1
|
Pequeno DP, Carron J, Gaspar KC, Lima CSP, de Dantas CR, Lourenço GJ. Post-Traumatic Stress Symptoms in Head and Neck Cancer Patients: The Impact of the COVID-19 Pandemic and Gene-Environment Interaction. Head Neck 2025; 47:1185-1198. [PMID: 39648899 DOI: 10.1002/hed.28026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND This study aimed to assess the occurrence of post-traumatic stress symptoms (PTSS) in head and neck cancer (HNC) patients. The goal also was to explore potential associations between PTSS, demographic factors, psychological variables, and specific genetic variants. METHODS This study included a total of 155 HNC patients, divided into pre-pandemic (n = 76) and COVID-19 pandemic (n = 79) groups. PTSS assessments were conducted using a standardized questionnaire. The assessment of adverse childhood experiences (ACEs) involved specific questionnaire items. Genetic variants were identified via RT-PCR. Statistical analysis employed linear multivariate regression, while mediation analysis examined gene-environment interactions. RESULTS In the pre-pandemic, higher PTSS scores were found to be associated with younger age (p = 0.02) and a history of cumulative ACEs (p = 0.001). Mediation analysis revealed that ACEs had a direct impact on PTSS scores, with the FKBP5 CC genotype (rs1360780, C>T) mediating this association by 29%. In the pandemic, elevated PTSS scores were correlated with a history of depression (p = 0.001), the negative impact of the pandemic (p = 0.007), and undergoing palliative treatment (p = 0.02). CONCLUSIONS Our findings provide insights into the psychosocial and genetic factors contributing to PTSS in HNC patients, considering the additional stressors introduced by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Daniel Paixão Pequeno
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, São Paulo, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Karla Cristina Gaspar
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, São Paulo, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | | | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Sun H, Xia T, Ma S, Lv T, Li Y. Intercellular communication is crucial in the regulation of healthy aging via exosomes. Pharmacol Res 2025; 212:107591. [PMID: 39800177 DOI: 10.1016/j.phrs.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The hallmarks of aging encompass a variety of molecular categories (genomic, telomeric, and epigenetic), organelles (proteostasis, autophagy, and mitochondria), cellular components (including stem cells), systems (such as intercellular communication and chronic inflammation), and environmental factors (dysbiosis and nutrient sensing). These hallmarks play a crucial role in the aging process. Despite their intricate interconnections, the relationships among the hallmarks of aging remain unclear. Although the boundaries between these hallmarks may be indistinct, they exhibit interdependence, with the influence of one hallmark extending to others. Building on this foundation, we investigated the interrelations among the various hallmarks of aging and provided a systematic overview of their logical relationships, proposing that cellular communication plays a crucial role in the aging process. Exosomes function as a primary mode of cellular communication and significantly impact the aging process. Therefore, we propose utilizing exosomes as valuable tools for understanding the mechanisms of aging and addressing age-related concerns. Exosomes may represent a novel approach for the treatment and diagnosis of aging-related conditions in animals. Furthermore, our research reveals that exocytosis in young nematodes slows the aging process, while exocytosis in aged nematodes has the opposite effect, accelerating aging. In conclusion, exosomes act as intercellular messengers that influence the maintenance of a healthy aging process and link the hallmarks of aging with indicators of well-being.
Collapse
Affiliation(s)
- Huifang Sun
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tengyuan Xia
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Shuting Ma
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tao Lv
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| | - Yuhong Li
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| |
Collapse
|
3
|
Ma X, Gao HJ, Ge HZ, Zhang Q, Bu BT. Interleukin-6 trans-signalling regulates monocyte chemoattractant protein-1 production in immune-mediated necrotizing myopathy. Rheumatology (Oxford) 2025; 64:849-859. [PMID: 38391023 DOI: 10.1093/rheumatology/keae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Immune-mediated necrotizing myopathy (IMNM) is pathologically characterized by diffuse myofibre necrosis and regeneration, myophagocytosis and a sparse inflammatory infiltrate. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that regulates monocyte/macrophage infiltration into injured tissues. IL-6 signalling in the induction of MCP-1 expression has not been investigated in IMNM. METHODS MCP-1 expression in muscle specimens was assessed using immunohistochemistry and Reverse transcription quantitative polymerase chain reaction (RT-qPCR). Levels of multiple serological cytokines were evaluated using the electrochemiluminescence-based immunoassays. Flow cytometry, RT-qPCR, enzyme-linked immunosorbent assay, western blot, dual-luciferase reporter assays and chromatin immunoprecipitation qPCR were performed to explore the effects of IL-6 signalling on MCP-1 production in human myoblasts. RESULTS MCP-1 was scattered and was positively expressed within myofibres and a few inflammatory cells in the muscles of patients with IMNM. Sarcoplasmic MCP-1 expression significantly correlated with myonecrosis, myoregeneration and inflammatory infiltration. Serum MCP-1, IL-6 and the soluble form of the IL-6 receptor (sIL-6R) were elevated in patients with IMNM compared with controls. Serological MCP-1 levels were significantly associated with serum IL-6 expression and clinical disease severity in IMNM patients. The IL-6/sIL-6R complex induced MCP-1 expression via the signal transducer and activator of transcription 3 (STAT3) pathway in human myoblasts. Mechanistically, phospho-STAT3 was enriched in the MCP-1 promoter region and promoted the transcription. CONCLUSION IL-6 trans-signalling may contribute to the immunopathogenesis of IMNM by augmenting inflammation through regulation of MCP-1 expression in IMNM.
Collapse
Affiliation(s)
- Xue Ma
- Department of Neurology, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Jie Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Zhen Ge
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Feng Z, Wang Y, Liang Y, Gu X, Yang Y, Zhang Y, Peng Q. Development and validation of a prognostic risk score model for hepatocellular carcinoma in the Asian population based on immunogenic cell death-related genes. Discov Oncol 2024; 15:744. [PMID: 39630208 PMCID: PMC11618282 DOI: 10.1007/s12672-024-01630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the predominant form of liver cancer, is marked by limited therapeutic success and unfavorable prognoses. Its etiology varies regionally, with hepatitis B virus (HBV) being the predominant cause in most of Asia. Immunogenic cell death (ICD), a specific type of cell death, has been extensively linked to HCC treatment in numerous studies. This research aims to explore the significance of ICD-related genes in the Asian HCC cohort, potentially offering novel approaches for HCC management. METHODS We initially obtained transcriptomic and clinical data pertinent to Asian HCC from the TCGA database. Subsequently, we classified the samples into distinct subgroups according to ICD gene expression levels and conducted analyses of the tumor microenvironment and enrichment. Furthermore, we randomly allocated the samples into training and testing cohorts, thereafter developing and validating an ICD gene-based prognostic model tailored for the Asian HCC population. RESULTS The Asian HCC samples were categorized into two subgroups: high and low ICD expression. In the low ICD expression group, we observed diminished infiltration of immune and stromal cells, increased tumor purity, and improved prognosis. Moreover, we devised a 5-gene risk-score prognostic model comprising BAX, CASP8, HMGB1, HSP90AA1, and IL6, demonstrating efficacy in prognostic predictions for the Asian HCC cohort. CONCLUSION Our investigation unveils new perspectives on the influence of ICDs within Asian HCC populations. The derived 5-gene risk-score prognostic model, based on ICDs, not only serves as a tool for assessing prognosis in Asian HCC cases but also suggests potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanjie Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong Liang
- Department of Oncology, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Xuhao Gu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinyin Yang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yusong Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Kim HR, Kim MC, Kang EJ, Choi JH, Choi YK, Lee IB, Choi DH, Seo YJ, Noh JR, Kim YH, Lee CH. The Gastroprotective Effect of Sicyos angulatus Against Hydrochloric Acid/Ethanol-Induced Acute Gastritis and Gastric Ulcer in Mice. J Med Food 2024; 27:1219-1230. [PMID: 39321339 DOI: 10.1089/jmf.2024.k.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Gastritis and gastric ulcers are common gastric diseases that are caused by infection, drugs, alcohol consumption, or stress. These conditions lead to increased inflammatory cytokines and recruitment of leukocytes, which damage the stomach mucosa and exacerbate disease severity. Sicyos angulatus (SA), an annual vine in the Cucurbitaceae family, is known to have an anti-inflammatory effect, but its efficacy for preventing gastritis and gastric ulcers has not yet been evaluated. In the present study, we investigated the gastroprotective effect of SA using a hydrochloric acid/ethanol-induced gastric mucosal injury mouse model and lipopolysaccharide (LPS)-stimulated KATO III cells. Macroscopic analysis revealed a reduction in gastric ulcer area. Similarly, histopathological analysis showed a dose-dependent decrease in gastric mucosal injury, with significant improvement at 750 mg/kg of SA treatment. Gene expressions of inflammatory cytokines, chemokines, and adhesion molecule were reduced in the SA-administered group. Immunohistochemical staining indicated that SA significantly decreased neutrophil infiltration in the lamina propria and epithelium of the stomach. Kaempferol, a major bioactive flavonoid of SA, also improved gastric injury by reducing macroscopic and microscopic lesions, inflammatory mediator gene expression, and neutrophil infiltration. Furthermore, both SA and kaempferol downregulated LPS-mediated increases in inflammatory cytokines and chemokines following inhibition of p38 and c-Jun N-terminal kinase (JNK) phosphorylation in KATO III cells. These results suggest that SA can ameliorate gastric mucosal injury by inhibiting the recruitment of inflammatory cells, particularly neutrophils, and by suppressing p38 and JNK phosphorylation.
Collapse
Affiliation(s)
- Hye-Rin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| | - Min-Chan Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| | - Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jung Hyeon Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| |
Collapse
|
6
|
Frisk C, Ekström M, Eriksson MJ, Corbascio M, Hage C, Persson H, Linde C, Persson B. Characteristics of gene expression in epicardial adipose tissue and subcutaneous adipose tissue in patients at risk for heart failure undergoing coronary artery bypass grafting. BMC Genomics 2024; 25:938. [PMID: 39375631 PMCID: PMC11457432 DOI: 10.1186/s12864-024-10851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) surrounds the heart and is hypothesised to play a role in the development of heart failure (HF). In this study, we first investigated the differences in gene expression between epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) in patients undergoing elective coronary artery bypass graft (CABG) surgery (n = 21; 95% male). Secondly, we examined the association between EAT and SAT in patients at risk for HF stage A (n = 12) and in pre-HF patients, who show signs but not symptoms of HF, stage B (n = 9). RESULTS The study confirmed a distinct separation between EAT and SAT. In EAT 17 clusters of genes were present, of which several novel gene modules are associated with characteristics of HF. Notably, seven gene modules showed significant correlation to measures of HF, such as end diastolic left ventricular posterior wall thickness, e'mean, deceleration time and BMI. One module was particularly distinct in EAT when compared to SAT, featuring key genes such as FLT4, SEMA3A, and PTX3, which are implicated in angiogenesis, inflammation regulation, and tissue repair, suggesting a unique role in EAT linked to left ventricular dysfunction. Genetic expression was compared in EAT across all pre-HF and normal phenotypes, revealing small genetic changes in the form of 18 differentially expressed genes in ACC/AHA Stage A vs. Stage B. CONCLUSIONS The roles of subcutaneous and epicardial fat are clearly different. We highlight the gene expression difference in search of potential modifiers of HF progress. The true implications of our findings should be corroborated in other studies since HF ACC/AHA stage B patients are common and carry a considerable risk for progression to symptomatic HF.
Collapse
Affiliation(s)
- Christoffer Frisk
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden
| | - Mattias Ekström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | - Matthias Corbascio
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Thoracic Surgery, Karolinska University Hospital, Stockholm, S-171 76, Sweden
| | - Camilla Hage
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Hans Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Bengt Persson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden.
| |
Collapse
|
7
|
Harmalkar DS, Sivaraman A, Nada H, Lee J, Kang H, Choi Y, Lee K. Natural products as IL-6 inhibitors for inflammatory diseases: Synthetic and SAR perspective. Med Res Rev 2024; 44:1683-1726. [PMID: 38305581 DOI: 10.1002/med.22022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/07/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a pivotal role in the pathophysiology of various diseases including diabetes, atherosclerosis, Alzheimer's disease, multiple myeloma, rheumatoid arthritis, and prostate cancer. The signaling pathways associated with IL-6 offer promising targets for therapeutic interventions in inflammatory diseases and IL-6-dependent tumors. Although certain anti-IL-6 monoclonal antibodies are currently employed clinically, their usage is hampered by drawbacks such as high cost and potential immunogenicity, limiting their application. Thus, the imperative arises to develop novel small non-peptide molecules acting as IL-6 inhibitors. Various natural products derived from diverse sources have been investigated for their potential to inhibit IL-6 activity. Nevertheless, these natural products remain inadequately explored in terms of their structure-activity relationships. In response, our review aims to provide syntheses and structure activity perspective of natural IL-6 inhibitors. The comprehensive amalgamation of information presented in this review holds the potential to serve as a foundation for forthcoming research endeavors by medicinal chemists, facilitating the design of innovative IL-6 inhibitors to address the complexities of inflammatory diseases.
Collapse
Affiliation(s)
- Dipesh S Harmalkar
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
- Department of Chemistry, Government College of Arts, Science & Commerce, Sanquelim, Goa, India
| | - Aneesh Sivaraman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| | - Joohan Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| | - Hyeseul Kang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| | - Yongseok Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| |
Collapse
|
8
|
Yu J, Chu Q, Zhou J, Zhang L. The novel fish miRNA, Soc-miR-118, functions as a negative regulator in NF-κB-mediated inflammation by targeting IL-6 in teleost fish. Int J Biol Macromol 2024; 269:132100. [PMID: 38710252 DOI: 10.1016/j.ijbiomac.2024.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Inflammation is initiated as a protective response of the organism to remove invading bacterial and initiate the healing process. Prolonged inflammation and excessive production of inflammatory cytokines lead to inflammatory disorders or autoimmune diseases. Thus, different layers of negative regulators are needed to achieve balances between protective immunity and inflammatory pathology. Accumulating evidences show that miRNAs act as significant and multifunctional regulators involved in regulating networks of host-pathogen interactions. However, the functions and mechanisms of miRNAs in directly targeting and regulating inflammatory cytokines remains largely unknown in lower vertebrates. In this study, we report a novel miRNA, Soc-miR-118, identified from Sciaenops ocellatus, which plays a negative role in antibacterial immunity by regulating Interleukin-6 (IL-6). Specifically, we found that Soc-miR-118 directly targets IL-6 and suppresses the production of inflammatory cytokines through the NF-κB signaling pathway, thereby avoiding excessive inflammatory response. Particularly, the mechanism by which Soc-miR-118 regulates IL-6 expression also exist in other fish, suggesting that the miRNA in fish has evolutionarily conserved regulatory systems. The collective results that Soc-miR-118 acts as a negative regulator involved in host antibacterial immunity through directly regulating inflammatory cytokines, will greatly enrich the intricate networks of host-pathogen interaction in lower vertebrates.
Collapse
Affiliation(s)
- Jingyao Yu
- School of Agriculture, Ludong University, Yantai, China
| | - Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| | - Jiale Zhou
- School of Agriculture, Ludong University, Yantai, China
| | - Lin Zhang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
9
|
Świątkowska B, Jankowski M, Kaleta D. Comparative evaluation of ten blood biomarkers of inflammation in regular heated tobacco users and non-smoking healthy males-a pilot study. Sci Rep 2024; 14:8779. [PMID: 38627440 PMCID: PMC11021498 DOI: 10.1038/s41598-024-59321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Heated tobacco products (HTPs) are novel tobacco products that are alternatives to cigarettes. The study aimed to investigate the effect of HTPs on blood biomarkers of inflammation as well as to provide a comparative evaluation between daily heated tobacco users and healthy men who do not use nicotine products. This case-control study was carried out among 92 healthy males in Poland (Lodz-Province) aged 20-56 years: 44 daily heated tobacco users (daily use in the past 90 days) and 48 controls who do not use nicotine products. The history of use of the nicotine-containing products was self-reported and verified using a saliva cotinine test. A 20 ml blood sample was collected and the levels of ten blood biomarkers were analyzed. Among all heated tobacco users (n = 44), only the levels of interleukin 8 (IL-8) were significantly higher when compared to controls: 6.86 vs. 3.95 (p = 0.01). Among exclusive heated tobacco users (n = 33), the levels of IL-8 were also significantly higher when compared to controls: 7.76 vs. 3.95 (p = 0.01). IL-8 level was positively correlated (r = 0.37; p = 0.01) with the daily number of heated tobacco sticks. Out of 10 different biomarkers of inflammation, only IL-8 levels were significantly elevated in heated tobacco use compared to controls.
Collapse
Affiliation(s)
- Beata Świątkowska
- Department of Hygiene and Epidemiology, Medical University of Lodz, Żeligowskiego 7/9 Street, 90-752, Łódź, Poland.
| | - Mateusz Jankowski
- Department of Population Health, School of Public Health, Centre of Postgraduate Medical Education, Kleczewska 61/63 Street, 01-826, Warsaw, Poland
| | - Dorota Kaleta
- Department of Hygiene and Epidemiology, Medical University of Lodz, Żeligowskiego 7/9 Street, 90-752, Łódź, Poland
| |
Collapse
|
10
|
Aarstad HH, Moe SEE, Lybak S, Bruserud Ø, Tvedt THA, Aarstad HJ. Plasma IL-1 and IL-6 Family Cytokines with Soluble Receptor Levels at Diagnosis in Head and Neck Squamous Cell Carcinoma: High Levels Predict Decreased Five-Year Disease-Specific and Overall Survival. Cancers (Basel) 2024; 16:1484. [PMID: 38672565 PMCID: PMC11048558 DOI: 10.3390/cancers16081484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Activation of the acute-phase cascade (APC) has been correlated with outcomes in various cancers, including head and neck squamous cell carcinoma (HNSCC). Primary drivers of the APC are the cytokines within the interleukin-6 (IL-6) and IL-1 families. Plasma levels of IL-6 family cytokines/soluble receptors (IL-6, IL-27, IL-31, OSM, CNTF, soluble (s-)gp130, s-IL-6Rα) and IL-1 family members (IL-1RA, s-IL-33Rα) were determined at diagnosis for 87 human papillomavirus (HPV)-negative (-) HNSCC patients. We then studied the 5-year Disease-Specific Survival (DSS) and Overall Survival (OS). Increased plasma levels of IL-6 (p < 0.001/p < 0.001) (DSS/OS), IL-31 (p = 0.044/p = 0.07), IL-1RA (p = 0.004/p = 0.035), soluble (s)-IL-6Rα p = 0.022/p = 0.035), and s-gp130 (p = 0.007/p = 0.003) at diagnosis were predictors of both OS and DSS from HPV(-) HNSCC patients. The cytokine DSS/OS predictions were associated with TNM stage and smoking history, whereas the soluble receptors IL-6Rα, gp130, and IL33Rα more uniquely predicted DSS/OS. Clinically, IL-6 levels above 2.5 pg/mL yielded 75% specificity and 70% sensitivity for DSS. In conclusion, high plasma levels of IL-6, IL-31, and IL-1RA, as well as the soluble receptors IL-6Rα, gp130, and IL33Rα, predicted clinical outcome. This shows their potential as candidates for both general therapy and immune therapy stratification, as well as being future platforms for the development of new immunotherapy.
Collapse
Affiliation(s)
- Helene Hersvik Aarstad
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5009 Bergen, Norway; (H.H.A.); (S.E.E.M.); (S.L.)
- Department of Surgery, Haraldsplass Deaconal Hospital, 5009 Bergen, Norway
| | - Svein Erik Emblem Moe
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5009 Bergen, Norway; (H.H.A.); (S.E.E.M.); (S.L.)
| | - Stein Lybak
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5009 Bergen, Norway; (H.H.A.); (S.E.E.M.); (S.L.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| | - Øystein Bruserud
- Section for Haematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | | | - Hans Jørgen Aarstad
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5009 Bergen, Norway; (H.H.A.); (S.E.E.M.); (S.L.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
11
|
Gao B, Wang Z, Wang K, Lei Y, Zhuang Y, Zhou Z, Chen J. Relationships among gut microbiota, plasma metabolites, and juvenile idiopathic arthritis: a mediation Mendelian randomization study. Front Microbiol 2024; 15:1363776. [PMID: 38605717 PMCID: PMC11007183 DOI: 10.3389/fmicb.2024.1363776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Objective The objective of this study is to investigate the causal relationship between gut microbiota and juvenile idiopathic arthritis, and to identify and quantify the potential role of plasma metabolites as mediators. Methods Using summary-level data from genome-wide association studies, a two-sample Mendelian randomization was conducted involving 131 gut microbiota genus, 1,400 plasma metabolites, and juvenile idiopathic arthritis. Additionally, a two-step approach was employed to quantify the proportion of the effect of gut microbiota on juvenile idiopathic arthritis mediated by plasma metabolites. Effect estimation primarily utilized Inverse Variance Weighting, with further validation using Bayesian weighted Mendelian randomization. Results In our MR analysis, a positive correlation was observed between Rikenellaceae and the risk of juvenile idiopathic arthritis, while Dorea showed a negative correlation with juvenile idiopathic arthritis risk. Mediation analysis indicated that Furaneol sulfate levels acted as a mediator between Dorea and juvenile idiopathic arthritis, with an indirect effect proportion of 19.94, 95% CI [8.86-31.03%]. Conclusion Our study confirms a causal relationship between specific microbial genus and juvenile idiopathic arthritis, and computes the proportion of the effect mediated by plasma metabolites, offering novel insights for clinical interventions in juvenile idiopathic arthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junfei Chen
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Zhao M, Wang M, Chen X, Gao Y, Chen Q, Wang L, Bao Q, Sun D, Du W, Xu Y, Xie L, Jiang X, Zhang L, Peng L, Zhang B, Yao Y. Targeting progranulin alleviated silica particles-induced pulmonary inflammation and fibrosis via decreasing Il-6 and Tgf-β1/Smad. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133199. [PMID: 38103296 DOI: 10.1016/j.jhazmat.2023.133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Long term exposure to silica particles leads to various diseases, among which silicosis is of great concern. Silicosis is an interstitial lung disease caused by inhalation of silica particles in production environments. However, the mechanisms underlying silicosis remains unclear. Our previous studies revealed that progranulin (Pgrn) promoted the expression of pro-inflammatory factors in alveolar macrophages treated with silica particles and the secretion of extracellular matrix of pulmonary fibroblasts. Nevertheless, the role of Pgrn in silica particles-induced silicosis in vivo was unknown. This study found that silica particles increased Pgrn expression in silicosis patients. Pgrn deficiency reduced lung inflammation and fibrosis in silica particles-induced silicosis mouse models. Subsequently, based on transcriptional sequencing and interleukin (Il) -6 knockout mouse models, results demonstrated that Pgrn deficiency might decrease silicosis inflammation by reducing the production of Il-6, thereby modulating pulmonary fibrosis in the early stage of silicosis mouse models. Furthermore, another mechanism through which Pgrn deficiency reduced fibrosis in silicosis mouse models was the regulation of the transforming growth factor (Tgf) -β1/Smad signaling pathway. Conclusively, Pgrn contributed to silicosis inflammation and fibrosis induced by silica particles, indicating that Pgrn could be a promising therapeutic target.
Collapse
Affiliation(s)
- Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xuxi Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Gao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Liqun Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Donglei Sun
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Du
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yunyi Xu
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Linshen Xie
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Jiang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lijun Peng
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ben Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Departments of Cardiology, Neurology, and Oncology, Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou 570311, China.
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Ghasemi Pour Afshar N, Arab HA, Vatannejad A, Ashabi G, Golabchifar AA. The Role of the JAK-STAT Signaling Pathway in the Protective Effects of Hepatic Ischemia Post-conditioning Against the Injury Induced by Ischemia/Reperfusion in the Rat Liver. Adv Pharm Bull 2024; 14:224-230. [PMID: 38585457 PMCID: PMC10997924 DOI: 10.34172/apb.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Hepatic ischemic post-conditioning (IPOC) is shown to protect the liver from injury induced by ischemia/reperfusion (IR). However, the mechanism underlying this protection has remained elusive. The present study aimed to investigate the role of the interleukin 6-Janus kinase-signal transducers and activators of transcription (IL-6-JAK-STAT) pathway in the protective effect of hepatic IPOC against the IR-induced injury in the liver. Methods Twenty-five rats were randomly divided into 5 groups of (1) sham-operated, (2) IR, (3) IR+hepatic IPOC, (4) IR+tofacitinib (TOFA), and (5) IR+TOFA+hepatic IPOC. The changes induced by IR and the effects of different treatments were assessed by enzyme release, histopathological observations, the serum level of IL-6, and the occurrence of apoptosis detected via the expression of the Bax/Bcl-2 ratio. Results The hepatic IPOC improved the liver injury induced by IR as shown by histological changes, reduction of IL-6 level, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) compared to the IR group (P<0.001, P<0.05, P<0.05, respectively). There was also downregulation of the Bax/Bcl2 ratio in the rats exposed to IR+hepatic IPOC compared with those in the IR group (P<0.05). However, TOFA, an inhibitor of JAK-STAT activity, inhibited the protective effect of hepatic IPOC. Conclusion It suggests that the protective effect of hepatic IPOC against IR-induced injury may be mediated by activating the IL-6-JAK-STAT pathway.
Collapse
Affiliation(s)
- Neda Ghasemi Pour Afshar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Ali Arab
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali akbar Golabchifar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Baghaie L, Haxho F, Leroy F, Lewis B, Wawer A, Minhas S, Harless WW, Szewczuk MR. Contemporaneous Perioperative Inflammatory and Angiogenic Cytokine Profiles of Surgical Breast, Colorectal, and Prostate Cancer Patients: Clinical Implications. Cells 2023; 12:2767. [PMID: 38067195 PMCID: PMC10706122 DOI: 10.3390/cells12232767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Surgery-induced tumor growth acceleration and synchronous metastatic growth promotion have been observed for decades. Surgery-induced wound healing, orchestrated through growth factors, chemokines, and cytokines, can negatively impact patients harboring residual or metastatic disease. We provide detailed clinical evidence of this process in surgical breast, prostate, and colorectal cancer patients. Plasma samples were analyzed from 68 cancer patients who had not received treatment before surgery or adjuvant therapy until at least four weeks post-surgery. The levels of plasma cytokines, chemokines, and growth factors were simultaneously quantified and profiled using multiplexed immunoassays for eight time points sampled per patient. The immunologic processes are induced immediately after surgery in patients, characterized by a drastic short-term shift in the expression levels of pro-inflammatory and angiogenic molecules and cytokines. A rapid and significant spike in circulating plasma levels of hepatocyte growth factor (HGF), interleukin-6 (IL-6), placental growth factor (PLGF), and matrix metalloproteinase-9 (MMP-9) after surgery was noted. The rise in these molecules was concomitant with a significant drop in transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF-AB/BB), insulin-like growth factor-1 (IGF-1), and monocyte chemoattractant protein-2 (MCP-2). If not earlier, each plasma analyte was normalized to baseline levels within 1-2 weeks after surgery, suggesting that surgical intervention alone was responsible for these effects. The effects of surgical tumor removal on disrupting the pro-inflammatory and angiogenic plasma profiles of cancer patients provide evidence for potentiating malignant progression. Our findings indicate a narrow therapeutic window of opportunity after surgery to prevent disease recurrence.
Collapse
Affiliation(s)
- Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
| | - Fiona Haxho
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
- Dermatology Residency Program, the Cumming School of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada
| | - Fleur Leroy
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
- Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France
| | - Beth Lewis
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Alexander Wawer
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Shamano Minhas
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - William W. Harless
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
| |
Collapse
|
15
|
Su W, Tian Y, Wei Y, Hao F, Ji J. Key genes and immune infiltration in chronic spontaneous urticaria: a study of bioinformatics and systems biology. Front Immunol 2023; 14:1279139. [PMID: 38045687 PMCID: PMC10693338 DOI: 10.3389/fimmu.2023.1279139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Background Chronic spontaneous urticaria (CSU) is defined by the spontaneous occurrence of wheals and/or angioedema for >6 weeks. The pathogenesis involves skin mast cells, but the complex causes of their activation remain to be characterized in detail. Objectives To explore disease-driving genes and biological pathways in CSU. Methods Two microarray data sets, e.g., GSE57178 and GSE72540, with mRNA information of skin from CSU patients, were downloaded from the Gene Expression Omnibus (GEO) database. An integrated bioinformatics pipeline including identification of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction (PPI) network analysis, co-expression and drug prediction analysis, and immune and stromal cells deconvolution analyses were applied to identify hub genes and key drivers of CSU pathogenesis. Results In total, we identified 92 up-regulated and 7 down-regulated genes in CSU lesions. These were significantly enriched in CSU-related pathways such as TNF, NF-κB, and JAK-STAT signaling. Based on PPI network modeling, four genes, i.e., IL-6, TLR-4, ICAM-1, and PTGS-2, were computationally identified as key pathogenic players in CSU. Immune infiltration analyses indicated that dendritic cells, Th2 cells, mast cells, megakaryocyte-erythroid progenitor, preadipocytes, and M1 macrophages were increased in lesional CSU skin. Conclusion Our results offer new insights on the pathogenesis of CSU and suggest that TNF, NF-κB, JAK-STAT, IL-6, TLR-4, ICAM-1, and PTGS-2 may be candidate targets for novel CSU treatments.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tian
- Department of Dermatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqian Wei
- Department of Dermatology, Nantong Third People’s Hospital, Nantong, China
| | - Fei Hao
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Wang R, Ye H, Yang B, Ao M, Yu X, Wu Y, Xi M, Hou M. m6A-modified circNFIX promotes ovarian cancer progression and immune escape via activating IL-6R/JAK1/STAT3 signaling by sponging miR-647. Int Immunopharmacol 2023; 124:110879. [PMID: 37713785 DOI: 10.1016/j.intimp.2023.110879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common gynecological malignant cancers. Our previous work confirmed that circNFIX acted as an oncogene in OC, which could promote malignant proliferation, metastasis and angiogenesis. However, the role and mechanism of circNFIX in OC immune escape remain unclear. METHODS The RNA and protein levels were determined by qRT-PCR and western blot assays. The malignant phenotypes were tested by cell count kit-8, EdU staining, flow cytometry and transwell assays. The immune cytokines levels were measured by ELISA analysis. Molecular interactions were verified employing RNA immunoprecipitation, meRIP and dual luciferase methods. In vivo validation was performed by xenograft tumor and lung metastasis model. Hematoxylin & eosin and immunohistochemistry staining were used to observe the pathological changes. RESULTS The levels of circNFIX, PD-L1, and IL-6R were upregulated in OC tissues and cell lines, while miR-647 was downregulated. Functional assays showed that loss of circNFIX suppressed the growth, metastasis and immune escape of OC cells both in vitro and in vivo. On the molecular level, the m6A modification of circNFIX was elevated in OC cells, and its expression was positively correlated to m6A modification and depended on IGF2BP1 ∼ 3 recognition. Moreover, circNFIX acted as a competing endogenous RNA for miR-647 to upregulate IL-6R expression, thereby activating JAK/STAT3 signaling and elevating PD-L1 expression. Rescue assays revealed that co-silencing of miR-647 reversed the antitumor effects of circNFIX knockdown on cell proliferation, metastasis and immune escape of OC cells. CONCLUSION This study provided a comprehensive understanding of the molecular mechanism about circNFIX in OC, demonstrating m6A activated-circNFIX accelerated OC development and immune escape via regulating miR-647/IL-6R/PD-L1 pathway.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Hui Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Bowen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Mengyin Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Xiuzhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Yuke Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Minmin Hou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
17
|
Holmannova D, Borsky P, Parova H, Stverakova T, Vosmik M, Hruska L, Fiala Z, Borska L. Non-Genomic Hallmarks of Aging-The Review. Int J Mol Sci 2023; 24:15468. [PMID: 37895144 PMCID: PMC10607657 DOI: 10.3390/ijms242015468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Libor Hruska
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| |
Collapse
|
18
|
Monsour M, Croci DM, Grüter BE, Taussky P, Marbacher S, Agazzi S. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors? Transl Stroke Res 2023; 14:631-639. [PMID: 36042111 DOI: 10.1007/s12975-022-01079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Intracranial aneurysm (IA) rupture is a common cause of subarachnoid hemorrhage (SAH) with high mortality and morbidity. Inflammatory interleukins (IL), such as IL-6, play an important role in the occurrence and rupture of IA causing SAH. With this review we aim to elucidate the specific role of IL-6 in aneurysm formation and rupture in preclinical and clinical studies. IL-6 is a novel cytokine in that it has pro-inflammatory and anti-inflammatory signaling pathways. In preclinical and clinical studies of IA formation, elevated and reduced levels of IL-6 are reported. Poor post-rupture prognosis and increased rupture risk, however, are associated with higher levels of IL-6. By better understanding the relationships between IL-6 and IA formation and rupture, IL-6 may serve as a biomarker in high-risk populations. Furthermore, by better understanding the IL-6 signaling mechanisms in IA formation and rupture, IL-6 may optimize surveillance and treatment strategies. This review examines the association between IL-6 and IA, while also suggesting future research directions.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Davide Marco Croci
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Basil E Grüter
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Serge Marbacher
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
Thangaleela S, Sivamaruthi BS, Radha A, Kesika P, Chaiyasut C. Neuromyelitis Optica Spectrum Disorders: Clinical Perspectives, Molecular Mechanisms, and Treatments. APPLIED SCIENCES 2023; 13:5029. [DOI: 10.3390/app13085029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Neuromyelitis optica (NMO) is a rare autoimmune inflammatory disorder affecting the central nervous system (CNS), specifically the optic nerve and the spinal cord, with severe clinical manifestations, including optic neuritis (ON) and transverse myelitis. Initially, NMO was wrongly understood as a condition related to multiple sclerosis (MS), due to a few similar clinical and radiological features, until the discovery of the AQP4 antibody (NMO-IgG/AQP4-ab). Various etiological factors, such as genetic-environmental factors, medication, low levels of vitamins, and others, contribute to the initiation of NMO pathogenesis. The autoantibodies against AQP4 target the AQP4 channel at the blood–brain barrier (BBB) of the astrocyte end feet, which leads to high permeability or leakage of the BBB that causes more influx of AQP4-antibodies into the cerebrospinal fluid (CSF) of NMO patients. The binding of AQP4-IgG onto the AQP4 extracellular epitopes initiates astrocyte damage through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). Thus, a membrane attack complex is formed due to complement cascade activation; the membrane attack complex targets the AQP4 channels in the astrocytes, leading to astrocyte cell damage, demyelination of neurons and oligodendrocytes, and neuroinflammation. The treatment of NMOSD could improve relapse symptoms, restore neurological functions, and alleviate immunosuppression. Corticosteroids, apheresis therapies, immunosuppressive drugs, and B cell inactivating and complement cascade blocking agents have been used to treat NMOSD. This review intends to provide all possible recent studies related to molecular mechanisms, clinical perspectives, and treatment methodologies of the disease, particularly focusing on recent developments in clinical criteria and therapeutic formulations.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Xin Z, You L, Na F, Li J, Chen M, Song J, Bai L, Chen J, Zhou J, Ying B. Immunogenetic variations predict immune-related adverse events for PD-1/PD-L1 inhibitors. Eur J Cancer 2023; 184:124-136. [PMID: 36917924 DOI: 10.1016/j.ejca.2023.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND PD-1/PD-L1 inhibitors have brought remarkable benefits but can cause profound immune-related adverse events (irAEs). The host immunogenetic background is likely to play a role in irAE susceptibility. In this study, we aimed to identify potential immunogenetic biomarkers to predict irAEs. METHODS Patients with solid tumours receiving PD-1/PD-L1 blockade were recruited and followed up. Genes considered pivotal contributors to tumour-immunity and autoimmune diseases were screened out via protein-protein interaction network and Cytoscape. Consequently, thirty-nine variants in eighteen genes were genotyped using the multiplex genotyping assay. Association analysis between genetic variants and irAEs as well as irAEs-free survival was performed. RESULTS Four immunogenetic variants as predictive biomarkers of irAEs were identified. The C allele of Mitogen-Activated Protein Kinase 1 (MAPK1) rs3810610 (odds ratio [OR] = 1.495, 95% confidence interval [CI] = 1.093-2.044, P = 0.012) was a risk predictor while the A allele of PTPRC rs6428474 (OR = 0.717, 95% CI = 0.521-0.987, P = 0.041) was a protective factor for all-grade irAEs. The A allele of ADAD1 rs17388568 (OR = 2.599, 95% CI = 1.355-4.983, P = 0.003) increased the risk while the G allele of IL6 rs1800796 (OR = 0.425, 95% CI = 0.205-0.881, P = 0.018) protected patients from high-grade irAEs. Significant immunogenetic variants reached a similar tendency in PD-1 blockade or lung cancer subgroups. In multivariate Cox regression analysis, the MAPK1 rs3810610 was an independent factor regarding all-grade irAEs-free survival (CC versus CT or TT: hazard ratio [HR] = 0.71, 95% CI = 0.52-0.99, P = 0.042). ADAD1 rs17388568 (AA versus AG or GG: HR = 0.11, 95% CI = 0.025-0.49, P = 0.004) and IL6 rs1800796 (GG or GC versus CC: HR = 3.10, 95% CI = 1.315-7.29, P = 0.01) were independent variables for high-grade irAEs-free survival. CONCLUSION We first identified several immunogenetic polymorphisms associated with irAEs and irAEs-free survival in PD-1/PD-L1 blockade-treated tumour patients, and they may serve as potential predictive biomarkers.
Collapse
Affiliation(s)
- Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Min Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province 570100, PR China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
21
|
Trakarnvanich T, Sirivongrangson P, Trongtrakul K, Srisawat N. The effect of citrate in cardiovascular system and clot circuit in critically ill patients requiring continuous renal replacement therapy. J Artif Organs 2023; 26:53-64. [PMID: 35412099 PMCID: PMC9968675 DOI: 10.1007/s10047-022-01329-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
We aimed to evaluate the impact of citrate on hemodynamic responses and secondary outcomes, including the filter life span, metabolic complications, and levels of inflammatory cytokines, in critically ill patients who required CRRT compared with those who underwent the heparin-free method. This prospective, multicenter, open-label randomized trial compared regional citrate anticoagulation (RCA) with a heparin-free protocol in severe acute kidney injury (AKI) patients who received continuous venovenous hemodiafiltration (CVVHDF) in the postdilution mode. We measured hemodynamic changes using the FloTrac Sensor/EV1000™ Clinical Platform at certain time points after starting CRRT (0, 6, 12, 24, 48, and 72 h.). The levels of inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10 and TNF-ɑ) were measured on days 1 and 3. Forty-one patients were recruited and randomized into the heparin (n = 20) and citrate groups (n = 21). The cardiac performances were not significantly different between the 2 groups at any time point. The inflammatory cytokines declined similarly in both treatment arms. The maximum filter survival time was insignificantly longer in the RCA group than in the heparin-free group (44.64 ± 26.56 h. vs p = 0.693 in citrate and heparin free group). No serious side effects were observed for either treatment arm, even in the group of liver dysfunction patients. RCA did not affect hemodynamic changes during CRRT. Inflammatory cytokines decreased similarly in both treatment arms.The filter life span was longer in the citrate group. RCA is a valid alternative to traditional anticoagulation and results in stable hemodynamic parameters.
Collapse
Affiliation(s)
- Thananda Trakarnvanich
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Dusit, Bangkok, 10300, Thailand.
| | | | - Konlawij Trongtrakul
- Faculty of Medicine, Pulmonary, Critical Care, and Allergy Division, Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattachai Srisawat
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Critical Care Nephrology Research Unit, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
22
|
Pinheiro EDS, Preato AM, Petrucci TVB, dos Santos LS, Glezer I. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front Endocrinol (Lausanne) 2023; 14:1160238. [PMID: 37124728 PMCID: PMC10145926 DOI: 10.3389/fendo.2023.1160238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Glucocorticoids (GCs) are hormones involved in circadian adaptation and stress response, and it is also noteworthy that these steroidal molecules present potent anti-inflammatory action through GC receptors (GR). Upon ligand-mediated activation, GR translocates to the nucleus, and regulates gene expression related to metabolism, acute-phase response and innate immune response. GR field of research has evolved considerably in the last decades, providing varied mechanisms that contributed to the understanding of transcriptional regulation and also impacted drug design for treating inflammatory diseases. Liquid-liquid phase separation (LLPS) in cellular processes represents a recent topic in biology that conceptualizes membraneless organelles and microenvironments that promote, or inhibit, chemical reactions and interactions of protein or nucleic acids. The formation of these molecular condensates has been implicated in gene expression control, and recent evidence shows that GR and other steroid receptors can nucleate phase separation (PS). Here we briefly review the varied mechanisms of transcriptional control by GR, which are largely studied in the context of inflammation, and further present how PS can be involved in the control of gene expression. Lastly, we consider how the reported advances on LLPS during transcription control, specially for steroid hormone receptors, could impact the different modalities of GR action on gene expression, adding a new plausible molecular event in glucocorticoid signal transduction.
Collapse
|
23
|
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022; 12:1023177. [PMID: 36591515 PMCID: PMC9800921 DOI: 10.3389/fonc.2022.1023177] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It can activate janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. As one of the important signal transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical role in cell proliferation and differentiation by affecting the activation state of downstream effector molecules. The activation of JAK2/STAT3 signaling pathway is involved in tumorigenesis and development. It contributes to the formation of tumor inflammatory microenvironment and is closely related to the occurrence and development of many human tumors. This article focuses on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, pancreatic cancer and ovarian cancer, hoping to provide references for the research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoling Lang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| |
Collapse
|
24
|
Yüce M, Albayrak E. Hyperthermia-stimulated tonsil-mesenchymal stromal cells suppress hematological cancer cells through downregulation of IL-6. J Cell Biochem 2022; 123:1966-1979. [PMID: 36029519 DOI: 10.1002/jcb.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.
Collapse
Affiliation(s)
- Melek Yüce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| |
Collapse
|
25
|
Xu S, Yang X, Chen Q, Liu Z, Chen Y, Yao X, Xiao A, Tian J, Xie L, Zhou M, Hu Z, Zhu F, Xu X, Hou F, Nie J. Leukemia inhibitory factor is a therapeutic target for renal interstitial fibrosis. EBioMedicine 2022; 86:104312. [PMID: 36335669 PMCID: PMC9646860 DOI: 10.1016/j.ebiom.2022.104312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The role of the IL6 family members in organ fibrosis, including renal interstitial fibrosis (TIF), has been widely explored. However, few studies have ever simultaneously examined them in the same cohort of patients. Besides, the role of leukemia inhibitory factor (LIF) in TIF remains unclear. METHODS RNA-seq data of kidney biopsies from chronic kidney disease (CKD) patients, in both public databases and our assays, were used to analyze transcript levels of IL6 family members. Two TIF mouse models, the unilateral ureteral obstruction (UUO) and the ischemia reperfusion injury (IRI), were employed to validate the finding. To assess the role of LIF in vivo, short hairpin RNA, lenti-GFP-LIF was used to knockdown LIF receptor (LIFR), overexpress LIF, respectively. LIF-neutralizing antibody was used in therapeutic studies. Whether urinary LIF could be used as a promising predictor for CKD progression was investigated in a prospective observation patient cohort. FINDINGS Among IL6 family members, LIF is the most upregulated one in both human and mouse renal fibrotic lesions. The mRNA level of LIF negatively correlated with eGFR with the strongest correlation and the smallest P value. Baseline urinary concentrations of LIF in CKD patients predict the risk of CKD progression to end-stage kidney disease by Kaplan-Meier analysis. In mouse TIF models, knockdown of LIFR alleviated TIF; conversely, overexpressing LIF exacerbated TIF. Most encouragingly, visible efficacy against TIF was observed by administering LIF-neutralizing antibodies to mice. Mechanistically, LIF-LIFR-EGR1 axis and Sonic Hedgehog signaling formed a vicious cycle between fibroblasts and proximal tubular cells to augment LIF expression and promote the pro-fibrotic response via ERK and STAT3 activation. INTERPRETATION This study discovered that LIF is a noninvasive biomarker for the progression of CKD and a potential therapeutic target of TIF. FUNDINGS Stated in the Acknowledgements section of the manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fanfan Hou
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Nie
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Hurley-Novatny AC, Allbritton-King JD, Jha S, Cowen EW, Colbert RA, Navid F, Bhattacharyya T. Fibroblasts from Patients with Melorheostosis Promote Angiogenesis in Healthy Endothelial Cells through Secreted Factors. J Invest Dermatol 2022; 142:2406-2414.e5. [PMID: 35189151 PMCID: PMC9388700 DOI: 10.1016/j.jid.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022]
Abstract
Melorheostosis is a rare sclerosing bone disease with associated vascular abnormalities in skin and bone, which is caused by somatic mosaic single nucleotide variations in the MAP2K1 gene, which encodes MAPK/extracellular signal‒regulated kinase (ERK) kinase 1. However, disease pathogenesis is poorly understood. Using patient-derived cells, we found that affected skin fibroblasts carrying the single nucleotide variations have increased activation of ERK1/2, which results in increased expression and secretion of proangiogenic factors, including VEGF. VEGF secretion was strongly reduced in affected cells after treatment with MAPK/ERK kinase 1 inhibitor trametinib. Treatment of healthy endothelial cells on matrigel with conditioned medium from affected fibroblasts induces the adoption of a proangiogenic phenotype. Direct coculture of fibroblasts and endothelial cells further shows that both secreted factors and extracellular matrix are capable of inducing a proangiogenic phenotype in healthy endothelial cells. Blocking VEGF with bevacizumab reduces the proangiogenic effect of affected fibroblasts in both the matrigel and direct coculture angiogenesis models, indicating that elevated VEGF secretion is a key mediator of increased angiogenesis in melorheostosis tissue. In conclusion, this work identifies the role of several important molecular mediators in the pathogenesis of melorheostosis, including MAPK/ERK kinase 1, phosphorylated ERK1/2, and VEGF, all of which have clinically available pharmacologic inhibitors, which could be further explored as therapeutic targets.
Collapse
Affiliation(s)
- Amelia C Hurley-Novatny
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA; Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jules D Allbritton-King
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Smita Jha
- Signal Transduction Section, Metabolic Diseases Branch, National Institute of Diabetic and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy Bhattacharyya
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
27
|
Abdelgawad MA, Elkanzi NA, Musa A, Ghoneim MM, Ahmad W, Elmowafy M, Abdelhaleem Ali AM, Abdelazeem AH, Bukhari SN, El-Sherbiny M, Abourehab MA, Bakr RB. Optimization of pyrazolo[1,5-a]pyrimidine based compounds with pyridine scaffold: Synthesis, biological evaluation and molecular modeling study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Rehman MEU, Chattaraj A, Neupane K, Rafae A, Saeed S, Basit J, Ibrahim A, Khouri J, Mukherjee S, Anwer F. Efficacy and Safety of Regimens Used for the Treatment of Multicentric Castleman Disease: A Systematic Review. Eur J Haematol Suppl 2022; 109:309-320. [PMID: 35770616 DOI: 10.1111/ejh.13823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Treatment options for multicentric Castleman disease (MCD) remain limited. The only FDA-approved drug is siltuximab for idiopathic MCD (iMCD), but the response rate with siltuximab is less than 50%. We performed a systematic review to examine the efficacy and safety of various regimens used for the treatment of MCD. METHODS A database search on PubMed, Embase, Cochrane, Web of Science, and Clinicaltrials.gov using the terms "Castleman disease," "treatment outcome" and "patient safety" was done. RESULTS AND CONCLUSIONS Results from a randomized controlled trial (RCT) and an extension study highlighted the efficacy and long-term safety of siltuximab for iMCD; other trials showed tocilizumab to be a suitable alternative. A recent trial reported high response rates with thalidomide in iMCD patients. Promising results were reported for bortezomib in relapsed/ refractory MCD. For human herpesvirus 8 (HHV-8) associated MCD, rituximab along with doxorubicin therapy followed by maintenance with zidovudine and valganciclovir is the most effective therapy. A single-arm trial has highlighted the potential role of tocilizumab in HHV-8 MCD. Data for these regimens are limited and mostly comprise non-randomized trials. Further research on emerging agents could have a major impact on the treatment of this rare disease.
Collapse
Affiliation(s)
| | - Asmi Chattaraj
- Department of Internal Medicine, University Pittsburgh Medical Center, Mckeesport, PA, USA
| | - Karun Neupane
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abdul Rafae
- Department of Internal Medicine, McLaren Flint-Michigan State University, Flint, MI, USA
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Atif Ibrahim
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jack Khouri
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sudipto Mukherjee
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Faiz Anwer
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
29
|
Wang Y, Zhang J, Chang H, Wang H, Xu W, Cong H, Zhang X, Liu J, Yin L. NMO-IgG induce interleukin-6 release via activation of the NF-κB signaling pathway in astrocytes. Neuroscience 2022; 496:96-104. [PMID: 35659638 DOI: 10.1016/j.neuroscience.2022.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) that frequently affects the optic nerve and spinal cord. Interleukin-6 (IL-6) is considered a key cytokine in the pathogenesis of NMOSD, and the level of IL-6 is significantly increased in the sera and cerebrospinal fluid (CSF) of patients with NMOSD. We have reported that the production of IL-6 depends on the JAK/STAT3 signaling pathway. However, it is not clear whether the NF-κB-dependent inflammatory response stimulated by neuromyelitis optica IgG (NMO-IgG) could also drive the production of IL-6 in astrocytes. In this study, we used an in vitro model of primary rat astrocytes stimulated by NMO-IgG to study the role of the NF-κB signaling pathway in mediating the release of IL-6. First, we confirmed that the level of IL-6 was significantly higher in the sera of NMOSD patients than that of healthy people by humoral fluid analysis and that NMO-IgG can significantly induce the release of IL-6 from astrocytes by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Then, Western blotting and immunocytochemistry showed that NMO-IgG can activate the intracellular NF-κB signaling pathway. Finally, it was found that S3633, an inhibitor of the NF-κB signaling pathway, can effectively inhibit the increase in IL-6 levels. These results prove that the production of IL-6 is partly mediated by the NF-κB signaling pathway, providing a potential effective strategy for targeted treatment of NMOSD.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Jingwen Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Haoxiao Chang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Huabing Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Wangshu Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Afshari AR, Sanati M, Aminyavari S, Shakeri F, Bibak B, Keshavarzi Z, Soukhtanloo M, Jalili-Nik M, Sadeghi MM, Mollazadeh H, Johnston TP, Sahebkar A. Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shakeri
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Montazami Sadeghi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Feng Y, Ye D, Wang Z, Pan H, Lu X, Wang M, Xu Y, Yu J, Zhang J, Zhao M, Xu S, Pan W, Yin Z, Ye J, Wan J. The Role of Interleukin-6 Family Members in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:818890. [PMID: 35402550 PMCID: PMC8983865 DOI: 10.3389/fcvm.2022.818890] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the main causes of human mortality. Cytokines play crucial roles in the development of cardiovascular disease. Interleukin (IL)-6 family members are a series of cytokines, including IL-6, IL-11, IL-30, IL-31, OSM, LIF, CNTF, CT-1, CT-2, and CLC, that regulate multiple biological effects. Experimental and clinical evidence shows that IL-6 family members are closely related to cardiovascular diseases such as atherosclerosis, hypertension, aortic dissection, cardiac fibrosis, and cardiomyopathy. This review mainly discusses the role of IL-6 family members in cardiovascular disease for the sake of identifying possible intervention targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
32
|
Srivastava A, Sharma H, Khanna S, Sadhu Balasundaram T, Chowdhury S, Chowdhury R, Mukherjee S. Interleukin-6 Induced Proliferation Is Attenuated by Transforming Growth Factor-β-Induced Signaling in Human Hepatocellular Carcinoma Cells. Front Oncol 2022; 11:811941. [PMID: 35127527 PMCID: PMC8810489 DOI: 10.3389/fonc.2021.811941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is often associated with an inflammatory setting. A plethora of cytokines are secreted in this milieu, actively contributing to the progression of the disease; however, the extent of cytokine interaction and how it contributes to HCC development remains an enigma. In this regard, our analysis of available patient-derived data suggests that cytokines like interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) are enriched in HCC. We further analyzed the effect of these cytokines independently or in combination on HCC cells. Importantly, IL-6 was found to induce a STAT-3-dependent proliferation and mediate its pro-proliferative effects through activation and direct interaction with the p65 subunit of NFkB. Alternatively, TGF-β was found to induce a SMAD-dependent induction of epithelial to mesenchymal transition (EMT) coupled to growth arrest in these cells. Interestingly, the simultaneous addition of IL-6 and TGF-β failed to profoundly impact EMT markers but resulted in attenuation of IL-6-induced pro-proliferative effects. Analysis of the putative molecular mechanism revealed a decrease in IL-6 receptor (IL-6R) transcript levels, reduced expression of IL-6-induced STAT-3, and its nuclear localization upon addition of TGF-β along with IL-6. Consequently, a reduced p65 activation was also observed in combination treatment. Importantly, SMAD levels were unperturbed and the cells showed more TGF-β-like features under combination treatment. Finally, we observed that TGF-β resulted in enrichment of repressive chromatin mark (H3K27me3) coupled to growth arrest, while IL-6 induced an open chromatin signature (H3K4me3) associated with an enhanced expression of EZH2. Overall, for the first time, we show that TGF-β attenuates IL-6-induced effects by regulating the receptor level, downstream signaling, and the epigenome. Understanding the complex interactions between these cytokines can be imperative to a better understanding of the disease, and manipulation of cytokine balance can act as a prospective future therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Rajasthan, India
| |
Collapse
|
33
|
Huang H, Huang X, Zeng K, Deng F, Lin C, Huang W. Interleukin-6 is a Strong Predictor of the Frequency of COPD Exacerbation Within 1 Year. Int J Chron Obstruct Pulmon Dis 2021; 16:2945-2951. [PMID: 34737559 PMCID: PMC8560075 DOI: 10.2147/copd.s332505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Persistent chronic inflammation of chronic obstructive pulmonary disease (COPD) is associated with poor outcomes and frequently results in acute exacerbation. Predicting the number of exacerbations is important. Because interleukin 6 (IL-6) plays an important role in inducing and maintaining chronic inflammation, we sought to observe whether IL-6 measurement can predict the frequency of acute exacerbation of COPD. Methods We reviewed serum IL-6 concentrations of stable COPD patients from January 2016 to December 2017 and statistically analyzed them to determine the optimal threshold value to predict the frequency of COPD acute exacerbations. Outpatients with stable COPD were then recruited between January 2018 and December 2019 and grouped into a low IL-6 group and a high IL-6 group according to this threshold value. We then compared the number of exacerbations of COPD in 1 year between the two groups. Results We reviewed data from 95 COPD patients, who had a median of 1.00 exacerbations in preceding year; 35 of these patients had no fewer than two. The median IL-6 concentration was 8.80 pg/mL. IL-6 and hs-CRP were positively correlated with frequency of acute exacerbation in the preceding year, COPD assessment test (CAT) score and British medical research council (mMRC) score, and negatively correlated with forced expiratory volume in one second as percentage of predicted value (FEV1%pred) and FEV1/FVC% (forced vital capacity). IL-6 was the risk factor of COPD patients with two or more exacerbations in 1 year. Finally, we enrolled 65 COPD patients and divided into low IL-6 group and high IL-6 group; the high IL-6 group experienced more frequent exacerbations than did the low IL-6 group. Conclusion An IL-6 measurement of 14.030 pg/mL or more is a risk factor for ≥2 acute exacerbations of COPD in the following year.
Collapse
Affiliation(s)
- Hui Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theatre Command, Guangzhou, 510010, People's Republic of China.,Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Xiaodong Huang
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Kaojuan Zeng
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Fan Deng
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Changqing Lin
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Wenjie Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theatre Command, Guangzhou, 510010, People's Republic of China
| |
Collapse
|
34
|
Pelosi L, Berardinelli MG, Forcina L, Ascenzi F, Rizzuto E, Sandri M, De Benedetti F, Scicchitano BM, Musarò A. Sustained Systemic Levels of IL-6 Impinge Early Muscle Growth and Induce Muscle Atrophy and Wasting in Adulthood. Cells 2021; 10:1816. [PMID: 34359985 PMCID: PMC8306542 DOI: 10.3390/cells10071816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
IL-6 is a pleiotropic cytokine that can exert different and opposite effects. The muscle-induced and transient expression of IL-6 can act in an autocrine or paracrine manner, stimulating anabolic pathways associated with muscle growth, myogenesis, and with regulation of energy metabolism. In contrast, under pathologic conditions, including muscular dystrophy, cancer associated cachexia, aging, chronic inflammatory diseases, and other pathologies, the plasma levels of IL-6 significantly increase, promoting muscle wasting. Nevertheless, the specific physio-pathological role exerted by IL-6 in the maintenance of differentiated phenotype remains to be addressed. The purpose of this study was to define the role of increased plasma levels of IL-6 on muscle homeostasis and the mechanisms contributing to muscle loss. Here, we reported that increased plasma levels of IL-6 promote alteration in muscle growth at early stage of postnatal life and induce muscle wasting by triggering a shift of the slow-twitch fibers toward a more sensitive fast fiber phenotype. These findings unveil a role for IL-6 as a potential biomarker of stunted growth and skeletal muscle wasting.
Collapse
Affiliation(s)
- Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Maria Grazia Berardinelli
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant’Andrea Hospital, “Sapienza” University, 00161 Rome, Italy;
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy;
- Department of Biomedical Sciences, University of Padova, 35121 Padua, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children’s Hospital, 00146 Rome, Italy;
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy;
| | - Antonio Musarò
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy
- Scuola Superiore di Studi Avanzati Sapienza (SSAS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
35
|
Masoomikarimi M, Garmabi B, Alizadeh J, Kazemi E, Azari Jafari A, Mirmoeeni S, Dargahi M, Taheri N, Jafari R. Advances in immunotherapy for COVID-19: A comprehensive review. Int Immunopharmacol 2021; 93:107409. [PMID: 33581501 PMCID: PMC7826020 DOI: 10.1016/j.intimp.2021.107409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
COVID-19 is an acute respiratory syndrome caused by SARS-COV-2 which has now become a huge pandemic worldwide. The immunopathogenesis of COVID-19 has been established that increased serum levels of C-reactive protein (CRP), interleukin-6 (IL-6), and reduction of the CD4+ and the CD8+ T lymphocyte populations, are the most reported immunological findings in these patients. High levels of other inflammatory cytokines and chemokines such as IL-2 and IL-8 with an increased number of neutrophils and eosinophils may induce immune abnormalities in patients with COVID-19. There is growing evidence to obtain a deeper understanding of the immunopathogenesis of COVID-19 which will lay the foundation for the development of new potential therapies. However, specific and non-specific immunotherapies such as convalescent plasma (CP) are widely performed to treat patients with severe COVID-19, there is no definitive evidence to suggest the effectiveness of these treatments. Hence, this review aimed to highlight the current and most recent studies to identify the new immunotherapeutics for COVID-19 disease.
Collapse
Affiliation(s)
- Masoomeh Masoomikarimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Garmabi
- Study and Treatment of Circadian Rhythms Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; School of Medicine, Shahroud University of Medical Sciences. Shahroud, Iran
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Erfan Kazemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amirhossein Azari Jafari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Motahareh Dargahi
- School of Medicine, Shahroud University of Medical Sciences. Shahroud, Iran
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences. Shahroud, Iran
| | - Reza Jafari
- School of Medicine, Shahroud University of Medical Sciences. Shahroud, Iran.
| |
Collapse
|
36
|
Wen B, Zhang C, Zhou J, Zhang Z, Che Q, Cao H, Bai Y, Guo J, Su Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2020; 222:107752. [PMID: 33253739 DOI: 10.1016/j.pharmthera.2020.107752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Targeted therapy is an emerging treatment strategy for alcoholic liver disease (ALD). Inflammation plays an important role in the occurrence and development of ALD, and is a key choice for its targeted treatment, and anti-inflammatory treatment has been considered beneficial for liver disease. Surprisingly, immune checkpoint inhibitors have become important therapeutic agents for hepatocellular carcinoma (HCC). Moreover, studies have shown that the combination of inflammatory molecule inhibitors and immune checkpoint inhibitors can exert better effects than either alone in mouse models of HCC. This review discusses the mechanism of hepatic ethanol metabolism and the conditions under which inflammation occurs. In addition, we focus on the potential molecular targets in inflammatory signalling pathways and summarize the potential targeted inhibitors and immune checkpoint inhibitors, providing a theoretical basis for the targeted treatment of ALD and the development of new combination therapy strategies for HCC.
Collapse
Affiliation(s)
- Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
37
|
Fujihara K, Bennett JL, de Seze J, Haramura M, Kleiter I, Weinshenker BG, Kang D, Mughal T, Yamamura T. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/5/e841. [PMID: 32820020 PMCID: PMC7455314 DOI: 10.1212/nxi.0000000000000841] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disorder that preferentially affects the spinal cord and optic nerve. Most patients with NMOSD experience severe relapses that lead to permanent neurologic disability; therefore, limiting frequency and severity of these attacks is the primary goal of disease management. Currently, patients are treated with immunosuppressants. Interleukin-6 (IL-6) is a pleiotropic cytokine that is significantly elevated in the serum and the CSF of patients with NMOSD. IL-6 may have multiple roles in NMOSD pathophysiology by promoting plasmablast survival, stimulating the production of antibodies against aquaporin-4, disrupting blood-brain barrier integrity and functionality, and enhancing proinflammatory T-lymphocyte differentiation and activation. Case series have shown decreased relapse rates following IL-6 receptor (IL-6R) blockade in patients with NMOSD, and 2 recent phase 3 randomized controlled trials confirmed that IL-6R inhibition reduces the risk of relapses in NMOSD. As such, inhibition of IL-6 activity represents a promising emerging therapy for the management of NMOSD manifestations. In this review, we summarize the role of IL-6 in the context of NMOSD.
Collapse
Affiliation(s)
- Kazuo Fujihara
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Jeffrey L Bennett
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jerome de Seze
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Haramura
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ingo Kleiter
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Brian G Weinshenker
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Delene Kang
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tabasum Mughal
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Yamamura
- From the Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; and Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, School of Medicine, University of Colorado, Aurora; Department of Neurology (J.S.), Hôpital de Hautepierre, Strasbourg Cedex, France; Chugai Pharmaceutical Co. (M.H.), Ltd, Tokyo, Japan; Department of Neurology (I.K.), St. Josef Hospital, Ruhr University Bochum; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany; Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN; ApotheCom (D.K., T.M.), London, UK; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
38
|
Li H, Dai H, Li H, Li B, Shao Y. Polymorphisms of the Highly Expressed IL-6 Gene in the Papillary Thyroid Cancer Susceptibility Among Chinese. Curr Mol Med 2020; 19:443-451. [PMID: 31288714 DOI: 10.2174/1566524019666190426142432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the cardinal histologic type of thyroid cancer, which is the most prevalent kind of endocrine malignancy. The expression of IL-6 is found higher in thyroid carcinoma (THCA) samples than paired normal tissues based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue expression (GTEx) database. In this study, we aimed to investigate the association between interleukin-6 (IL-6) polymorphisms and the PTC risk. METHODS A case-control study was designed using the following data: 241 PTC patients and 463 healthy controls. Five single nucleotide polymorphisms (SNPs) in IL-6 were selected and genotyped using Agena MassARRAY technology. RESULTS Our results revealed that SNP rs1800796 was associated with an increased PTC risk in co-dominant model (p = 0.042) and dominant model (p = 0.027). Rs1524107 was also a risk factor for PTC susceptibility in co-dominant model (p = 0.003), dominant model (p = 0.002) and log-additive model (p = 0.044). Moreover, rs2066992 significantly increased the PTC risk in co-dominant model and dominant model (p = 0.011, p = 0.009, respectively). Additionally, rs2069837 variant elevated the PTC risk based on dominant model (p = 0.041). In silico analysis, GTEx results for rs1800796, rs1524107 and rs2066992 variants are known to be associated with IL-6 gene expression. Using HaploReg, we found rs1800796, rs1524107 and rs2066992 in LD with functional importance. CONCLUSION Our study indicates that IL-6 variants may be a risk factor involved in the pathogenesis and development of PTC.
Collapse
Affiliation(s)
- Honghui Li
- Department of Otolaryngology & Head Neck, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Dai
- Department of Otolaryngology & Head Neck, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Huajing Li
- Department of Otolaryngology & Head Neck, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Baiya Li
- Department of Otolaryngology & Head Neck, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuan Shao
- Department of Otolaryngology & Head Neck, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
39
|
Stonys V, Lindžiūtė M, Vilkevičiūtė A, Gedvilaitė G, Kriaučiūnienė L, Banevičius M, Žemaitienė R, Liutkevičienė R. Associations between IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, and HTRA1 rs11200638 gene polymorphisms and development of optic neuritis with or without multiple sclerosis. Ophthalmic Genet 2020; 41:325-330. [PMID: 32449403 DOI: 10.1080/13816810.2020.1768555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Optic neuritis (ON) and multiple sclerosis (MS) are complex diseases with multifactorial pathogenesis. The role of genetic factors in the development of these diseases is hypothesized, and specific biochemical components involved in the pathogenesis of ON and MS are yet to be determined. The aim of our study was to determine the associations between IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, and HTRA1 rs11200638 gene polymorphisms and development of ON with or without MS. MATERIALS AND METHODS The study subjects included 80 ON patients and 146 healthy controls (HCs). Genotyping of IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, and HTRA1 rs11200638 was performed using real-time polymerase chain reaction. RESULTS A/C genotype of IL1RL1 rs1041973 was more frequent in ON patients than in HC subjects (p = 0.026). The IL1RL1 rs1041973 A/C genotype was associated with increased odds of ON development under the overdominant (p = 0.041) model. CONCLUSIONS Our study showed that IL1RAP rs4624606, IL-6 rs1800795, and HTRA1 rs11200638 are not associated with an increased risk of developing ON. However, the IL1RL1 rs1041973 A/C genotype might be associated with an increased risk of developing ON.
Collapse
Affiliation(s)
- Valdas Stonys
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Miglė Lindžiūtė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Alvita Vilkevičiūtė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Greta Gedvilaitė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Loresa Kriaučiūnienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Mantas Banevičius
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Reda Žemaitienė
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Rasa Liutkevičienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| |
Collapse
|
40
|
Uciechowski P, Dempke WCM. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020; 98:131-137. [PMID: 31958792 DOI: 10.1159/000505099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 01/18/2023]
Abstract
Interleukin-6 (IL-6) is a member of the pro-inflammatory cytokine family, induces the expression of a variety of proteins responsible for acute inflammation, and plays an important role in the proliferation and differentiation of cells in humans. IL-6 signaling is mediated by building a complex of IL-6, the transmembrane IL-6 receptor (mIL-6R) or with soluble forms of IL-6R (sIL-6R), and the signal-transducing subunit molecule gp130. Therefore, three modes for IL-6 signaling may occur in which IL-6 is binding to mIL-6R (classic), to sIL-6R (trans-signaling), or is joined through IL-6R to gp130 on nearby located cells (trans-presentation). These pathways, and the fact that gp130 is ubiquitously expressed, lead to the pleiotropic functions of IL-6. The control of IL-6 signaling is regulated through the induction of suppressor molecules after activation of the IL-6 pathways as well as through the presence of sIL-6R and gp130 forms in the blood. Vice versa, an overproduction of IL-6 and dysregulation of the IL-6 signaling pathways can result in inflammatory and autoimmune disorders as well as cancer development suggesting that IL-6 plays a significant role in the human cytokine network. Several therapeutic agents have been evaluated for inhibiting the cytokine itself, the signaling via the IL-6 receptor, or target kinases (e.g., JAK/STAT) associated with the signaling pathways. Amongst others, tocilizumab (anti-IL-6R humanized antibody) has been approved for the treatment of rheumatoid arthritis, cytokine release syndrome, and idiopathic multicentric Castleman's disease (iMCD), whereas siltuximab (an IL-6 antagonist) received approval for iMCD only. Although not all IL-6-associated diseases respond to IL-6 blockade, a better understanding of the underlying mechanisms of the IL-6 pathways may, therefore, help to find the best treatment for IL-6-associated diseases in the near future.
Collapse
|
41
|
Wu XS, Lu XL, Wu J, Ma M, Yu J, Zhang ZY. Tocilizumab promotes corneal allograft survival in rats by modulating Treg-Th17 balance. Int J Ophthalmol 2019; 12:1823-1831. [PMID: 31850163 DOI: 10.18240/ijo.2019.12.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023] Open
Abstract
AIM To examine the therapeutic effects of tocilizumab on experimental corneal transplantation and its effect on Treg/Th17 balance. METHODS Allograft corneal graft was performed between host Sprague Dawley and Wistar donor rats. The rats were randomly divided into four groups: normal, autograft, allograft, and allograft treated with tocilizumab. Kaplan-Meier was performed to draw the survival curve. The protein levels of interleukin-17A (IL-17A), vascular endothelial growth factor (VEGF), and forkhead box protein 3 (Foxp3) were measured by immunohistochemistry. The mRNA levels of IL-17A, VEGF, retinoid-related orphan receptor gammat (RORγt), interleukin-6 (IL-6) and Foxp3 were detected by reverse transcription real-time polymerase chain reaction (RT-PCR). The Treg and Th17 cells were investigated by flow cytometry. RESULTS The survival time of tocilizumab group was (24±1.27d) longer than that of allograft group (10±0.55d). Moreover, immunohistochemical examination revealed that IL-17A and VEGF protein levels in the allograft group were significantly higher than that of tocilizumab group (P<0.01), while Foxp3 levels in the allograft group was significantly lower than that of the tocilizumab treated group (P<0.001). Flow cytometry showed that the number of Th17 cells in allograft group was significantly higher than that in tocilizumab group (P<0.001). Meanwhile, the number of Tregs was significantly lower than in tocilizumab group (P<0.001). Simultaneously, Foxp3 mRNA expression level in corneal tissues of tocilizumab treated group was significantly higher than other groups (P<0.001). CONCLUSION These findings suggest that tocilizumab may promote corneal allograft survival, possibly by modulating Treg-Th17 balance.
Collapse
Affiliation(s)
- Xiao-Song Wu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Li Lu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jing Wu
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zhen-Yu Zhang
- Guangdong Women And Children Hospital, Guangzhou 511400, Guangdong Province, China
| |
Collapse
|
42
|
Karkhur S, Hasanreisoglu M, Vigil E, Halim MS, Hassan M, Plaza C, Nguyen NV, Afridi R, Tran AT, Do DV, Sepah YJ, Nguyen QD. Interleukin-6 inhibition in the management of non-infectious uveitis and beyond. J Ophthalmic Inflamm Infect 2019; 9:17. [PMID: 31523783 PMCID: PMC6745304 DOI: 10.1186/s12348-019-0182-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Uveitis consists of a spectrum of inflammatory disorders characterized by ocular inflammation. The underlying pathophysiology consists of a complex interplay of various inflammatory pathways. Interleukin 6 is an important mediator of inflammation in uveitis and constitutes focus of research toward development of newer biological therapies in the management of non-infectious uveitis. Main body Pan-blockade of the inflammatory pathways with steroids is generally the first step in the management of acute non-infectious uveitis. However, long-term therapy with steroids is associated with systemic and ocular side effects, thereby necessitating the need for development of steroid sparing agents. IL-6 is a cytokine produced by various immune cells, in response to molecular patterns and affects multiple inflammatory cells. In particular, IL-6 is involved in differentiation of CD-4 cells into Th-17 cells that have been shown to play a significant role in various immune-mediated diseases such as uveitis. This broad-spectrum immunomodulatory activity makes IL-6 an excellent target for immunomodulatory therapy. Tocilizumab was the first IL-6 inhibitor to demonstrate efficacy in humans. It inhibits IL-6 from binding to both membrane-bound and soluble receptor and can be administered via intravenous (IV) and subcutaneous (SC) routes. It has been FDA approved for treatment of rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA). Following the approval in systemic diseases, its efficacy was demonstrated in various uveitis studies including a phase 2 clinical trial (STOP-Uveitis). Overall, tocilizumab has shown a good safety profile with the risk of malignancy consistent with that expected in patients with rheumatoid arthritis. However, tocilizumab therapy has been shown to increase the risk for gastrointestinal perforation and dose-dependent neutropenia. Following the success of tocilizumab, several other agents targeting the IL-6 pathway are in the pipeline. These include sirukumab, siltuximab, olokizumab, clazakizumab, and EBI-031 which target IL-6; Sarilumab and ALX-0061 act on the IL-6 receptor. Conclusion Studies have shown that IL-6 inhibitors can be effective in the management of NIU. In addition, the levels of IL-6 are elevated in other ocular vascular diseases such as retinal vein occlusion and diabetic macular edema. The roles of IL-6 inhibition may be broadened in the future to include the management of retinal vascular diseases and non-uveitic macular edema.
Collapse
Affiliation(s)
- Samendra Karkhur
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.,Department of Ophthalmology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Murat Hasanreisoglu
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.,Department of Ophthalmology, School of Medicine, Gazi University, Ankara, Turkey
| | - Erin Vigil
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.,University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muhammad Sohail Halim
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Muhammad Hassan
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Carlos Plaza
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.,Department of Ophthalmology, Hospital Universitario de León, León, Spain
| | - Nam V Nguyen
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.,University of Nebraska, Lincoln, USA
| | - Rubbia Afridi
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Anh T Tran
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Diana V Do
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Yasir J Sepah
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Quan Dong Nguyen
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.
| |
Collapse
|
43
|
Lee JH, Kim C, Lee J, Um JY, Sethi G, Ahn KS. Arctiin is a pharmacological inhibitor of STAT3 phosphorylation at tyrosine 705 residue and potentiates bortezomib-induced apoptotic and anti-angiogenic effects in human multiple myeloma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:282-292. [PMID: 30668440 DOI: 10.1016/j.phymed.2018.06.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/19/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Arctiin is a main component from the fruits of Arctium lappa L., that can be prescribed for cold or flu in East Asian countries; it has also been found to exert chemopreventive actions against various tumor cells. HYPOTHESIS In view of this evidence, we examined arctiin for its ability to trigger apoptosis and inhibit the activation of signal transducer and activator of transcription 3 (STAT3) in human multiple myeloma (MM) cells. METHODS We evaluated the effect of arctiin on STAT3 signaling cascades and its regulated functional responses in MM cells. RESULTS Arctiin effectively blocked the constitutive activation of STAT3 phosphorylation in the residue of tyrosine 705. Arctiin also abrogated the constitutive activation of Src phosphorylation and Janus-activated kinases (JAKs) 1/2. Furthermore, it was found that arctiin treatment clearly enhanced the mRNA and protein levels of protein tyrosine phosphatase ε (PTPε), and the silencing of PTPε caused a reversal of the arctiin-induced PTPε expression and the blockadge of STAT3 phosphorylation. Interestingly, arctiin could not repress IL-6-induced STAT3 activation in serum-starved U266 cells and when arctiin was incubated with a complete culture medium in RPMI 8226 and MM.1S cells. Arctiin suppressed cell proliferation, accumulated cells in the G2/M cell-cycle phase, and induced apoptosis within U266 cells, although the knockdown of PTPε prevented PARP cleavage and caspase-3 activation induced by the arctiin. In addition, arctiin exerted cytotoxicity in MM cells, but did not do so in peripheral blood mononuclear cells. Arctiin down-modulated diverse oncogenic gene products regulated by STAT3, although the induction of apoptosis by arctiin was abrogated upon transfection with pMXs-STAT3C in mouse embryonic fibroblast (MEF) cells. Arctiin also potentiated bortezomib-induced antitumor effects in U266 cells. CONCLUSION On the whole, our results indicate that arctiin is a potentially new inhibitor of constitutive STAT3 activation through the induction of PTPε in MM, cells and therefore has great value in treating various tumors sheltering constitutively activated STAT3.
Collapse
Affiliation(s)
- Jong Hyun Lee
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Chulwon Kim
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Junhee Lee
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
44
|
Long T, Liu Z, Zhou X, Yu S, Tian H, Bao Y. Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis. Mol Med Rep 2019; 19:2029-2040. [PMID: 30664219 PMCID: PMC6390056 DOI: 10.3892/mmr.2019.9878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 10/16/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer‑associated mortality worldwide. The aim of the present study was to identify the differentially expressed genes (DEGs) and enriched pathways in lung cancer by bioinformatics analysis, and to provide potential targets for diagnosis and treatment. Valid microarray data of 31 pairs of lung cancer tissues and matched normal samples (GSE19804) were obtained from the Gene Expression Omnibus database. Significance analysis of the gene expression profile was used to identify DEGs between cancer tissues and normal tissues, and a total of 1,970 DEGs, which were significantly enriched in biological processes, were screened. Through the Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, 77 KEGG pathways associated with lung cancer were identified, among which the Toll‑like receptor pathway was observed to be important. Protein‑protein interaction network analysis extracted 1,770 nodes and 10,667 edges, and identified 10 genes with key roles in lung cancer with highest degrees, hub centrality and betweenness. Additionally, the module analysis of protein‑protein interactions revealed that 'chemokine signaling pathway', 'cell cycle' and 'pathways in cancer' had a close association with lung cancer. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the development and progression of lung cancer, and certain genes (including advanced glycosylation end‑product specific receptor and epidermal growth factor receptor) may be used as candidate target molecules to diagnose, monitor and treat lung cancer.
Collapse
Affiliation(s)
- Tingting Long
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zijing Liu
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shuang Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hui Tian
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixi Bao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
45
|
Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, Jadidi-Niaragh F. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 2018; 108:1415-1424. [DOI: 10.1016/j.biopha.2018.09.177] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
|
46
|
Zhang M, Zhang S, Yang Z, Hu J, Hu W, Sun P, Wu L, Han B. Association between the expression levels of IL-6 and IL-6R in the hepatocellular carcinoma microenvironment and postoperative recurrence. Oncol Lett 2018; 16:7158-7165. [PMID: 30546452 PMCID: PMC6256737 DOI: 10.3892/ol.2018.9557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment of hepatocellular carcinoma (HCC) is a complex system, involving mutual promotion and inhibition between cells and molecules. It results in alterations to inflammatory-associated factors, including a decrease in interleukin (IL)-2 and an increase in tumor necrosis factor, together with a characteristic elevation of IL-6. Following the synthesis and release of IL-6, HCC is stimulated through IL-6 binding to the IL-6 receptor (IL-6R). In the present study, immunohistochemistry was performed to investigate the expression levels of IL-6 and IL-6R in 92 patients with HCC, and the association between IL-6/IL-6R expression levels and tumor recurrence was examined. Notably increased expression levels of IL-6 and IL-6R were observed in the HCC microenvironment, and recurrence occurred earlier in patients with high IL-6/IL-6R expression levels compared with those with low expression levels (P<0.05). However, there was no significant difference in overall survival between patients in the two groups (P>0.05). Platelet levels <100×109/l, tumor-node-metastasis stage IIIa and high expression levels of IL-6/IL-6R were independent risk factors for postoperative recurrence (P<0.05). The present study proposed that high IL-6 and IL-6R expression in the HCC microenvironment promotes postoperative tumor recurrence, suggesting that these may be potential predictors of recurrence, and may be used as possible therapeutic targets to enhance the long-term survival of patients.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhenjie Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jie Hu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410006, P.R. China
| | - Weiyu Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Liqun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
47
|
Bharti R, Dey G, Das AK, Mandal M. Differential expression of IL-6/IL-6R and MAO-A regulates invasion/angiogenesis in breast cancer. Br J Cancer 2018; 118:1442-1452. [PMID: 29695771 PMCID: PMC5988749 DOI: 10.1038/s41416-018-0078-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/27/2018] [Accepted: 03/14/2018] [Indexed: 01/16/2023] Open
Abstract
Background Monoamine oxidases (MAO) are mitochondrial enzymes functioning in oxidative metabolism of monoamines. The action of MAO-A has been typically described in neuro-pharmacological domains. Here, we have established a co-relation between IL-6/IL-6R and MAO-A and their regulation in hypoxia induced invasion/angiogenesis. Methods We employed various in-vitro and in-vivo techniques and clinical samples. Results We studied a co-relation among MAO-A and IL-6/IL-6R and tumour angiogenesis/invasion in hypoxic environment in breast cancer model. Activation of IL-6/IL-6R and its downstream was found in hypoxic cancer cells. This elevation of IL-6/IL-6R caused sustained inhibition of MAO-A in hypoxic environment. Inhibition of IL-6R signalling or IL-6R siRNA increased MAO-A activity and inhibited tumour angiogenesis and invasion significantly in different models. Further, elevation of MAO-A with 5-azacytidine (5-Aza) modulated IL-6 mediated angiogenesis and invasive signatures including VEGF, MMPs and EMT in hypoxic breast cancer. High grade invasive ductal carcinoma (IDC) clinical specimen displayed elevated level of IL-6R and depleted MAO-A expression. Expression of VEGF and HIF-1α was unregulated and loss of E-Cadherin was observed in high grade IDC tissue specimen. Conclusions Suppression of MAO-A by IL-6/IL-6R activation promotes tumour angiogenesis and invasion in hypoxic breast cancer environment.
Collapse
Affiliation(s)
- Rashmi Bharti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Goutam Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Anjan Kumar Das
- Department of Pathology, Calcutta National Medical Collage, Kolkata, West Bengal, 70014, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
48
|
Moll JM, Wehmöller M, Frank NC, Homey L, Baran P, Garbers C, Lamertz L, Axelrod JH, Galun E, Mootz HD, Scheller J. Split 2 Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors. ACS Synth Biol 2017; 6:2260-2272. [PMID: 29136368 DOI: 10.1021/acssynbio.7b00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E134/S135) and IL-11 (G116/S117) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.
Collapse
Affiliation(s)
- Jens M. Moll
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Melanie Wehmöller
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Nils C. Frank
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Lisa Homey
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Paul Baran
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | - Larissa Lamertz
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jonathan H. Axelrod
- Goldyne
Savad Institute of Gene Therapy, Hadassah Medical Organization, 91120 Jerusalem, Israel
| | - Eithan Galun
- Goldyne
Savad Institute of Gene Therapy, Hadassah Medical Organization, 91120 Jerusalem, Israel
| | - Henning D. Mootz
- Department
Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| | - Jürgen Scheller
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
49
|
Heo TH, Wahler J, Suh N. Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer. Oncotarget 2017; 7:15460-73. [PMID: 26840088 PMCID: PMC4941253 DOI: 10.18632/oncotarget.7102] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 12/15/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with known multiple functions in immune regulation, inflammation, and oncogenesis. Binding of IL-6 to the IL-6 receptor (IL-6R) induces homodimerization and recruitment of glycoprotein 130 (gp130), which leads to activation of downstream signaling. Emerging evidence suggests that high levels of IL-6 are correlated with poor prognosis in breast cancer patients. IL-6 appears to play a critical role in the growth and metastasis of breast cancer cells, renewal of breast cancer stem cells (BCSCs), and drug resistance of BCSCs, making anti-IL-6/IL-6R/gp130 therapies promising options for the treatment and prevention of breast cancers. However, preclinical and clinical studies of the applications of anti-IL-6/IL-6R/gp130 therapy in breast cancers are limited. In this review, we summarize the structures, preclinical and clinical studies, mechanisms of action of chemical and biological blockers that directly bind to IL-6, IL-6R, or gp130, and the potential clinical applications of these pharmacological agents as breast cancer therapies.
Collapse
Affiliation(s)
- Tae-Hwe Heo
- NP512, Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
50
|
Interleukin-6, tumor necrosis factor-alpha and receptor activator of nuclear factor kappa ligand are elevated in hypertrophic gastric mucosa of pachydermoperiostosis. Sci Rep 2017; 7:9686. [PMID: 28851954 PMCID: PMC5574921 DOI: 10.1038/s41598-017-09671-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/26/2017] [Indexed: 12/23/2022] Open
Abstract
Pachydermoperiostosis (PDP) is a rare inherited multisystem disease characterized with digital clubbing, pachydermia and periostosis. Variants in either HPGD or SLCO2A1 that interrupt the prostaglandin E2 (PGE2) pathway have been shown to be involved in PDP. Here, in addition to six confirmed variants in HPGD or SLCO2A1, we identified four novel SLCO2A1 variants in eight PDP patients from seven Chinese Han families. In addition, gastric mucosa hyperplasia was observed in all affected individuals and interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα) and receptor activator of nuclear factor kappa ligand (RANKL) expression were elevated in hypertrophic gastric mucosa. Two of eight patients who had severe arthralgia were treated with celecoxib. After three months, their arthralgia was partly relieved and IL-6, TNFα and RANKL expression were decreased in accordance with their relieved hypertrophic gastric mucosa. Our study broadens the variation spectrum of SLCO2A1 and suggests that the gastric mucosa hyperplasia might be a common characteristic of PDP. Moreover, celecoxib would be a considerable choice for PDP patients. We also revealed that IL-6, TNFα and RANKL may play important roles in the molecular mechanisms of gastric mucosa hyperplasia in PDP for the first time.
Collapse
|