling in acute lung inflammation. Furthermore, its role in key biological processes and its potential prognostic significance in clinical scenarios are discussed. Finally, we explore recent pharmacological advancements targeting HIF signalling, which have emerged as promising alternatives to existing therapeutic approaches, potentially enabling more effective management strategies.
Collapse
Affiliation(s)
- Nikolaos S. Lotsios
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Sotirios P. Karagiannis
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| |
Collapse
|
3
|
Tang J, Shi J, Han Z, Chen X. Application of Macrophage Subtype Analysis in Acute Lung Injury/Acute Respiratory Distress Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:412. [PMID: 39735977 DOI: 10.31083/j.fbl2912412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 12/31/2024]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical illness. Supportive therapy is still the main strategy for ALI/ARDS. Macrophages are the predominant immune cells in the lungs and play a pivotal role in maintaining homeostasis, regulating metabolism, and facilitating tissue repair. During ALI/ARDS, these versatile cells undergo polarization into distinct subtypes with significant variations in transcriptional profiles, developmental trajectory, phenotype, and functionality. This review discusses developments in the analysis of alveolar macrophage subtypes in the study of ALI/ARDS, and the potential value of targeting new macrophage subtypes in the diagnosis, prognostic evaluation, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jiajia Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Jun Shi
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Liu J, Bao T, Zhou Y, Ma M, Tian Z. Deficiency of Secreted Phosphoprotein 1 Alleviates Hyperoxia-induced Bronchopulmonary Dysplasia in Neonatal Mice. Inflammation 2024:10.1007/s10753-024-02088-1. [PMID: 38951356 DOI: 10.1007/s10753-024-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disorder characterized by impaired proximal airway and bronchoalveolar development in premature births. Secreted phosphoprotein 1 (SPP1) is involved in lung development and lung injury events, while its role was not explored in BPD. For establishing the in vivo models of BPD, a mouse model of hyperoxia-induced lung injury was generated by exposing neonatal mice to hyperoxia for 7 days after birth. Alveolar myofibroblasts (AMYFs) were treated with hyperoxia to establish the in vitro models of BPD. Based on the scRNA-seq analysis of lungs of mice housed under normoxia or hyperoxia conditions, mouse macrophages and fibroblasts were main different cell clusters between the two groups, and differentially expressed genes in fibroblasts were screened. Further GO and KEGG enrichment analysis revealed that these differentially expressed genes were mainly enriched in the pathways related to cell proliferation, apoptosis as well as the PI3K-AKT and ERK/MAPK pathways. SPP1 was found up-regulated in the lung tissues of hyperoxia mice. We also demonstrated the up-regulation of SPP1 in the BPD patients, the mouse model of hyperoxia-induced lung injury, and hyperoxia-induced cells. SPP1 deficiency was revealed to reduce the hyperoxia-induced apoptosis, oxidative stress and inflammation and increase the viability of AMYFs. In the mouse model of hyperoxia induced lung injury, SPP1 deficiency was demonstrated to reverse the hyperoxia-induced alveolar growth disruption, oxidative stress and inflammation. Overall, SPP1 exacerbates BPD progression in vitro and in vivo by regulating oxidative stress and inflammatory response via the PI3K-AKT and ERK/MAPK pathways, which might provide novel therapeutic target for BPD therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Yajuan Zhou
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China.
| |
Collapse
|
5
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
6
|
Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z. Osteopontin: A Novel Therapeutic Target for Respiratory Diseases. Lung 2024; 202:25-39. [PMID: 38060060 DOI: 10.1007/s00408-023-00665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein that is involved in physiological and pathological events. Emerging evidence suggests that OPN also plays a critical role in the pathogenesis of respiratory diseases. OPN can be produced and secreted by various cell types in lungs and overexpression of OPN has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. OPN exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis of these respiratory diseases, and genetic and pharmacological moudulation of OPN exerts therapeutic effects in the treatment of respiratory diseases. In this review, we summarize the recent evidence of multifaceted roles and underlying mechanisms of OPN in these respiratory diseases, and targeting OPN appears to be a potential therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
7
|
Song D, Li A, Chen B, Feng J, Duan T, Cheng J, Chen L, Wang W, Min Y. Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens. J Anim Sci Biotechnol 2023; 14:147. [PMID: 37978561 PMCID: PMC10655300 DOI: 10.1186/s40104-023-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses. RESULTS The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05). CONCLUSIONS In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Aike Li
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Bingxu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Tao Duan
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Junlin Cheng
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Lixian Chen
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Weiwei Wang
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
9
|
Hu K, Shang Z, Yang X, Zhang Y, Cao L. Macrophage Polarization and the Regulation of Bone Immunity in Bone Homeostasis. J Inflamm Res 2023; 16:3563-3580. [PMID: 37636272 PMCID: PMC10460180 DOI: 10.2147/jir.s423819] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
Bone homeostasis is a dynamic equilibrium state of bone formation and absorption, ensuring skeletal development and repair. Bone immunity encompasses all aspects of the intersection between the skeletal and immune systems, including various signaling pathways, cytokines, and the crosstalk between immune cells and bone cells under both homeostatic and pathological conditions. Therefore, as key cell types in bone immunity, macrophages can polarize into classical pro-inflammatory M1 macrophages and alternative anti-inflammatory M2 macrophages under the influence of the body environment, participating in the regulation of bone metabolism and playing various roles in bone homeostasis. M1 macrophages can not only act as precursors of osteoclasts (OCs), differentiate into mature OCs, but also secrete pro-inflammatory cytokines to promote bone resorption; while M2 macrophages secrete osteogenic factors, stimulating the differentiation and mineralization of osteoblast precursors and mesenchymal stem cells (MSCs), and subsequently increase bone formation. Once the polarization of macrophages is imbalanced, the resulting immune dysregulation will cause inflammatory stimulation, and release a large amount of inflammatory factors affecting bone metabolism, leading to pathological conditions such as osteoporosis (OP), rheumatoid arthritis (RA), and steroid-induced femoral head necrosis (SANFH). In this review, we introduce the signaling pathways and related factors of macrophage polarization, as well as their relationships with immune factors, OB, OC, and MSC. We also discuss the roles of macrophage polarization and bone immunity in various diseases of bone homeostasis imbalance, as well as the factors regulating them, which may help to develop new methods for treating bone metabolic disorders.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhengya Shang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xiaorui Yang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjie Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Linzhong Cao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
10
|
Th17/Treg Imbalance: Implications in Lung Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24054865. [PMID: 36902294 PMCID: PMC10003150 DOI: 10.3390/ijms24054865] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Regulatory T cells (Tregs) and T helper 17 cells (Th17) are two CD4+ T cell subsets with antagonist effects. Th17 cells promote inflammation, whereas Tregs are crucial in maintaining immune homeostasis. Recent studies suggest that Th17 cells and Treg cells are the foremost players in several inflammatory diseases. In this review, we explore the present knowledge on the role of Th17 cells and Treg cells, focusing on lung inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), sarcoidosis, asthma, and pulmonary infectious diseases.
Collapse
|