1
|
Wang B, Xia Y, Zhou C, Zeng Y, Son HG, Demehri S. CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression. JCI Insight 2025; 10:e180962. [PMID: 39782693 PMCID: PMC11721301 DOI: 10.1172/jci.insight.180962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025] Open
Abstract
CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol's therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell-macrophage crosstalk leads to IL-24-mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.
Collapse
Affiliation(s)
- Bo Wang
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology and
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Xia
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Can Zhou
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuhan Zeng
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Heehwa G. Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
He X, Zhou Z, Wang J, Zhao Q, Fan S, Yao Q, Lian W, You Y. Anti-liver cancer therapeutic targets and safety of usenamine A in experimental liver cancer. J Pharm Pharmacol 2025; 77:43-55. [PMID: 39360781 DOI: 10.1093/jpp/rgae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/13/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Liver cancer is highly heterogeneous with poor drug response. Usenamine A has anticancer activity. Usnic acid has hepatocytotoxicity. OBJECTIVES As a derivative of usnic acid, if usenamine A can be safely used in treatment for liver cancer is unknown. METHODS MTT and clone formation assays assessed cell viability and proliferation. Tumor growth was determined using a xenograft model. Flow cytometry was used to detect the cell cycle. mRNA transcriptome sequencing investigated differential gene expression. Safety was evaluated in mice. KEY FINDINGS Usenamine A inhibited proliferation and clone formation of HepG2 cells and xenograft tumor growth through cell cycle arrest at G0/G1. Usenamine A altered gene expression in a direction supporting anticancer activity. IL24, JUN, DUSP4, and DUSP5 were upregulated while PRKACA, PRKCB, TP53, WNT6, E2F3, LGR4, GPR78, and MAPK4 were downregulated. Ten of above genes overlapped in the KEGG enriched non-small cell lung cancer/glioma/cytokine-cytokine receptor interaction/Wnt/MAPK pathway network. Usenamine A has a strong binding affinity for PRKACA and PRKCB proteins. Usenamine A showed minimal toxicity in mice. CONCLUSIONS Usenamine A is a safe anticancer agent against hepatocellular carcinoma. Regulation of 12 cancer-associated genes and the correlated pathway network are its therapeutic targets.
Collapse
Affiliation(s)
- Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Zhangping Zhou
- School of Public Health, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Jing Wang
- Department of Health Management, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710038, Shanxi Province, China
| | - Qing Zhao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Shirui Fan
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Qian Yao
- Institute of Yunnan Tumor, The Third Affiliated Hospital (Yunnan Tumor Hospital) of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Wenjing Lian
- School of Public Health, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Yutong You
- School of Public Health, Kunming Medical University, Kunming 650500, Yunnan Province, China
| |
Collapse
|
3
|
Hoch CC, Hachani K, Han Y, Schmidl B, Wirth M, Multhoff G, Bashiri Dezfouli A, Wollenberg B. The future of interleukin gene therapy in head and neck cancers. Expert Opin Biol Ther 2024; 24:1057-1073. [PMID: 39291462 DOI: 10.1080/14712598.2024.2405568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Head and neck cancer (HNC), primarily head and neck squamous cell carcinomas, originates from the squamous epithelium in areas like the oral cavity, lip, larynx, and oropharynx. With high morbidity impacting critical functions, combined treatments like surgery, radiation, and chemotherapy often fall short in advanced stages, highlighting the need for innovative therapies. AREAS COVERED This review critically evaluates interleukin (IL) gene therapy for treating HNC. The discussion extends to key ILs in HNC, various gene therapy techniques and delivery methods. We particularly focus on the application of IL-2, IL-12, and IL-24 gene therapies, examining their mechanisms and outcomes in preclinical studies and clinical trials. The final sections address IL gene therapy challenges in HNC, exploring solutions and critically assessing future therapeutic directions. EXPERT OPINION Despite advancements in genomic and immunotherapy, significant challenges in HNC treatment persist, primarily due to the immunosuppressive nature of the tumor microenvironment and the adverse effects of current therapies. The therapeutic efficacy of IL gene therapy hinges on overcoming these hurdles through refined delivery methods that ensure targeted, tumor-specific gene expression. Future strategies should focus on refining gene delivery methods and combining IL gene therapy with other treatments to optimize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Yu Han
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Benedikt Schmidl
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Markus Wirth
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Munich, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Munich, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
4
|
Liu B, Zheng H, Ma G, Shen H, Pang Z, Huang G, Song Q, Wang G, Du J. Involvement of ICAM5 in Carcinostasis Effects on LUAD Based on the ROS1-Related Prognostic Model. J Inflamm Res 2024; 17:6583-6602. [PMID: 39318995 PMCID: PMC11421455 DOI: 10.2147/jir.s475088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
Background Lung cancer is the most common type of cancer in the world. In lung adenocarcinoma (LUAD), studies on receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) have mainly focused on the oncogenic effects of its fusion mutations, whereas ROS1 has been reported to be aberrantly expressed in a variety of cancers and can extensively regulate the growth, survival, and proliferation of tumor cells through multiple signaling pathways. The comprehensive analysis of ROS1 expression has not been fully investigated regarding its predictive value for LUAD patients. Methods Gene expression profiles collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were used to build and validate prognostic risk models. The association of ROS1 with overall survival and the immune landscape was obtained from the Tumor Immune Estimation Resource (TIMER) database. The following analyses were performed using the R package to determine the model's validity: pathway dysregulation analysis, gene set enrichment analysis, Gene Oncology analysis, immune invasion analysis, chemotherapy, radiotherapy, and immunotherapy sensitivity analysis. Finally, we conducted a pan-cancer analysis and performed in vitro experiments to explore the regulatory role of intercellular adhesion molecule 5 (ICAM5) in the progression of LUAD. Results We constructed a 17-gene model that categorized patients into two risk groups. The model had predictive accuracy for tumor prognosis and was specific for patients with high ROS1 expression. Comprehensive analysis showed that patients in the high-risk group were characterized by marked dysregulation of multiple pathways (eg, unfolded protein response), immune suppression of the tumor microenvironment, and poor benefit from immunotherapy and radiotherapy compared with patients in the low-risk group. PLX4720 may be a suitable treatment for the high-risk patient population. The ICAM5 gene has been demonstrated to inhibit the proliferation, cell cycle, invasion, and migration of LUAD cells. Conclusion We constructed a 17-gene prognostic risk model and found differences in immune-related cells, biological processes, and prognosis among patients in different risk groups based on the correlation between ROS1 and immunity. Personalized therapy may play an essential role in treatment. We further investigated the role of ICAM5 in inhibiting the malignant bioactivity of LUAD cells.
Collapse
Affiliation(s)
- Baoliang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Haotian Zheng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Guoyuan Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Hongchang Shen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Zhaofei Pang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Gemu Huang
- Research and Development Department, Amoy Diagnostics Co., LTD., Xiamen, Fujian, People's Republic of China
| | - Qingtao Song
- Research and Development Department, Amoy Diagnostics Co., LTD., Xiamen, Fujian, People's Republic of China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jiajun Du
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
5
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Li J, Qin X, Shi J, Wang X, Li T, Xu M, Chen X, Zhao Y, Han J, Piao Y, Zhang W, Qu P, Wang L, Xiang R, Shi Y. A systematic CRISPR screen reveals an IL-20/IL20RA-mediated immune crosstalk to prevent the ovarian cancer metastasis. eLife 2021; 10:66222. [PMID: 34114949 PMCID: PMC8195602 DOI: 10.7554/elife.66222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023] Open
Abstract
Transcoelomic spread of cancer cells across the peritoneal cavity occurs in most initially diagnosed ovarian cancer (OC) patients and accounts for most cancer-related death. However, how OC cells interact with peritoneal stromal cells to evade the immune surveillance remains largely unexplored. Here, through an in vivo genome-wide CRISPR/Cas9 screen, we identified IL20RA, which decreased dramatically in OC patients during peritoneal metastasis, as a key factor preventing the transcoelomic metastasis of OC. Reconstitution of IL20RA in highly metastatic OC cells greatly suppresses the transcoelomic metastasis. OC cells, when disseminate into the peritoneal cavity, greatly induce peritoneum mesothelial cells to express IL-20 and IL-24, which in turn activate the IL20RA downstream signaling in OC cells to produce mature IL-18, eventually resulting in the polarization of macrophages into the M1-like subtype to clear the cancer cells. Thus, we show an IL-20/IL20RA-mediated crosstalk between OC and mesothelial cells that supports a metastasis-repressing immune microenvironment.
Collapse
Affiliation(s)
- Jia Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Xuan Qin
- The School of Medicine, Nankai University, Tianjin, China
| | - Jie Shi
- The School of Medicine, Nankai University, Tianjin, China
| | | | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyao Xu
- The School of Medicine, Nankai University, Tianjin, China
| | - Xiaosu Chen
- The School of Medicine, Nankai University, Tianjin, China
| | - Yujia Zhao
- The School of Medicine, Nankai University, Tianjin, China
| | - Jiahao Han
- The School of Medicine, Nankai University, Tianjin, China
| | - Yongjun Piao
- The School of Medicine, Nankai University, Tianjin, China
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Longlong Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Tang XZ, Zhou XG, Zhang XG, Li GS, Chen G, Dang YW, Huang ZG, Li MX, Liang Y, Yao YX, Chen XY, Rong MH, Huang SN. The clinical significance of interleukin 24 and its potential molecular mechanism in laryngeal squamous cell carcinoma. Cancer Biomark 2021; 29:111-124. [PMID: 32623386 DOI: 10.3233/cbm-201441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin 24 (IL24) has been documented to be highly expressed in several cancers, but its role in laryngeal squamous cell carcinoma (LSCC) remains unclarified. In this study, to reveal the function and its clinical significance of IL24 in LSCC, multiple detecting methods were used comprehensively. IL24 protein expression was remarkably higher in LSCC (n= 49) than non-cancerous laryngeal controls (n= 26) as detected by in-house immunohistochemistry. Meanwhile, the IL24 mRNA expression was also evaluated based on high throughput data from Gene Expression Omnibus, The Cancer Genome Atlas, ArrayExpress and Oncomine databases. Consistently with the protein level, IL24 mRNA expression level was also predominantly upregulated in LSCC (n= 172) compared to non-cancerous laryngeal tissues (n= 81) with the standard mean difference (SMD) being 1.25 and the area under the curve (AUC) of the summary receiver operating characteristic (sROC) being 0.89 (95% CI = 0.86-0.92). Furthermore, the related genes of IL24 and the differentially expressed genes (DEGs) of LSCC were intersected and sent for Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the protein-protein interaction (PPI) analyses. In the GO annotation, the top terms of biological process (BP), cellular component (CC) and molecular function (MF) were extracellular matrix organization, extracellular matrix, cytokine activity, respectively. The top pathway of KEGG was ECM-receptor interaction. The PPI networks indicated the top hub genes of IL24-related genes in LSCC were SERPINE1, TGFB1, MMP1, MMP3, CSF2, and ITGA5. In conclusion, upregulating expression of IL24 may enhance the occurrence of LSCC, which owns prospect diagnostic ability and therapeutic significance in LSCC.
Collapse
Affiliation(s)
- Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xian-Guo Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Guangxi, China
| |
Collapse
|
8
|
Liu Z, Guo C, Das SK, Yu X, Pradhan AK, Li X, Ning Y, Chen S, Liu W, Windle JJ, Bear HD, Manjili MH, Fisher PB, Wang XY. Engineering T Cells to Express Tumoricidal MDA-7/IL24 Enhances Cancer Immunotherapy. Cancer Res 2021; 81:2429-2441. [PMID: 33727225 DOI: 10.1158/0008-5472.can-20-2604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Antigen-specific immunotherapy can be limited by induced tumor immunoediting (e.g., antigen loss) or through failure to recognize antigen-negative tumor clones. Melanoma differentiation-associated gene-7/IL24 (MDA-7/IL24) has profound tumor-specific cytotoxic effects in a broad spectrum of cancers. Here we report the enhanced therapeutic impact of genetically engineering mouse tumor-reactive or antigen-specific T cells to produce human MDA-7/IL24. While mock-transduced T cells only killed antigen-expressing tumor cells, MDA-7/IL24-producing T cells destroyed both antigen-positive and negative cancer targets. MDA-7/IL24-expressing T cells were superior to their mock-engineered counterparts in suppressing mouse prostate cancer and melanoma growth as well as metastasis. This enhanced antitumor potency correlated with increased tumor infiltration and expansion of antigen-specific T cells as well as induction of a Th1-skewed immunostimulatory tumor environment. MDA-7/IL24-potentiated T-cell expansion was dependent on T-cell-intrinsic STAT3 signaling. Finally, MDA-7/IL24-modified T-cell therapy significantly inhibited progression of spontaneous prostate cancers in Hi-Myc transgenic mice. Taken together, arming T cells with tumoricidal and immune-potentiating MDA-7/IL24 confers new capabilities of eradicating antigen-negative cancer cell clones and improving T-cell expansion within tumors. This promising approach may be used to optimize cellular immunotherapy for treating heterogeneous solid cancers and provides a mechanism for inhibiting tumor escape. SIGNIFICANCE: This research describes a novel strategy to overcome the antigenic heterogeneity of solid cancers and prevent tumor escape by engineering T lymphocytes to produce a broad-spectrum tumoricidal agent.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xiaofei Yu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xia Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Yanxia Ning
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Shixian Chen
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Wenjie Liu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Harry D Bear
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Masoud H Manjili
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
9
|
Clinical Significance of the Interleukin 24 mRNA Level in Head and Neck Squamous Cell Carcinoma and Its Subgroups: An In Silico Investigation. JOURNAL OF ONCOLOGY 2020; 2020:7042025. [PMID: 33014054 PMCID: PMC7519990 DOI: 10.1155/2020/7042025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
IL24 mRNA is known to have an apoptotic effect on cancer cells but not on noncancer cells. However, the expression level of the IL24 mRNA in head and neck squamous cell carcinoma (HNSCC) and its subgroups is rarely studied. In this study, the clinical implication of IL24 mRNA was evaluated in the common subgroups of HNSCC, including oral squamous cell carcinoma (OSCC), nasopharyngeal carcinoma (NPC), and laryngeal squamous cell carcinoma (LSCC) for analysis. Substantial IL24 mRNA expression data were calculated from several databases, such as the Gene Expression Omnibus (GEO), ArrayExpress, Sequence Read Archive (SRA), ONCOMINE, and The Cancer Genome Atlas (TCGA) databases. We ultimately collected a total of 41 microarrays and RNA-seq including 1,564 HNSCC and 603 noncancer tissue samples. IL24 mRNA was highly expressed in OSCC, LSCC, and NPC as shown by the separated standard mean difference (SMD), as well as HNSCC as a whole part (SMD = 1.47, 95% confdence interval (CI) = 1.24−1.70, P < 0.0001). In all subgroups, the IL24 mRNA upregulation had the ability to distinguish cancer from noncancer tissue with area under the curves (AUCs) of the summary receiver operating characteristic (sROC) higher than 0.85. In conclusion, IL24 mRNA may be used as a potential marker for cancer screening, and its clinical diagnostic value needs to be further studied. It also provides a new idea for the treatment of the IL24 gene in HNSCC and its subgroups in the future.
Collapse
|
10
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
11
|
Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028548. [PMID: 29038121 DOI: 10.1101/cshperspect.a028548] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Comparative Biology and Safety Sciences, Amgen, South San Francisco, California 94080
| | - Kit Wong
- Department of Biomarker Development, Genentech, South San Francisco, California 94080
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen, South San Francisco, California 94080
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, South San Francisco, California 94080
| |
Collapse
|
12
|
Rasoolian M, Kheirollahi M, Hosseini SY. MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expert Opin Biol Ther 2019; 19:211-223. [PMID: 30612497 DOI: 10.1080/14712598.2019.1566453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MDA-7/Interleukin-24 (IL-24), as a pleiotropic cytokine, exhibits a specific tumor suppression property that has attracted a great deal of attention. While its anti-tumor induction is mostly attributed to endogenous gene expression, attachment of secreted MDA-7/IL-24 to cognate receptors also triggers the death of cancerous cell via different pathways. Therefore, precise targeting of secreted MDA-7/IL-24 to tumor cells would render it more efficacy and specificity. AREAS COVERED In order to target soluble cytokines, particularly MDA-7/IL-24 to the neighbor tumor sites and enhance their therapeutic efficiency, fusing with cell penetrating peptides (CPPs) or Tumor homing peptides (THPs) seems logical due to the improvement of their bystander effects. Although the detailed anti-tumor mechanisms of endogenous mda-7/IL-24 have been largely investigated, the significance of the secreted form in these activities and methods of its improving by CPPs or THPs need more discussion. EXPERT OPINION While the employment of CPPs/THPs for the improvement of cytokine gene therapy is desirable, to create fusions of CPPs/THPs with MDA-7/IL-24, some hurdles are not avoidable. Regarding our expertise, herein, the importance of CPPs/THPs, needs for their elegant designing in a fusion structure, and their applications in cytokine gene therapy are discussed with a special focus on mda-7/IL-24.
Collapse
Affiliation(s)
- Mohammad Rasoolian
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Majid Kheirollahi
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran.,b Department of Genetics and Molecular Biology, Pediatrics Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Seyed Younes Hosseini
- c Bacteriology and Virology Department, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
13
|
Wei H, Li B, Sun A, Guo F. Interleukin-10 Family Cytokines Immunobiology and Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:79-96. [PMID: 31628652 DOI: 10.1007/978-981-13-9367-9_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26, which are considered as Class 2α-helical cytokines. IL-10 is the most important cytokine in suppressing pro-inflammatory responses in all kinds of autoimmune diseases and limiting excessive immune responses. Due to protein structure homology and shared usage of receptor complexes as well as downstream signaling pathway, other IL-10 family cytokines also show indispensable functions in immune regulation, tissue homeostasis, and host defense. In this review, we focus on immune functions and structures of different cytokines in this family and try to better understand how their molecular mechanisms connect to their biological functions. The molecular details regarding their actions also provide useful information in developing candidate immune therapy reagents for a variety of diseases.
Collapse
Affiliation(s)
- Huaxing Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Bofeng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| | - Anyuan Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Feng Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| |
Collapse
|
14
|
TAZ activation by Hippo pathway dysregulation induces cytokine gene expression and promotes mesothelial cell transformation. Oncogene 2018; 38:1966-1978. [PMID: 30401981 DOI: 10.1038/s41388-018-0417-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
Malignant mesothelioma (MM) constitutes a very aggressive tumor that is caused by asbestos exposure after long latency. The NF2 tumor suppressor gene is mutated in 40-50% of MM; moreover, one of its downstream signaling cascades, the Hippo signaling pathway, is also frequently inactivated in MM cells. Although the YAP transcriptional coactivator, which is regulated by the Hippo pathway, can function as a pro-oncogenic protein, the role of TAZ, a paralog of YAP, in MM cells has not yet been clarified. Here, we show that TAZ is expressed and underphosphorylated (activated) in the majority of MM cells compared to immortalized mesothelial cells. ShRNA-mediated TAZ knockdown highly suppressed cell proliferation, anchorage-independent growth, cell motility, and invasion in MM cells harboring activated TAZ. Conversely, transduction of an activated form of TAZ in immortalized mesothelial cells enhanced these in vitro phenotypes and conferred tumorigenicity in vivo. Microarray analysis determined that activated TAZ most significantly enhanced the transcription of genes related to "cytokine-cytokine receptor interaction." Among selected cytokines, we found that IL-1 signaling activation plays a major role in proliferation in TAZ-activated MM cells. Both IL1B knockdown and an IL-1 receptor antagonist significantly suppressed malignant phenotypes of immortalized mesothelial cells and MM cells with activated TAZ. Overall, these results indicate an oncogenic role for TAZ in MMs via transcriptional induction of distinct pro-oncogenic genes including cytokines. Among these, IL-1 signaling appears as one of the most important cascades, thus potentially serving as a target pathway in MM cells harboring Hippo pathway inactivation.
Collapse
|
15
|
Lubkowski J, Sonmez C, Smirnov SV, Anishkin A, Kotenko SV, Wlodawer A. Crystal Structure of the Labile Complex of IL-24 with the Extracellular Domains of IL-22R1 and IL-20R2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2082-2093. [PMID: 30111632 PMCID: PMC6143405 DOI: 10.4049/jimmunol.1800726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
Crystal structure of the ternary complex of human IL-24 with two receptors, IL-22R1 and IL-20R2, has been determined at 2.15 Å resolution. A crystallizable complex was created by a novel approach involving fusing the ligand with a flexible linker to the presumed low-affinity receptor, and coexpression of this construct in Drosophila S2 cells together with the presumed high-affinity receptor. This approach, which may be generally applicable to other multiprotein complexes with low-affinity components, was necessitated by the instability of IL-24 expressed by itself in either bacteria or insect cells. Although IL-24 expressed in Escherichia coli was unstable and precipitated almost immediately upon its refolding and purification, a small fraction of IL-24 remaining in the folded state was shown to be active in a cell-based assay. In the crystal structure presented here, we found that two cysteine residues in IL-24 do not form a predicted disulfide bond. Lack of structural restraint by disulfides, present in other related cytokines, is most likely reason for the low stability of IL-24. Although the contact area between IL-24 and IL-22R1 is larger than between the cytokine and IL-20R2, calculations show the latter interaction to be slightly more stable, suggesting that the shared receptor (IL-20R2) might be the higher-affinity receptor.
Collapse
Affiliation(s)
- Jacek Lubkowski
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702;
| | - Cem Sonmez
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Sergey V Smirnov
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Immunity and Inflammation, Rutgers Cancer Institute of New Jersey at University Hospital, New Jersey Medical School, Rutgers University, Newark, NJ 07103; and
| | - Andriy Anishkin
- Biology Department, University of Maryland, College Park, MD 20742
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Immunity and Inflammation, Rutgers Cancer Institute of New Jersey at University Hospital, New Jersey Medical School, Rutgers University, Newark, NJ 07103; and
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
16
|
Abstract
Subtraction hybridization identified genes displaying differential expression as metastatic human melanoma cells terminally differentiated and lost tumorigenic properties by treatment with recombinant fibroblast interferon and mezerein. This approach permitted cloning of multiple genes displaying enhanced expression when melanoma cells terminally differentiated, called melanoma differentiation associated (mda) genes. One mda gene, mda-7, has risen to the top of the list based on its relevance to cancer and now inflammation and other pathological states, which based on presence of a secretory sequence, chromosomal location, and an IL-10 signature motif has been named interleukin-24 (MDA-7/IL-24). Discovered in the early 1990s, MDA-7/IL-24 has proven to be a potent, near ubiquitous cancer suppressor gene capable of inducing cancer cell death through apoptosis and toxic autophagy in cancer cells in vitro and in preclinical animal models in vivo. In addition, MDA-7/IL-24 embodied profound anticancer activity in a Phase I/II clinical trial following direct injection with an adenovirus (Ad.mda-7; INGN-241) in tumors in patients with advanced cancers. In multiple independent studies, MDA-7/IL-24 has been implicated in many pathological states involving inflammation and may play a role in inflammatory bowel disease, psoriasis, cardiovascular disease, rheumatoid arthritis, tuberculosis, and viral infection. This review provides an up-to-date review on the multifunctional gene mda-7/IL-24, which may hold potential for the therapy of not only cancer, but also other pathological states.
Collapse
|
17
|
Emdad L, Das SK, Wang XY, Sarkar D, Fisher PB. Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer. J Cell Physiol 2018; 233:5684-5695. [PMID: 29278667 DOI: 10.1002/jcp.26421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Kawada S, Nagasawa Y, Kawabe M, Ohyama H, Kida A, Kato-Kogoe N, Nanami M, Hasuike Y, Kuragano T, Kishimoto H, Nakasho K, Nakanishi T. Iron-induced calcification in human aortic vascular smooth muscle cells through interleukin-24 (IL-24), with/without TNF-alpha. Sci Rep 2018; 8:658. [PMID: 29330517 PMCID: PMC5766506 DOI: 10.1038/s41598-017-19092-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
In CKD patients, arteriosclerotic lesions, including calcification, can occur in vascular smooth muscle cells in a process called Moenckeberg's medial arteriosclerosis. Iron overload induces several complications, including the acceleration of arteriosclerosis. However, the relationship between Moenckeberg's arteriosclerosis in vascular smooth muscle cells and iron accumulation has remained unknown. We tested the accelerated effect of iron on calcification in cultured human aortic vascular smooth muscle cells (HASMCs). After establishment of this model, we performed a microarray analysis using mRNA from early stage culture HASMCs after iron stimulation with or without TNF-alpha stimulation. The role of interleukin-24 (IL-24) was confirmed from candidate genes that might contribute to calcification. HASMCs demonstrated calcification induced by iron and TNF-alpha. Calcification of HASMCs was synergistically enhanced by stimulation with both iron and TNF-alpha. In the early phase of calcification, microarray analysis revealed up-regulation of IL-24. Stimulation of HASMCs by IL-24 instead of iron induced calcification. The anti-IL-24 antibody reversed the effect of IL-24, supporting the important role of IL-24 in HASMCs calcification. In conclusion, iron-induced calcification in vascular smooth muscle cells occurred via IL-24, IL-24 was increased during the calcification process induced by iron, and IL-24 itself caused calcification in the absence of iron.
Collapse
Affiliation(s)
- Sayuri Kawada
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Yasuyuki Nagasawa
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan.
| | - Mutsuki Kawabe
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan.,Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Hideki Ohyama
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Aritoshi Kida
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Nahoko Kato-Kogoe
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Masayoshi Nanami
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Yukiko Hasuike
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Takahiro Kuragano
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Takeshi Nakanishi
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| |
Collapse
|
19
|
The Effect of RGD/NGR Peptide Modification of Melanoma Differentiation-Associated Gene-7/Interleukin-24 on Its Receptor Attachment, an In Silico Analysis. Cancer Biother Radiopharm 2017; 32:205-214. [DOI: 10.1089/cbr.2017.2195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Zhuo B, Shi Y, Qin H, Sun Q, Li Z, Zhang F, Wang R, Wang X. Interleukin-24 inhibits osteosarcoma cell migration and invasion via the JNK/c-Jun signaling pathways. Oncol Lett 2017; 13:4505-4511. [PMID: 28599451 DOI: 10.3892/ol.2017.5990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/20/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 25% of osteosarcoma patients present with clinically detectable metastatic disease at the time of initial diagnosis. High-dose chemotherapy and/or surgery for the treatment of primary metastatic osteosarcoma is ineffective, and <20% of patients will survive 5 years from diagnosis. Therefore, the treatment of metastases is critical for the improvement of the prognosis of primary metastatic osteosarcoma patients. We have previously observed that overexpression of interleukin-24 (IL-24) inhibits neuroblastoma cell proliferation, migration and invasion in vitro. The present study investigated whether IL-24 may be a novel agent for osteosarcoma metastasis-suppressive treatment. It was observed that IL-24 is able to inhibit migration and invasion in spontaneously metastasizing human 143B osteosarcoma cells via the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway. IL-24 was effective in inhibiting JNK and c-Jun phosphorylation to downregulate matrix metalloproteinase (MMP)-2 and MMP-9, which contributed to the suppression of cell migration and invasion. It was concluded that IL-24 may be a potent agent in the inhibition of highly metastatic 143B osteosarcoma cells, and IL-24 may have translational potential as an effective therapeutic agent for the treatment of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Haihui Qin
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhengwei Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Fengfei Zhang
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Rong Wang
- Department of Ultrasound, The Affiliated Hospital Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaodong Wang
- Department of Surgery, The Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
21
|
Fry EA, Taneja P, Inoue K. Clinical applications of mouse models for breast cancer engaging HER2/neu. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2016; 3:593-603. [PMID: 28133539 PMCID: PMC5267336 DOI: 10.15761/icst.1000210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Knowledge Park III, Greater Noida 201306, India
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
22
|
Li YJ, Liu G, Xia L, Xiao X, Liu JC, Menezes ME, Das SK, Emdad L, Sarkar D, Fisher PB, Archer MC, Zacksenhaus E, Ben-David Y. Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice. Oncotarget 2016; 6:36943-54. [PMID: 26460950 PMCID: PMC4741907 DOI: 10.18632/oncotarget.6046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.
Collapse
Affiliation(s)
- You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Guodong Liu
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lei Xia
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Xiao Xiao
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Jeff C Liu
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Michael C Archer
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
23
|
Ma YF, Ren Y, Wu CJ, Zhao XH, Xu H, Wu DZ, Xu J, Zhang XL, Ji Y. Interleukin (IL)-24 transforms the tumor microenvironment and induces anticancer immunity in a murine model of colon cancer. Mol Immunol 2016; 75:11-20. [PMID: 27209087 DOI: 10.1016/j.molimm.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
|
24
|
Bina S, Shenavar F, Khodadad M, Haghshenas MR, Mortazavi M, Fattahi MR, Erfani N, Hosseini SY. Impact of RGD Peptide Tethering to IL24/mda-7 (Melanoma Differentiation Associated Gene-7) on Apoptosis Induction in Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev 2016; 16:6073-80. [PMID: 26320498 DOI: 10.7314/apjcp.2015.16.14.6073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24), a unique tumor suppressor gene, has killing activity in a broad spectrum of cancer cells. Herein, plasmids producing mda-7 proteins fused to different RGD peptides (full RGD4C and shortened RGD, tRGD) were evaluated for apoptosis induction with a hepatocellular carcinoma cell line, Hep-G2. The study aim was to improve the apoptosis potency of mda-7 by tethering to RGD peptides. MATERIALS AND METHODS Three plasmids including mda-7, mda-7-RGD and mda-7-tRGD genes beside a control vector were transfected into Hep-G2 cells. After 72 hours incubation, cell viability was evaluated by MTT assay. In addition, the rate of apoptosis was analyzed by flow cytometry using PI/annexin staining. To detect early events in apoptosis, 18 hours after transfection, expression of the BAX gene was quantified by real time PCR. Modeling of proteins was also performed to extrapolate possible consequences of RGD modification on their structures and subsequent attachment to receptors. RESULTS AND CONCLUSIONS In MTT assays, while all mda-7 forms showed measurable inhibition of proliferation, unmodified mda-7 protein exhibited most significant effect compared to control plasmid (P<0.001). Again, flow cytometry analysis showed a significant apoptosis induction by simple mda-7 gene but not for those RGD-fused mda-7 proteins. These findings were also supported by expression analysis of BAX gene (P<0.001). Protein modelling analysis revealed that tethering RGD at the end of IL-24/Mda7 disrupt attachment to cognate receptor, IL-20R1/ IL-20R2. In conclusion, fusion of RGD4C and shortened RGD peptides to carboxyl terminal of mda7, not only reduce apoptosis property in vitro but also disrupt receptor attachment as demonstrated by protein modelling.
Collapse
Affiliation(s)
- Samaneh Bina
- Gastroenterohepatology Research Center (GEHRC), Shiraz University of Medical Sciences, Shiraz, Iran E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abdalla AE, Lambert N, Duan X, Xie J. Interleukin-10 Family and Tuberculosis: An Old Story Renewed. Int J Biol Sci 2016; 12:710-7. [PMID: 27194948 PMCID: PMC4870714 DOI: 10.7150/ijbs.13881] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
The interleukin-10 (IL-10) family of cytokines consists of six immune mediators, namely IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. IL-10, IL-22, IL-24 and IL-26 are critical for the regulation of host defense against Mycobacterium tuberculosis infections. Specifically, IL-10 and IL-26 can suppress the antimycobacterial immunity and promote the survival of pathogen, while IL-22 and IL-24 can generate protective responses and inhibit the intracellular growth of pathogen. Knowledge about the new players in tuberculosis immunology, namely IL-10 family, can inform novel immunity-based countermeasures and host directed therapies against tuberculosis.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- 2. Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Nzungize Lambert
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangke Duan
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
26
|
Hsu YH, Wu CY, Hsing CH, Lai WT, Wu LW, Chang MS. Anti-IL-20 Monoclonal Antibody Suppresses Prostate Cancer Growth and Bone Osteolysis in Murine Models. PLoS One 2015; 10:e0139871. [PMID: 26440411 PMCID: PMC4594924 DOI: 10.1371/journal.pone.0139871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023] Open
Abstract
Interleukin (IL)-20 is a proinflammatory cytokine in the IL–10 family. IL–20 is associated with tumor promotion in the pathogenesis of oral, bladder, and breast cancer. However, little is known about the role of IL–20 in prostate cancer. We hypothesize that IL–20 promotes the growth of prostate cancer cells. Immunohistochemical staining showed that IL–20 and its receptors were expressed in human PC–3 and LNCaP prostate cancer cell lines and in prostate tumor tissue from 40 patients. In vitro, IL–20 upregulated N-cadherin, STAT3, vimentin, fibronectin, RANKL, cathepsin G, and cathepsin K, and increased the migration and colony formation of prostate cancer cells via activated p38, ERK1/2, AKT, and NF-κB signals in PC–3 cells. We investigated the effects of anti-IL–20 monoclonal antibody 7E on prostate tumor growth in vivo using SCID mouse subcutaneous and intratibial xenograft tumor models. In vivo, 7E reduced tumor growth, suppressed tumor-mediated osteolysis, and protected bone mineral density after intratibial injection of prostate cancer cells. We conclude that IL–20 is involved in the cell migration, colony formation, and tumor-induced osteolysis of prostate cancer. Therefore, IL–20 might be a novel target for treating prostate cancer.
Collapse
Affiliation(s)
- Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ying Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Guillon A, Jouan Y, Brea D, Gueugnon F, Dalloneau E, Baranek T, Henry C, Morello E, Renauld JC, Pichavant M, Gosset P, Courty Y, Diot P, Si-Tahar M. Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicrobial defence. Eur Respir J 2015; 46:771-82. [PMID: 26250498 DOI: 10.1183/09031936.00215114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/20/2015] [Indexed: 01/01/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is punctuated by episodes of infection-driven acute exacerbations. Despite the life-threatening nature of these exacerbations, the underlying mechanisms remain unclear, although a high number of neutrophils in the lungs of COPD patients is known to correlate with poor prognosis. Interleukin (IL)-22 is a cytokine that plays a pivotal role in lung antimicrobial defence and tissue protection. We hypothesised that neutrophils secrete proteases that may have adverse effects in COPD, by altering the IL-22 receptor (IL-22R)-dependent signalling.Using in vitro and in vivo approaches as well as reverse transcriptase quantitative PCR, flow cytometry and/or Western blotting techniques, we first showed that pathogens such as the influenza virus promote IL-22R expression in human bronchial epithelial cells, whereas Pseudomonas aeruginosa, bacterial lipopolysaccharide or cigarette smoke do not. Most importantly, neutrophil proteases cleave IL-22R and impair IL-22-dependent immune signalling and expression of antimicrobial effectors such as β-defensin-2. This proteolysis resulted in the release of a soluble fragment of IL-22R, which was detectable both in cellular and animal models as well as in sputa from COPD patients with acute exacerbations.Hence, our study reveals an unsuspected regulation by the proteolytic action of neutrophil enzymes of IL-22-dependent lung host response. This process probably enhances pathogen replication, and ultimately COPD exacerbations.
Collapse
Affiliation(s)
- Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Deborah Brea
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Fabien Gueugnon
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Emilie Dalloneau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Clémence Henry
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels, Belgium De Duve Institute, Universite Catholique de Louvain, Brussels, Belgium
| | - Muriel Pichavant
- Université Lille Nord de France, Lille, France Lille Centre for Infection and Immunity, Institut Pasteur de Lille, Lille, France Unité Mixte de Recherche 8204, Centre National de la Recherche Scientifique, Lille, France INSERM, U1019, Team 8, Lille, France
| | - Philippe Gosset
- Université Lille Nord de France, Lille, France Lille Centre for Infection and Immunity, Institut Pasteur de Lille, Lille, France Unité Mixte de Recherche 8204, Centre National de la Recherche Scientifique, Lille, France INSERM, U1019, Team 8, Lille, France
| | - Yves Courty
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Patrice Diot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France Université François Rabelais de Tours, Tours, France
| |
Collapse
|
28
|
Liu Z, Xu L, Yuan H, Zhang Y, Zhang X, Zhao D. Oncolytic adenovirus‑mediated mda‑7/IL‑24 expression suppresses osteosarcoma growth and enhances sensitivity to doxorubicin. Mol Med Rep 2015; 12:6358-64. [PMID: 26251997 DOI: 10.3892/mmr.2015.4180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is a malignant disease with a high mortality rate and poor response to current chemotherapy. Melanoma differentiation associated gene‑7 (Mda7)/interleukin (IL)‑24 has been demonstrated to suppress the growth of OS. However, the expression level of Mda7/IL‑24 mediated by the current adenoviral vector is limited for effective clinical treatment of OS. In order to solve this issue, an oncolytic adenovirus was employed to express IL‑24 (OA‑IL‑24) in OS cells. Quantitative polymerase chain reaction, immunoblot and ELISA assays verified that OA‑IL‑24 expressed IL‑24 at a higher level than the replication‑deficient adenoviral vector, Ad‑IL24. OA‑IL‑24 infection led to decreased cell viability and increased apoptosis of OS cells, compared with Ad‑IL‑24. Animal studies further confirmed the increased anti‑tumor activity of OA‑IL‑24. Notably, OA‑IL‑24 was also found to sensitize OS cells to doxorubicin. OA‑IL‑24‑induced multiple drug resistance reversion was associated with reduced expression of Pgp and BCRP1, as well as minimized autophagy. Furthermore, restoring Pgp and BCRP1 expression as well as autophagy, was able to rescue the effect of IL‑24 on the cytotoxicity of doxorubicin to OS. In conclusion, a method for inducing a high expression of IL‑24 in OS was provided. In addition, IL‑24 was demonstrated to increase the sensitivity of OS to doxorubicin.
Collapse
Affiliation(s)
- Zongming Liu
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Libo Xu
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongping Yuan
- Department of Nephrology, The Fourth Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xiaona Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dongxu Zhao
- Department of Orthopedics, China‑Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
29
|
Pervaiz A, Adwan H, Berger MR. Riproximin: A type II ribosome inactivating protein with anti-neoplastic potential induces IL24/MDA-7 and GADD genes in colorectal cancer cell lines. Int J Oncol 2015; 47:981-90. [PMID: 26151662 DOI: 10.3892/ijo.2015.3073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
Riproximin (Rpx) is a type II ribosome inactivating protein, which was extracted and purified from the seeds of Ximenia americana. Previous studies demonstrated cytotoxicity of Rpx against a variety of cell lines originating from solid and non-solid cancers. In this study, we investigated the mechanistic aspects of Rpx in selected human and rat colorectal cancer (CRC) cell lines. Cytotoxic levels of Rpx were determined by MTT assay, while cytostatic and apoptotic effects were investigated by flow cytometry and nuclear staining procedures. Effects of Rpx exposure on colony formation/migration of CRC cells and expressional modulations in anticancer/stress-related genes were also studied. Rpx showed significant and comparable levels of cytotoxicity in CRC cells as determined by inhibitory concentration (IC) values. Similar inhibitory effects were found for clonogenicity, while more pronounced inhibition of migration was observed in response to Rpx exposure. Profound arrest in S phases of the cell cycle was noted especially in primary CRC cells. Apoptotic effects were more prominent in rat CRC cells as indicated by Annexin V-FITC assay and Hoechst 33342 nuclear staining. Rpx exposure induced significantly increased levels of the IL24/MDA-7, a well characterized anticancer gene, in all CRC cells. In addition, following Rpx treatment, high expression levels of growth arrest and DNA damage (GADD family) genes were also observed. Increased expression of two additional GADD genes (34 and 153) only in rat CRC cells (CC531) conferred higher sensitivity towards Rpx and subsequent anti-proliferative/apoptotic effects as compared to human CRC cells (SW480 and SW620). The present investigation indicates the anticancer potential of Rpx in CRC and favor further evaluation of this natural compound as therapeutic agent.
Collapse
Affiliation(s)
- Asim Pervaiz
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | - Hassan Adwan
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
30
|
Wei S, Cao H, Zhou X, Wu H, Yang J. Prokaryotically and eukaryotically expressed interleukin-24 induces breast cancer growth suppression via activation of apoptosis and inhibition of tumor angiogenesis. Mol Med Rep 2014; 11:3673-81. [PMID: 25544477 DOI: 10.3892/mmr.2014.3136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 10/24/2014] [Indexed: 11/05/2022] Open
Abstract
Melanoma differentiation‑associated‑7 (mda‑7)/interleukin‑24 (IL‑24), a unique cytokine‑tumor suppressor, exerts tumor‑selective killing activity in numerous types of cancer cell. Although eukaryotically and prokaryotically expressed recombinant human (rh)IL‑24 proteins have been previously shown to produce potent antitumor effects, to the best of our knowledge, no side‑by‑side study has been conducted that compares the two proteins directly. In the present study, rhIL‑24 protein was expressed in BL21 Escherichia coli transformed with the pET‑21a(+)‑hIL‑24 plasmid by isopropyl‑β‑D‑1‑thiogalactopyranoside induction. Following a denaturing and renaturing process, the soluble rhIL‑24 was purified using a Q‑Sepharose column. rhIL‑24 protein was also expressed in Chinese hamster ovary mammalian cells stably transfected with the pcDNA3‑hIL‑24 plasmid. The in vitro antitumor efficacies of the two treatments were compared using the MDA‑MB‑231 human breast cancer cell line. Furthermore, the therapeutic efficacies of the bacteria‑derived rhIL‑24 protein and the liposome‑coated pcDNA3‑hIL‑24 naked plasmid were evaluated in athymic nude mice with subcutaneously xenografted MDA‑MB‑231 cell tumors. The prokaryotically expressed/purified rhIL‑24 protein and the eukaryotically expressed rhIL‑24 in the cell supernate were revealed to be capable of efficiently suppressing MDA‑MB‑231 tumor growth in vitro. Similarly, the administration of bacteria‑derived rhIL‑24 protein and pcDNA3‑hIL‑24 naked plasmid also provided therapeutic benefits in the treatment of in vivo MDA‑MB‑231 xenografted tumors. The retarded in vitro and in vivo breast cancer growth elicited by rhIL‑24 was closely associated with the upregulation of the ratio of anti‑apoptotic B cell lymphoma 2 (Bcl‑2) to pro‑apoptotic Bcl‑2‑associated X protein (Bax), as well as the activation of caspase‑3 followed by marked induction of apoptosis, and the notable inhibition of tumor angiogenesis. Thus, the results of the present study indicate that prokaryotically expressed rhIL‑24 protein may be an alternate and promising antitumor agent in human breast cancer or other types of cancer.
Collapse
Affiliation(s)
- Shaohua Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hua Cao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaoyan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Haorong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jicheng Yang
- Department of Cell and Molecular Biology, College of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
31
|
Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol 2014; 14:783-95. [PMID: 25421700 DOI: 10.1038/nri3766] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interleukin-20 (IL-20) subfamily of cytokines comprises IL-19, IL-20, IL-22, IL-24 and IL-26. These cytokines are all members of the larger IL-10 family, but have been grouped together to form the IL-20 subfamily based on their usage of common receptor subunits and similarities in their target-cell profiles and biological functions. Members of the IL-20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. In this Review, we describe the cellular sources and targets of the IL-20 subfamily cytokines, and we detail how their expression is regulated. Much of our understanding of the unique biology of this group of cytokines is still based on IL-22, which is the most studied member of the IL-20 subfamily. Nevertheless, we attempt a broader discussion of the emerging functions of IL-20 subfamily cytokines in host defence, inflammatory diseases, cancer and metabolism.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Xiaoting Wang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
32
|
Tian H, Zhang DF, Zhang BF, Li HZ, Zhang Q, Li LT, Pei DS, Zheng JN. Melanoma differentiation associated gene-7/interleukin-24 induces caspase-3 denitrosylation to facilitate the activation of cancer cell apoptosis. J Interferon Cytokine Res 2014; 35:157-67. [PMID: 25347351 DOI: 10.1089/jir.2014.0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Melanoma differentiation-associated gene-7 (mda-7)/interleukin-24 (IL-24) induces caspase-3 cleavage and subsequent activation via the intrinsic or extrinsic pathway to result in cancer cell-selective apoptosis, but whether mda-7/IL-24 may directly regulate caspase-3 through the post-translational modification remains unknown. Here, we reported that tumor-selective replicating adenovirus ZD55-IL-24 led to caspase-3 denitrosylation and subsequent activation, indicating that caspase-3 denitrosylation played a crucial role in ZD55-IL-24-induced cancer cell apoptosis. To confirm the relationship between caspase-3 denitrosylation and its activation in response to ZD55-IL-24, we treated carcinoma cells with the different nitric oxide (NO) regulators to modulate caspase-3 denitrosylation level, then observed the corresponding caspase-3 cleavage. We found that NO inhibitor 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO) promoted caspase-3 denitrosylation and caspase-3 cleavage, thereby exacerbating ZD55-IL-24-induced cancer cell apoptosis, whereas NO donor sodium nitroprusside (SNP) showed the opposite effect. Moreover, caspase-3 denitrosylation facilitated its downstream target poly ADP-ribose polymerase (PARP) degradation that further increased the apoptotic susceptibility. Although caspase-3 activation controlled by denitrosylation modification has emerged as an important regulator of programmed cell death, the detailed molecular mechanism by which caspase-3 exerts its denitrosylation modification in response to ZD55-IL-24 still needs to be elucidated. Thus, our results demonstrated that ZD55-IL-24 increased Fas expression to enhance thioredoxin reductase 2 (TrxR2), which was responsible for caspase-3 denitrosylation. Collectively, these findings elucidate that ZD55-IL-24 induces caspase-3 denitrosylation through Fas-mediated TrxR2 enhancement, thereby facilitating caspase-3 cleavage and the downstream caspase signaling pathway activation, which provides a novel insight into ZD55-IL-24-induced cancer-specific apoptosis by post-translational modification of the apoptotic executor caspase-3.
Collapse
Affiliation(s)
- Hui Tian
- Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou, Jiangsu, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nomura T, Kabashima K, Miyachi Y. The panoply of αβT cells in the skin. J Dermatol Sci 2014; 76:3-9. [PMID: 25190363 DOI: 10.1016/j.jdermsci.2014.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022]
Abstract
Skin protects body from continual attack by microbial pathogens and environmental factors. Such barrier function of skin is achieved by multiple components including immune system, which is mainly regulated by lymphocytes. T lymphocytes (T cells) that express T cell receptor (TCR) α and β chains (αβT cells) control the strength and the type of immune response. CD4T cell population consists of helper T (Th) cell-subsets and immunosuppressive regulatory T (Treg) cells. Th1 cells produce IFN-γ and protect against intracellular pathogens. Th2 cells produce IL-4 family cytokines and participate in allergic skin diseases, including atopic dermatitis (AD). Th17 cells secrete IL-17, recruit granulocytes to fight against extracellular microorganisms, and play a role in psoriasis and AD. Th22 cells produce IL-22 that activates epithelial cells and mediates acanthosis in psoriasis and AD. On the other hand, Foxp3+ Treg cells attenuate immune responses partly via TGF-β or IL-10. Tissue resident memory T (Trm) cells in the skin-most of which are epidermal CD8T cells-constitute the first line of the defense against repeated infections. CD8 T cells are also engaged in psoriasis, lichen planus, and drug eruptions. Skin harbors innate-like αβT cells such as natural killer T (NKT) cells as well, whose function is not fully revealed. Understanding these αβT cells helps to comprehend skin diseases.
Collapse
Affiliation(s)
- Takashi Nomura
- Ijinkai Takeda General Hospital, Fushimi-ku, Kyoto, Japan; Department of Dermatology, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | - Yoshiki Miyachi
- Department of Dermatology, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
34
|
Bai C, Wang X, Zhang J, Sun A, Wei D, Yang S. Optimisation of the mRNA secondary structure to improve the expression of interleukin-24 (IL-24) in Escherichia coli. Biotechnol Lett 2014; 36:1711-6. [PMID: 24752814 DOI: 10.1007/s10529-014-1535-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/10/2014] [Indexed: 02/04/2023]
Abstract
Interleukin-24 (IL-24) is a novel cytokine selectively inhibiting proliferation of cancer cells but with little effect on normal cells. However, IL-24 is difficult to express in Escherichia coli. In this study, we optimised the secondary structure of the translation initiation region using computational approach to obtain non-fusion recombinant IL-24 (nrIL-24). The Gibbs free energy of the region was decreased from -22 to -9.07 kcal mol(-1), potentially promoting a loose secondary structure formation and improving the translation initiation efficiency. As a result, the expression of nrIL-24 was increased to 26 % of the total cellular protein from being barely initially detectable. nrIL-24 showed a concentration-dependent inhibition of A375 cells but had little effect on normal human cells. These results demonstrate that this method in increasing nrIL-24 expression is effective and efficient.
Collapse
Affiliation(s)
- Chaogang Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Overexpression of MDA-7/IL-24 as an anticancer cytokine in gene therapy of thyroid carcinoma. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Do W, Herrera C, Mighty J, Shumskaya M, Redenti SM, Sauane M. Sigma 1 Receptor plays a prominent role in IL-24-induced cancer-specific apoptosis. Biochem Biophys Res Commun 2013; 439:215-20. [PMID: 23988449 DOI: 10.1016/j.bbrc.2013.08.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023]
Abstract
Interleukin-24 (IL-24), a member of the IL-10 cytokine family, is an immunomodulatory cytokine that also displays broad cancer-specific suppressor effects. The tumor suppressor activities of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and cancer-specific apoptosis. We show that Sigma 1 Receptor (S1R), a ligand-regulated protein chaperone contributes to IL-24 induction of apoptosis. IL-24 generated from an adenovirus expressing IL-24 (Ad.IL-24) induces cancer-specific apoptosis by inducing an endoplasmic reticulum (ER) stress, reactive oxygen species production, and calcium mobilization. The present studies reveals that S1R is required for Ad.IL-24-induced cell death. We provide several lines of evidence to confirm a physical and functional interaction between IL-24 and S1R including: (a) S1R and IL-24 co-localize, as judged by immunocytochemical analysis studies; (b) S1R and IL-24 co-immunoprecipitate using either S1R or IL-24 antibody; (c) S1R agonist (+)-SKF10047 inhibits apoptosis by Ad.IL-24; (d) (+)-SKF10047-mediated inhibition of Ad.IL-24 results in: diminished ER stress protein expression; (e) Calcium mobilization; and (f) ROS production. Collectively, these data demonstrate that S1R interacts with IL-24 and suggest that IL-24:S1R interaction determines apoptosis induction by Ad.IL-24. These studies define Sigma 1 Receptor as a key initial mediator of IL-24 induction of cancer-specific killing. These findings have important implications for our understanding of IL-24 as a tumor suppressor protein as well as an immune modulating cytokine.
Collapse
Affiliation(s)
- Winchie Do
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States
| | | | | | | | | | | |
Collapse
|