1
|
Xiao Q, Yu F, Yan L, Lao X, Liang X, Zhao H, Zhai L, Yang Z, Zhang X, Liu Y, Zhang F. The CD4/CD8 ratio is associated with T lymphocyte functions in long-term virally suppressed patients with HIV. BMC Infect Dis 2025; 25:76. [PMID: 39825235 PMCID: PMC11740514 DOI: 10.1186/s12879-025-10469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
OBJECTIVE Long-term management of people living with HIV (PLWHs) often relies on CD4+ T cell counts for assessing immune recovery, yet a single metric offers limited information. This study aimed to explore the association between the CD4/CD8 ratio and T lymphocyte activities in PLWHs. METHODS 125 PLWHs and 31 HIV-uninfected controls (UCs) were enrolled and categorized into four groups based on their CD4/CD8 ratios: extremely low ratio (ELR) group: 0.4 < CD4/CD8; low ratio (LR) group: 0.4 ≤ CD4/CD8<0.7; medium ratio (MR) group: 0.7 ≤ CD4/CD8<1; high ratio (HR) group: CD4/CD8 ≥ 1. The activation and proliferation phenotypes, mitochondrial functions, and inflammatory indexes of CD4+ T cells and CD8+ T cells were measured, and correlations between the CD4/CD8 ratio and T cell functions were analyzed. RESULTS T cell activation and proliferation were significantly elevated in the ELR group compared to UCs. However, the ELR group had a larger proportion of T cells with lipid peroxidation, mitochondrial lipid reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) abnormalities compared to the other groups. As the CD4/CD8 ratio increased, mitochondrial lipid peroxidation damage decreased and MMP was restored. Additionally, the ELR group had more inflammatory markers in CD4+ T cells. Correlation analysis revealed that the CD4/CD8 ratio was associated with multiple T cell functions, and its correlation coefficient with mitochondrial function was higher than that of CD4+ T cell count. CONCLUSION The CD4/CD8 ratio is closely related to T lymphocyte functions and is significantly superior to the CD4+ T cell count in reflecting the mitochondrial lipid peroxidation level and mitochondrial functions within T lymphocytes.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaojie Lao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Xuelei Liang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China.
| |
Collapse
|
2
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Routy JP, Isnard S. An army marches on its stomach: immunometabolic dysregulation in persons with HIV. AIDS 2023; 37:1171-1173. [PMID: 37139654 DOI: 10.1097/qad.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Jean-Pierre Routy
- McGill University Health Centre - Research Institute
- Chronic Viral Illness Service
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Stephane Isnard
- McGill University Health Centre - Research Institute
- Chronic Viral Illness Service
| |
Collapse
|
4
|
Freeman TL, Zhao C, Schrode N, Fortune T, Shroff S, Tweel B, Beaumont KG, Swartz TH. HIV-1 activates oxidative phosphorylation in infected CD4 T cells in a human tonsil explant model. Front Immunol 2023; 14:1172938. [PMID: 37325659 PMCID: PMC10266353 DOI: 10.3389/fimmu.2023.1172938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Human immunodeficiency virus type 1 (HIV-1) causes a chronic, incurable infection leading to immune activation and chronic inflammation in people with HIV-1 (PWH), even with virologic suppression on antiretroviral therapy (ART). The role of lymphoid structures as reservoirs for viral latency and immune activation has been implicated in chronic inflammation mechanisms. Still, the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue remain unexplored. Methods In this study, we utilized human tonsil explants from healthy human donors and infected them with HIV-1 ex vivo. We performed single-cell RNA sequencing (scRNA-seq) to analyze the cell types represented in the tissue and to investigate the impact of infection on gene expression profiles and inflammatory signaling pathways. Results Our analysis revealed that infected CD4+ T cells exhibited upregulation of genes associated with oxidative phosphorylation. Furthermore, macrophages exposed to the virus but uninfected showed increased expression of genes associated with the NLRP3 inflammasome pathway. Discussion These findings provide valuable insights into the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue. The activation of oxidative phosphorylation in infected CD4+ T cells and the proinflammatory response in macrophages may contribute to the chronic inflammation observed in PWH despite ART. Understanding these mechanisms is crucial for developing targeted therapeutic strategies to eradicate HIV-1 infection in PWH.
Collapse
Affiliation(s)
- Tracey L. Freeman
- Medical Scientist Training Program, University of Pittsburgh-Carnegie Mellon University, Pittsburgh, PA, United States
| | - Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Min AK, Keane AM, Weinstein MP, Swartz TH. The impact of cannabinoids on inflammasome signaling in HIV-1 infection. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:79-88. [PMID: 37027347 PMCID: PMC10070009 DOI: 10.1515/nipt-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a chronic disease that afflicts over 38 million people worldwide without a known cure. The advent of effective antiretroviral therapies (ART) has significantly decreased the morbidity and mortality associated with HIV-1 infection in people living with HIV-1 (PWH), thanks to durable virologic suppression. Despite this, people with HIV-1 experience chronic inflammation associated with co-morbidities. While no single known mechanism accounts for chronic inflammation, there is significant evidence to support the role of the NLRP3 inflammasome as a key driver. Numerous studies have demonstrated therapeutic impact of cannabinoids, including exerting modulatory effects on the NLRP3 inflammasome. Given the high rates of cannabinoid use in PWH, it is of great interest to understand the intersecting biology of the role of cannabinoids in HIV-1-associated inflammasome signaling. Here we describe the literature of chronic inflammation in people with HIV, the therapeutic impact of cannabinoids in PWH, endocannabinoids in inflammation, and HIV-1-associated inflammation. We describe a key interaction between cannabinoids, the NLRP3 inflammasome, and HIV-1 viral infection, which supports further investigation of the critical role of cannabinoids in HIV-1 infection and inflammasome signaling.
Collapse
Affiliation(s)
- Alice K. Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aislinn M. Keane
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Paltiel Weinstein
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Li SY, Yin LB, Ding HB, Liu M, Lv JN, Li JQ, Wang J, Tang T, Fu YJ, Jiang YJ, Zhang ZN, Shang H. Altered lipid metabolites accelerate early dysfunction of T cells in HIV-infected rapid progressors by impairing mitochondrial function. Front Immunol 2023; 14:1106881. [PMID: 36875092 PMCID: PMC9981933 DOI: 10.3389/fimmu.2023.1106881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
The complex mechanism of immune-system damage in HIV infection is incompletely understood. HIV-infected "rapid progressors" (RPs) have severe damage to the immune system early in HIV infection, which provides a "magnified" opportunity to study the interaction between HIV and the immune system. In this study, forty-four early HIV-infected patients (documented HIV acquisition within the previous 6 months) were enrolled. By study the plasma of 23 RPs (CD4+ T-cell count < 350 cells/µl within 1 year of infection) and 21 "normal progressors" (NPs; CD4+ T-cell count > 500 cells/μl after 1 year of infection), eleven lipid metabolites were identified that could distinguish most of the RPs from NPs using an unsupervised clustering method. Among them, the long chain fatty acid eicosenoate significantly inhibited the proliferation and secretion of cytokines and induced TIM-3 expression in CD4+ and CD8+ T cells. Eicosenoate also increased levels of reactive oxygen species (ROS) and decreased oxygen consumption rate (OCR) and mitochondrial mass in T cells, indicating impairment in mitochondrial function. In addition, we found that eicosenoate induced p53 expression in T cells, and inhibition of p53 effectively decreased mitochondrial ROS in T cells. More importantly, treatment of T cells with the mitochondrial-targeting antioxidant mito-TEMPO restored eicosenoate-induced T-cell functional impairment. These data suggest that the lipid metabolite eicosenoate inhibits immune T-cell function by increasing mitochondrial ROS by inducing p53 transcription. Our results provide a new mechanism of metabolite regulation of effector T-cell function and provides a potential therapeutic target for restoring T-cell function during HIV infection.
Collapse
Affiliation(s)
- Si-Yao Li
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Lin-Bo Yin
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Department of Clinical Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Hai-Bo Ding
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Mei Liu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jun-Nan Lv
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jia-Qi Li
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jing Wang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Tian Tang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
7
|
Awad K, Maghraby AS, Abd-Elshafy DN, Bahgat MM. Carbohydrates Metabolic Signatures in Immune Cells: Response to Infection. Front Immunol 2022; 13:912899. [PMID: 35983037 PMCID: PMC9380592 DOI: 10.3389/fimmu.2022.912899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Metabolic reprogramming in immune cells is diverse and distinctive in terms of complexity and flexibility in response to heterogeneous pathogenic stimuli. We studied the carbohydrate metabolic changes in immune cells in different types of infectious diseases. This could help build reasonable strategies when understanding the diagnostics, prognostics, and biological relevance of immune cells under alternative metabolic burdens. METHODS Search and analysis were conducted on published peer-reviewed papers on immune cell metabolism of a single pathogen infection from the four known types (bacteria, fungi, parasites, and viruses). Out of the 131 selected papers based on the PIC algorithm (pathogen type/immune cell/carbohydrate metabolism), 30 explored immune cell metabolic changes in well-studied bacterial infections, 17 were on fungal infections of known medical importance, and 12 and 57 were on parasitic and viral infections, respectively. RESULTS AND DISCUSSION While carbohydrate metabolism in immune cells is signaled by glycolytic shift during a bacterial or viral infection, it is widely evident that effector surface proteins are expressed on the surface of parasites and fungi to modulate metabolism in these cells. CONCLUSIONS Carbohydrate metabolism in immune cells can be categorized according to the pathogen or the disease type. Accordingly, this classification can be used to adopt new strategies in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kareem Awad
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| | - Amany Sayed Maghraby
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Dina Nadeem Abd-Elshafy
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- Department of Water Pollution Research, Institute of Environmental Research, National Research Center, Cairo, Egypt
| | - Mahmoud Mohamed Bahgat
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| |
Collapse
|
8
|
Justice JN, Gubbi S, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. GeroScience 2021; 43:1093-1112. [PMID: 32902818 PMCID: PMC7479299 DOI: 10.1007/s11357-020-00261-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
We are in the midst of the global pandemic. Though acute respiratory coronavirus (SARS-COV2) that leads to COVID-19 infects people of all ages, severe symptoms and mortality occur disproportionately in older adults. Geroscience interventions that target biological aging could decrease risk across multiple age-related diseases and improve outcomes in response to infectious disease. This offers hope for a new host-directed therapeutic approach that could (i) improve outcomes following exposure or shorten treatment regimens; (ii) reduce the chronic pathology associated with the infectious disease and subsequent comorbidity, frailty, and disability; and (iii) promote development of immunological memory that protects against relapse or improves response to vaccination. We review the possibility of this approach by examining available evidence in metformin: a generic drug with a proven safety record that will be used in a large-scale multicenter clinical trial. Though rigorous translational research and clinical trials are needed to test this empirically, metformin may improve host immune defenses and confer protection against long-term health consequences of infectious disease, age-related chronic diseases, and geriatric syndromes.
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ameya S Kulkarni
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jenna M Bartley
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
9
|
Guo H, Wang Q, Ghneim K, Wang L, Rampanelli E, Holley-Guthrie E, Cheng L, Garrido C, Margolis DM, Eller LA, Robb ML, Sekaly RP, Chen X, Su L, Ting JPY. Multi-omics analyses reveal that HIV-1 alters CD4 + T cell immunometabolism to fuel virus replication. Nat Immunol 2021; 22:423-433. [PMID: 33767427 PMCID: PMC8087183 DOI: 10.1038/s41590-021-00898-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Individuals infected with human immunodeficiency virus type-1 (HIV-1) show metabolic alterations of CD4+ T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4+ T cells from patients with HIV-1 and revealed that the elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the US Food and Drug Administration-approved drug metformin, which targets mitochondrial respiratory chain complex-I, suppresses HIV-1 replication in human CD4+ T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4+ T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein FASTKD5 to promote expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4+ T cells as a target for HIV-1 therapy.
Collapse
Affiliation(s)
- Haitao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Khader Ghneim
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elena Rampanelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth Holley-Guthrie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carolina Garrido
- HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Margolis
- HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leigh A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Xian Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
The Effect of Probiotics, Prebiotics, and Synbiotics on CD4 Counts in HIV-Infected Patients: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7947342. [PMID: 33294453 PMCID: PMC7718054 DOI: 10.1155/2020/7947342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Background Probiotics as a potential adjuvant therapy may improve the restoration of the intestinal CD4+ T-cell population in HIV-infected patients, whereas findings from clinical trials are inconsistent. This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to quantify the effects of probiotic, prebiotic, and synbiotic supplementation on CD4 counts in HIV-infected patients. Methods We searched PubMed, Embase, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials for relevant articles published up to March 20, 2020. Two authors independently performed the study selection, data extraction, and risk of bias assessment. Data were pooled by using the random effects model, and weighted mean difference (WMD) was considered the summary effect size. Publication bias was evaluated by a funnel plot and Egger's test. Results The search strategy identified 1712 citations. After screening, a total of 16 RCTs with 19 trials were included in the meta-analysis. Pooling of the extracted data indicated no significant difference between the probiotics/prebiotics/synbiotics and placebo groups on CD4 counts (WMD = 3.86, 95% confidence interval (CI) -24.72 to 32.45, P = 0.791). In subgroup analysis, a significant increase in CD4 counts was found in the study with high risk of bias (WMD = 188, 95% CI 108.74 to 227.26, P ≤ 0.001). Egger's test showed no evidence of significant publication bias (P = 0.936). Conclusions In summary, the evidence for the efficacy of probiotics, prebiotics, and synbiotics in improving HIV-infected patients' CD4 counts as presented in currently published RCTs is insufficient. Therefore, further comprehensive studies are needed to reveal the exact effect of probiotics, prebiotics, and synbiotics on CD4+ cell counts.
Collapse
|
11
|
Tamargo JA, Campa A, Martinez SS, Li T, Sherman KE, Zarini G, Meade CS, Mandler RN, Baum MK. Cognitive Impairment among People Who Use Heroin and Fentanyl: Findings from the Miami Adult Studies on HIV (MASH) Cohort. J Psychoactive Drugs 2020; 53:215-223. [PMID: 33225878 DOI: 10.1080/02791072.2020.1850946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Cognitive impairment is common in people living with HIV (PLWH). Opioid drugs exert direct and indirect effects on cognitive processes, which may contribute to cognitive dysfunction among PLWH. This study was designed to determine if opioid use is associated with cognitive impairment and whether the effect differs between PLWH and HIV-uninfected adults. Other neuropsychiatric symptoms, such as depression and apathy, were also examined. We conducted a cross-sectional analysis of 265 PLWH and 284 HIV-uninfected participants from the Miami Adult Studies on HIV (MASH) cohort. The Mini-Mental State Examination (MMSE) was used to assess cognitive impairment. Substance use was self-reported. Overall, 26.8% of PLWH and 15.1% of HIV-uninfected used opioids. Cognitive impairment was more frequent among people who used heroin and/or fentanyl than those who misused prescription opioids (31.6% vs. 10.5%, p = .005). The use of heroin/fentanyl was associated with increased odds for cognitive impairment (adjusted OR: 2.21, 95% CI 1.05-4.64, p = .036). Among PLWH only, the misuse of opioids was associated with a higher frequency of neuropsychiatric symptoms such as depression and apathy. A higher risk for cognitive impairment was seen among people who used heroin and fentanyl. PLWH who misuse opioids may be at an increased risk for neuropathology, but elucidation of mechanisms for opioid-induced cognitive deficits is needed.
Collapse
Affiliation(s)
- Javier A Tamargo
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Adriana Campa
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Sabrina S Martinez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Tan Li
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | | | - Gustavo Zarini
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | | | - Raul N Mandler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Marianna K Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
12
|
Near normalization of peripheral blood markers in HIV-infected patients on long-term suppressive antiretroviral therapy: a case-control study. AIDS 2020; 34:1891-1897. [PMID: 32796212 DOI: 10.1097/qad.0000000000002645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To explore the differences in peripheral blood markers between HIV well controlled patients on long-term suppressive antiretroviral therapy (HIV-group) and age-matched healthy controls, to evaluate the benefits of virological suppression in those patients. METHODS We performed a case-control study in 22 individuals in the HIV-group and 14 in the healthy control-group. RNA-seq analysis was performed from peripheral blood mononuclear cells. Peripheral blood T-cell subsets were evaluated by flow cytometry and plasma biomarkers by immunoassays. All P values were corrected by the false discovery rate (q values). RESULTS Only the serine/arginine repetitive matrix 4 gene, which is involved in alternative RNA splicing events, was differentially expressed between HIV and healthy control groups (q value ≤0.05 and fold-change ≥2). However, 147 differentially expressed genes were found with a more relaxed threshold (P value ≤0.05 and fold-change ≥1.5), of which 67 genes with values of variable importance in projection at least one were selected for pathway analysis. We found that six ribosomal genes represented significant ribosome-related pathways, all of them downregulated in the HIV-group, which may be a strategy to facilitate viral production. T cells subset and plasma biomarkers did not show significant differences after false discovery rate correction (q value >0.05), but a noncorrected analysis showed higher values of regulatory CD4 T cells (CD4CD25CD127), MCP-1, and sVEGF-R1 in the HIV-group (P value ≤0.05). CONCLUSION T-cell subsets, plasma biomarkers, and gene expression were close to normalization in HIV-infected patients on long-term suppressive combination antiretroviral therapy compared with healthy controls. However, residual alterations remain, mainly at the gene expression, which still reveals the impact of HIV infection in these patients.
Collapse
|
13
|
Kim JS, Kim YR, Yang CS. Host-Directed Therapy in Tuberculosis: Targeting Host Metabolism. Front Immunol 2020; 11:1790. [PMID: 32903583 PMCID: PMC7438556 DOI: 10.3389/fimmu.2020.01790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has complex and intricate interactions with host immune cells. Mtb can survive, persist, and grow within macrophages and thereby circumvent detection by the innate immune system. Recently, the field of immunometabolism, which focuses on the link between metabolism and immune function, has provided us with an improved understanding of the role of metabolism in modulating immune function. For example, host immune cells can switch from oxidative phosphorylation to glycolysis in response to infection, a phenomenon known as the Warburg effect. In this state, immune cells are capable of amplifying production of both antimicrobial pro-inflammatory mediators that are critical for the elimination of bacteria. Also, cells undergoing the Warburg effect upregulate production of nitric oxide augment the synthesis of bioactive lipids. In this review, we describe our current understanding of the Warburg effect and discuss its role in promoting host immune responses to Mtb. In most settings, immune cells utilize the Warburg effect to promote inflammation and thereby eliminate invading bacteria; interestingly, Mtb exploits this effect to promote its own survival. A better understanding of the dynamics of metabolism within immune cells together with the specific features that contribute to the pathogenesis of tuberculosis (TB) may suggest potential host-directed therapeutic targets for promoting clearance of Mtb and limiting its survival in vivo.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Depatment of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Ye-Ram Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Depatment of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Depatment of Bionano Technology, Hanyang University, Seoul, South Korea
| |
Collapse
|
14
|
Dagenais-Lussier X, Loucif H, Cadorel H, Blumberger J, Isnard S, Bego MG, Cohen ÉA, Routy JP, van Grevenynghe J. USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection. PLoS Pathog 2019; 15:e1008060. [PMID: 31658294 PMCID: PMC6837632 DOI: 10.1371/journal.ppat.1008060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
The loss of Memory CD4 T-cells (Mem) is a major hallmark of HIV-1 immuno-pathogenesis and occurs early during the first months of primary infection. A lot of effort has been put into understanding the molecular mechanisms behind this loss, yet they still have not been fully identified. In this study, we unveil the unreported role of USP18 in the deleterious effects of sustained type I IFN signaling on Mem, including HIV-1-specific CD4 T-cells. We find that interfering with IFN-I signaling pathway in infected patients, notably by targeting the interferon-stimulated gene USP18, resulted in reduced PTEN expression similar to those observed in uninfected control donors. We show that AKT activation in response to cytokine treatment, T-cell receptor (TcR) triggering, as well as HIV-1 Gag stimulation was significantly improved in infected patients when PTEN or USP18 were inhibited. Finally, our data demonstrate that higher USP18 in Mem from infected patients prevent proper cell survival and long-lasting maintenance in an AKT-dependent manner. Altogether, we establish a direct role for type I IFN/USP18 signaling in the maintenance of total and virus-specific Mem and provide a new mechanism for the reduced survival of these populations during primary HIV-1 infection. In this study, we expend our knowledge of how type I interferons (IFN-I) leads to memory CD4 T-cell defective survival by unveiling the molecular mechanism behind such impairments, placing USP18 at its center. Our data further deciphers the specific USP18-related mechanism that is responsible for such impairments by implicating AKT inhibition in a PTEN-dependent manner. Our findings also point to a potential use of neutralizing anti-interferon α/β receptor antibodies to rescue the defective memory CD4 T-cell survival during HIV-1 infection, even in HIV-1 specific CD4 T-cell. To conclude, our findings provide the characterization of the molecular pathway leading to disturbances caused by sustained IFN-I signaling which occurs early during primary HIV-1 infection, complementing current knowledge which placed sustained IFN-I signaling as detrimental to the host during this infection.
Collapse
Affiliation(s)
- Xavier Dagenais-Lussier
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hamza Loucif
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hugo Cadorel
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Juliette Blumberger
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Mariana Gé Bego
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Julien van Grevenynghe
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
- * E-mail:
| | | |
Collapse
|
15
|
Ceccarelli G, Statzu M, Santinelli L, Pinacchio C, Bitossi C, Cavallari EN, Vullo V, Scagnolari C, d'Ettorre G. Challenges in the management of HIV infection: update on the role of probiotic supplementation as a possible complementary therapeutic strategy for cART treated people living with HIV/AIDS. Expert Opin Biol Ther 2019; 19:949-965. [PMID: 31260331 DOI: 10.1080/14712598.2019.1638907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Recent insights show that gut-mucosal immunity and intestinal microbiota play a key role in the pathogenesis of HIV infection. Alterations in the composition of intestinal flora (dysbiosis) could be associated with an impaired intestinal epithelium barrier activity and an impaired mucosal immunity function, significantly contributing to microbial translocation which is considered a major driver of chronic immune activation. Areas covered: This article provides an overview on the novel trends in probiotic therapy application. A particular emphasis is addressed to the importance of probiotics as a novel strategy to attenuate or prevent gastrointestinal involvement and to improve gut-mucosal immunity in HIV-infected subjects. Therefore, opportunities, limits and methodological criticalities of supplementation with probiotic therapy are considered and analyzed. Expert opinion: Use of probiotics is emerging as a novel strategy to manage dysbiosis and gut-mucosal impairment, to reduce immune activation and to limit a number of non-AIDS-related disorders. However, despite the growing use of probiotic therapy, mechanisms by which oral bacteria intake exhibits its effects are strain-related and disease-specific, hence clinicians need to take these two factors into consideration when suggesting probiotic supplementation to HIV-infected patients.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Maura Statzu
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Letizia Santinelli
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Claudia Pinacchio
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Camilla Bitossi
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Eugenio Nelson Cavallari
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Vincenzo Vullo
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Carolina Scagnolari
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - GabrieIla d'Ettorre
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
16
|
Routy JP, Isnard S, Mehraj V, Ostrowski M, Chomont N, Ancuta P, Ponte R, Planas D, Dupuy FP, Angel JB. Effect of metformin on the size of the HIV reservoir in non-diabetic ART-treated individuals: single-arm non-randomised Lilac pilot study protocol. BMJ Open 2019; 9:e028444. [PMID: 31005944 PMCID: PMC6500211 DOI: 10.1136/bmjopen-2018-028444] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION People living with HIV (PLWH) on antiretroviral therapy (ART) do not progress to AIDS. However, they still suffer from an increased risk of inflammation-associated complications. HIV persists in long-lived CD4+ T cells, which form the major viral reservoir. The persistence of this reservoir despite long-term ART is the major hurdle to curing HIV. Importantly, the size of the HIV reservoir is larger in individuals who start ART late in the course of infection and have a low CD4+/CD8+ ratio. HIV reservoir size is also linked to the levels of persistent inflammation on ART. Thus, novel strategies to reduce immune inflammation and improve the host response to control the HIV reservoir would be a valuable addition to current ART. Among the different strategies under investigation is metformin, a widely used antidiabetic drug that was recently shown to modulate T-cell activation and inflammation. Treatment of non-diabetic individuals with metformin controls inflammation by improving glucose metabolism and by regulating intracellular immunometabolic checkpoints such as the adenosin 5 monophosphate activated protein kinase and mammalian target of rapamycin, in association with microbiota modification. METHODS AND ANALYSIS 22 PLWH on ART for more than 3 years, at high risk of inflammation or the development of non-AIDS events (low CD4+/CD8+ ratio) will be recruited in a clinical single-arm pilot study. We will test whether supplementing ART with metformin in non-diabetic HIV-infected individuals can reduce the size of the HIV reservoir as determined by various virological assays. The expected outcome of this study is a reduction in both the size of the HIV reservoir and inflammation following the addition of metformin to ART, thus paving the way towards HIV eradication. ETHICS AND DISSEMINATION Ethical approval: McGill university Health Centre committee number MP-37-2016-2456. Canadian Canadian Institutes of Health Research/Canadian HIV Trials Network (CTN) protocol CTNPT027. Results will be made available through publication in peer-reviewed journals and through the CTN website. TRIAL REGISTRATION NUMBER NCT02659306.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Vikram Mehraj
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Mario Ostrowski
- Immunology, University of Toronto, Toronto, Ontario, Canada
- St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Petronela Ancuta
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Rosalie Ponte
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Delphine Planas
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jonathan B Angel
- The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Tarancon-Diez L, Rodríguez-Gallego E, Rull A, Peraire J, Viladés C, Portilla I, Jimenez-Leon MR, Alba V, Herrero P, Leal M, Ruiz-Mateos E, Vidal F. Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. EBioMedicine 2019; 42:86-96. [PMID: 30879922 PMCID: PMC6491381 DOI: 10.1016/j.ebiom.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 25% of elite controllers (ECs) lose their virological control by mechanisms that are only partially known. Recently, immunovirological and proteomic factors have been associated to the loss of spontaneous control. Our aim was to perform a metabolomic approach to identify the underlying mechanistic pathways and potential biomarkers associated with this loss of control. METHODS Plasma samples from EC who spontaneously lost virological control (Transient Controllers, TC, n = 8), at two and one year before the loss of control, were compared with a control group of EC who persistently maintained virological control during the same follow-up period (Persistent Controllers, PC, n = 8). The determination of metabolites and plasma lipids was performed by GC-qTOF and LC-qTOF using targeted and untargeted approaches. Metabolite levels were associated with the polyfunctionality of HIV-specific CD8+T-cell response. FINDINGS Our data suggest that, before the loss of control, TCs showed a specific circulating metabolomic profile characterized by aerobic glycolytic metabolism, deregulated mitochondrial function, oxidative stress and increased immunological activation. In addition, CD8+ T-cell polyfunctionality was strongly associated with metabolite levels. Finally, valine was the main differentiating factor between TCs and PCs. INTERPRETATION All these metabolomic differences should be considered not only as potential biomarkers but also as therapeutic targets in HIV infection. FUND: This work was supported by grants from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Fondos FEDER; Red de Investigación en Sida, Gilead Fellowship program, Spanish Ministry of Education and Spanish Ministry of Economy and Competitiveness.
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Esther Rodríguez-Gallego
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Rull
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joaquim Peraire
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Consuelo Viladés
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Irene Portilla
- Infectious Diseases, Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL - FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - María Reyes Jimenez-Leon
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Verónica Alba
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Manuel Leal
- Servicio de Medicina Interna, Hospital Viamed Santa Ángela de la Cruz, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Sevilla
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain.
| | - Francesc Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
18
|
Abstract
Macrophages are the primary targets of Mycobacterium tuberculosis infection; the early events of macrophage interaction with M. tuberculosis define subsequent progression and outcome of infection. M. tuberculosis can alter the innate immunity of macrophages, resulting in suboptimal Th1 immunity, which contributes to the survival, persistence, and eventual dissemination of the pathogen. Macrophages are the primary targets of Mycobacterium tuberculosis infection; the early events of macrophage interaction with M. tuberculosis define subsequent progression and outcome of infection. M. tuberculosis can alter the innate immunity of macrophages, resulting in suboptimal Th1 immunity, which contributes to the survival, persistence, and eventual dissemination of the pathogen. Recent advances in immunometabolism illuminate the intimate link between the metabolic states of immune cells and their specific functions. In this review, we describe the little-studied biphasic metabolic dynamics of the macrophage response during progression of infection by M. tuberculosis and discuss their relevance to macrophage immunity and M. tuberculosis pathogenicity. The early phase of macrophage infection, which is marked by M1 polarization, is accompanied by a metabolic switch from mitochondrial oxidative phosphorylation to hypoxia-inducible factor 1 alpha (HIF-1α)-mediated aerobic glycolysis (also known as the Warburg effect in cancer cells), as well as by an upregulation of pathways involving oxidative and antioxidative defense responses, arginine metabolism, and synthesis of bioactive lipids. These early metabolic changes are followed by a late adaptation/resolution phase in which macrophages transition from glycolysis to mitochondrial oxidative metabolism, with a consequent dampening of macrophage proinflammatory and antimicrobial responses. Importantly, the identification of upregulated metabolic pathways and/or metabolic regulatory mechanisms with immunomodulatory functions during M1 polarization has revealed novel mechanisms of M. tuberculosis pathogenicity. These advances can lead to the development of novel host-directed therapies to facilitate bacterial clearance in tuberculosis by targeting the metabolic state of immune cells.
Collapse
|
19
|
Routy JP, Isnard S, Ramendra R. Following the elite: Targeting immunometabolism to limit HIV pathogenesis. EBioMedicine 2019; 42:8-9. [PMID: 30910485 PMCID: PMC6491710 DOI: 10.1016/j.ebiom.2019.03.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| | - Stéphane Isnard
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Rayoun Ramendra
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Increased IL-17 and/or IFN-γ producing T-cell subsets in gut mucosa of long-term-treated HIV-1-infected women. AIDS 2019; 33:627-636. [PMID: 30608274 DOI: 10.1097/qad.0000000000002122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The influence of sex on gut mucosal T-cell response in HIV-1 infection remains largely unknown. We explored whether the frequencies of interferon-γ and/or IL-17 producing naive, T central memory and T effector memory (TEM) CD4+ (Th1, Th17) and CD8+ T (Tc1, Tc17) cells measured in gut and peripheral districts differed between female and male HIV-1-infected patients. METHODS Thirty long-term-treated HIV-1-infected individuals were enrolled. The frequencies of Th1, Th17, Tc1, Tc17-cell subsets (single and double) were evaluated by multiparametric flow cytometry in lamina propria lymphocytes and peripheral blood mononuclear cells (PBMC). RESULTS A sex-based pattern was recorded in the differences of Th1, Th17, Tc1, Tc17-cell subset (single and double) frequencies between gut and peripheral blood. Female patients had stronger alterations in the gut mucosal T-cell repertoire, especially increased Th1, Th17, and Th1/Th17-cell subset frequencies, compared with the blood district than their male counterparts. Higher naive Tc1, Tc17, Tc1/Tc17, TEM Tc17, and TEM Tc1/Tc17 levels were also recorded in the gut mucosa than in the PBMC of HIV-1-infected women. Males and females also differed in their gut T-cell response, with women being characterized by higher Th1, Th17, Tc1, Tc17, and Th1/Th17 cells subset levels than men. By contrast, only TEM Th1/Th17 and TEM Tc17 in PBMC differed between males and females. CONCLUSION Sex-based differences observed in the gut T-cell response of HIV-1-infected patients might contribute to the disease dimorphism.
Collapse
|
21
|
Profile of antiretroviral agents use in Colombia. BIOMEDICA 2018; 38:527-533. [PMID: 30653867 DOI: 10.7705/biomedica.v38i4.3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 02/26/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Since the beginning of the epidemic, human immunodeficiency virus (HIV) has taken more than 36 million lives. OBJECTIVE To determine the antiretroviral drug prescription patterns in a population of individuals with HIV infection in Colombia. MATERIALS AND METHODS Cross-sectional study analyzing the profiles of patients treated with antiretroviral drugs between April 1st and September 30th, 2015. The sociodemographic, pharmacological, and comorbidity variables were identified. Individuals with a positive diagnosis of HIV of all ages and both genders were included. RESULTS We found 641 patients with a mean age of 39.0±17 years who were predominantly male (60.2%). The most used medications were lamivudine-zidovudine (51.6%), lopinavir-ritonavir (36%) and efavirenz (24.5%). The combination of lamivudine-zidovudine plus lopinavir-ritonavir was the most prescribed regimen (29.5%), but a total of 80 different regimens was identified. Being an adult between the ages of 45-64 years (OR=2.25; 95%CI 1.367-3.713) was associated with a greater probabilityof receiving 4 or more antiretrovirals. A total of 267 (41.6%) patients used at least one comedication (range: 1-18 drugs), especially anti-ulcer (57.3%), lipid-lowering (28.8%) and anti-hypertensive (28.5%) drugs. CONCLUSIONS Patients undergoing antiretroviral treatment are receiving medications with elevated intrinsic values at the recommended doses and present comorbidities associated with chronic agerelated conditions. However, these patients receive a great variety of regimens that are not included in the clinical practice guidelines.
Collapse
|
22
|
Gutiérrez-Rivas M, Jiménez-Sousa MÁ, Rallón N, Jiménez JL, Restrepo C, León A, Montero-Alonso M, González-García J, Muñoz-Fernández MÁ, Benito JM, Resino S. High Plasma Levels of sTNF-R1 and CCL11 Are Related to CD4+ T-Cells Fall in Human Immunodeficiency Virus Elite Controllers With a Sustained Virologic Control. Front Immunol 2018; 9:1399. [PMID: 29967620 PMCID: PMC6015886 DOI: 10.3389/fimmu.2018.01399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Our aim was to analyze the relationship between plasma inflammatory biomarkers and CD4+ T-cells evolution in human immunodeficiency virus (HIV) elite controllers (HIV-ECs) with a suppressed viremia. We carried out a retrospective study in 30 HIV-ECs classified into two groups: those showing no significant loss of CD4+ T-cells during the observation period (stable CD4+, n = 19) and those showing a significant decrease of CD4+ T-cells (decline CD4+, n = 11). Baseline plasma biomarkers were measured using a multiplex immunoassay: sTNF-R1, TRAIL, sFas (APO), sFasL, TNF-α, TNF-β, IL-8, IL-18, IL-6, IL-10, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, SDF1α, GRO-α, and CCL11. Baseline levels of sTNF-R1 and CCL11 and sTNF-R1/TNF-α ratio correlated with the slope of CD4+ T-cells (cells/μl/year) during follow-up [r = -0.370 (p = 0.043), r = -0.314 (p = 0.091), and r = -0.381 (p = 0.038); respectively]. HIV-ECs with declining CD4+ T-cells had higher baseline plasma levels of sTNF-R1 [1,500.7 (555.7; 2,060.7) pg/ml vs. 450.8 (227.9; 1,263.9) pg/ml; p = 0.018] and CCL11 [29.8 (23.5; 54.9) vs. 19.2 (17.8; 29.9) pg/ml; p = 0.041], and sTNF-R1/TNF-α ratio [84.7 (33.2; 124.2) vs. 25.9 (16.3; 75.1); p = 0.012] than HIV-1 ECs with stable CD4+ T-cells. The area under the receiver operating characteristic (ROC) curve [area under ROC curve (AUROC)] were 0.758 ± 0.093 (sTNF-R1), 0.727 ± 0.096 (CCL11), and 0.777 ± 0.087 (sTNF-R1/TNF-α). The cut-off of 75th percentile (high values) for these biomarkers had 71.4% positive predictive value and 73.9% negative predictive value for anticipating the evolution of CD4+ T-cells. In conclusion, the loss of CD4+ T-cells in HIV-ECs was associated with higher levels of two plasma inflammatory biomarkers (sTNF-R1 and CCL11), which were also reasonably accurate for the prediction of the CD4+ T-cells loss.
Collapse
Affiliation(s)
- Mónica Gutiérrez-Rivas
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José Luis Jiménez
- Plataforma de Laboratorio, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Sección Inmunología, Laboratory InmunoBiología Molecular, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
| | - Clara Restrepo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Agathe León
- Servicio de Enfermedades Infecciosas, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Marta Montero-Alonso
- Unidad de Enfermedades Infecciosas, Hospital Universitario y Politécnico "La Fe", Valencia, Spain
| | | | - María Ángeles Muñoz-Fernández
- Sección Inmunología, Laboratory InmunoBiología Molecular, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - José Miguel Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | | |
Collapse
|
23
|
Masson JJR, Cherry CL, Murphy NM, Sada-Ovalle I, Hussain T, Palchaudhuri R, Martinson J, Landay AL, Billah B, Crowe SM, Palmer CS. Polymorphism rs1385129 Within Glut1 Gene SLC2A1 Is Linked to Poor CD4+ T Cell Recovery in Antiretroviral-Treated HIV+ Individuals. Front Immunol 2018; 9:900. [PMID: 29867928 PMCID: PMC5966582 DOI: 10.3389/fimmu.2018.00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
Untreated HIV infection is associated with progressive CD4+ T cell depletion, which is generally recovered with combination antiretroviral therapy (cART). However, a significant proportion of cART-treated individuals have poor CD4+ T cell reconstitution. We investigated associations between HIV disease progression and CD4+ T cell glucose transporter-1 (Glut1) expression. We also investigated the association between these variables and specific single nucleotide polymorphisms (SNPs) within the Glut1 regulatory gene AKT (rs1130214, rs2494732, rs1130233, and rs3730358) and in the Glut1-expressing gene SLC2A1 (rs1385129 and rs841853) and antisense RNA 1 region SLC2A1-AS1 (rs710218). High CD4+Glut1+ T cell percentage is associated with rapid CD4+ T cell decline in HIV-positive treatment-naïve individuals and poor T cell recovery in HIV-positive individuals on cART. Evidence suggests that poor CD4+ T cell recovery in treated HIV-positive individuals is linked to the homozygous genotype (GG) associated with SLC2A1 SNP rs1385129 when compared to those with a recessive allele (GA/AA) (odds ratio = 4.67; P = 0.04). Furthermore, poor response to therapy is less likely among Australian participants when compared against American participants (odds ratio: 0.12; P = 0.01) despite there being no difference in prevalence of a specific genotype for any of the SNPs analyzed between nationalities. Finally, CD4+Glut1+ T cell percentage is elevated among those with a homozygous dominant genotype for SNPs rs1385129 (GG) and rs710218 (AA) when compared to those with a recessive allele (GA/AA and AT/TT respectively) (P < 0.04). The heterozygous genotype associated with AKT SNP 1130214 (GT) had a higher CD4+Glut1+ T cell percentage when compared to the dominant homozygous genotype (GG) (P = 0.0068). The frequency of circulating CD4+Glut1+ T cells and the rs1385129 SLC2A1 SNP may predict the rate of HIV disease progression and CD4+ T cell recovery in untreated and treated infection, respectively.
Collapse
Affiliation(s)
- Jesse J R Masson
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicholas M Murphy
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Preimplantation Genetic Diagnosis, Monash IVF, Melbourne, VIC, Australia
| | - Isabel Sada-Ovalle
- Unidad de Investigación Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Tabinda Hussain
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Riya Palchaudhuri
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jeffrey Martinson
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Alan L Landay
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Baki Billah
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Loucif H, Gouard S, Dagenais-Lussier X, Murira A, Stäger S, Tremblay C, Van Grevenynghe J. Deciphering natural control of HIV-1: A valuable strategy to achieve antiretroviral therapy termination. Cytokine Growth Factor Rev 2018; 40:90-98. [PMID: 29778137 DOI: 10.1016/j.cytogfr.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Antiretroviral therapy (ART) has dramatically reduced HIV-1-associated morbidity and mortality, and has transformed HIV-1 infection into a manageable chronic condition by suppressing viral replication. However, despite recent patient care improvements, ART still fails to cure HIV-1 infection due to the inability to counteract immune defects and metabolic disturbances that are associated with residual inflammation alongside viral persistence. Life-long drug administration also results in multiple side-effects in patients including lipodystrophy and insulin resistance. Thus, it is critical to find new ways to reduce the length of treatment and facilitate the termination of ART, for example by boosting protective immunity. The rare ability of some individuals to naturally control HIV-1 infection despite residual inflammation could be exploited to identify molecular mechanisms involved in host protection that may function as potential therapeutic targets. In this review, we highlight evidence illustrating the molecular and metabolic advantages of HIV-1 controllers over ART treated patients that contribute to the maintenance of effective antiviral immunity.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Steven Gouard
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Armstrong Murira
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche de l'Université de Montréal, Montréal, QC, Canada
| | - Julien Van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada.
| |
Collapse
|
25
|
Weinberg A, Lindsey J, Bosch R, Persaud D, Sato P, Ogwu A, Asmelash A, Bwakura-Dangarambezi M, Chi BH, Canniff J, Lockman S, Gaseitsiwe S, Moyo S, Smith CE, Moraka NO, Levin MJ. B and T Cell Phenotypic Profiles of African HIV-Infected and HIV-Exposed Uninfected Infants: Associations with Antibody Responses to the Pentavalent Rotavirus Vaccine. Front Immunol 2018; 8:2002. [PMID: 29403482 PMCID: PMC5780413 DOI: 10.3389/fimmu.2017.02002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 12/23/2022] Open
Abstract
We examined associations between B and T cell phenotypic profiles and antibody responses to the pentavalent rotavirus vaccine (RV5) in perinatally HIV-infected (PHIV) infants on antiretroviral therapy and in HIV-exposed uninfected (PHEU) infants enrolled in International Maternal Pediatric Adolescent AIDS Clinical Trials P1072 study (NCT00880698). Of 17 B and T cell subsets analyzed, PHIV and PHEU differed only in the number of CD4+ T cells and frequency of naive B cells, which were higher in PHEU than in PHIV. In contrast, the B and T cell phenotypic profiles of PHIV and PHEU markedly differed from those of geographically matched contemporary HIV-unexposed infants. The frequency of regulatory T and B cells (Treg, Breg) of PHIV and PHEU displayed two patterns of associations: FOXP3+ CD25+ Treg positively correlated with CD4+ T cell numbers; while TGFβ+ Treg and IL10+ Treg and Breg positively correlated with the frequencies of inflammatory and activated T cells. Moreover, the frequencies of activated and inflammatory T cells of PHIV and PHEU positively correlated with the frequency of immature B cells. Correlations were not affected by HIV status and persisted over time. PHIV and PHEU antibody responses to RV5 positively correlated with CD4+ T cell counts and negatively with the proportion of immature B cells, similarly to what has been previously described in chronic HIV infection. Unique to PHIV and PHEU, anti-RV5 antibodies positively correlated with CD4+/CD8+FOXP3+CD25+% and negatively with CD4+IL10+% Tregs. In conclusion, PHEU shared with PHIV abnormal B and T cell phenotypic profiles. PHIV and PHEU antibody responses to RV5 were modulated by typical HIV-associated immune response modifiers except for the association between CD4+/CD8+FOXP3+CD25+Treg and increased antibody production.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pathology, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jane Lindsey
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, MA, United States
| | - Ronald Bosch
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, MA, United States
| | - Deborah Persaud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Paul Sato
- Maternal Adolescent and Pediatric Research Branch, NIAID, NIH, Bethesda, MD, United States
| | | | | | - Mutsa Bwakura-Dangarambezi
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Benjamin H Chi
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Canniff
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shahin Lockman
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Christiana Elizabeth Smith
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Myron J Levin
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | |
Collapse
|
26
|
Masson JJR, Murphy AJ, Lee MKS, Ostrowski M, Crowe SM, Palmer CS. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS One 2017; 12:e0183931. [PMID: 28854263 PMCID: PMC5576743 DOI: 10.1371/journal.pone.0183931] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.
Collapse
Affiliation(s)
- Jesse J. R. Masson
- James Cook University, Cairns, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | | | - Man K. S. Lee
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Matias Ostrowski
- Instituto de Investigaciones Biome´dicas en Retrovirus y SIDA. Facultad de Medicina, Buenos Aires, Argentina
| | - Suzanne M. Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Clovis S. Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
27
|
Gallego-Escuredo JM, Lamarca MK, Villarroya J, Domingo JC, Mateo MG, Gutierrez MDM, Vidal F, Villarroya F, Domingo P, Giralt M. High FGF21 levels are associated with altered bone homeostasis in HIV-1-infected patients. Metabolism 2017; 71:163-170. [PMID: 28521869 DOI: 10.1016/j.metabol.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fibroblast growth factor-21 (FGF21) has emerged as an important regulator of glucose, lipid, and body weight homeostasis. However, recent experimental studies have reported that increased FGF21 levels may lead to bone loss. OBJECTIVE To assess the relationship of serum FGF21 levels and altered bone homeostasis in HIV-1-infected patients. DESIGN Cross-sectional study of 137 HIV-1-infected patients and 35 healthy controls conducted at the Hospital de la Santa Creu i Sant Pau, Barcelona. Among HIV-1-infected patients, 35 were untreated (naïve), 43 were treated with antiretrovirals (HIV-1/ART) with no lipodystrophy, and 59 patients were HIV-1/ART and experienced lipodystrophy. Bone mineral density (BMD) and content (BMC) were assessed using dual-energy X-ray absorptiometry. Serum levels of FGF21, receptor activator of nuclear factor (NF)-KB ligand (RANKL), and C-telopeptide of type-I collagen (CTX-1) were measured by enzyme-linked immunosorbent assays. Serum levels of osteocalcin, osteoprotegerin, leptin, tumor necrosis factor-α, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 were determined using an antibody-linked, fluorescently labeled microsphere bead-based multiplex analysis system. RESULTS Alterations in bone parameters and bone homeostasis marker levels were consistent with higher turnover and bone loss in HIV-1 infected patients. FGF21 correlated negatively with BMD and BMC. FGF21 correlated positively with serum levels of osteoprotegerin and CTX-1, as well as with the CTX-1/osteocalcin ratio. CONCLUSIONS Elevated FGF21 levels are associated with poor bone homeostasis in HIV-1-infected patients. Increases in FGF21 serum level may be an indicator not only of metabolic derangement but it may also serve as a biomarker of altered bone homeostasis in HIV-1 infected patients.
Collapse
Affiliation(s)
- José M Gallego-Escuredo
- Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, Spain; Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Maria Karuna Lamarca
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Villarroya
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Joan C Domingo
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Ma Gracia Mateo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ma Del Mar Gutierrez
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Vidal
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitari Joan XXIII. IISPV. Universitat Rovira i Virgili, Tarragona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Pere Domingo
- Institut de Recerca Biomèdica (IRB) de Lleida, Lleida, Spain; Department of Infectious Diseases, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Department of Infectious Diseases, Hospital Universitari de Santa María, Lleida, Spain; Universitat de Lleida, Lleida, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain.
| |
Collapse
|
28
|
Kynurenine Reduces Memory CD4 T-Cell Survival by Interfering with Interleukin-2 Signaling Early during HIV-1 Infection. J Virol 2016; 90:7967-79. [PMID: 27356894 DOI: 10.1128/jvi.00994-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Early HIV-1 infection is characterized by enhanced tryptophan catabolism, which contributes to immune suppression and disease progression. However, the mechanism by which kynurenine, a tryptophan-related metabolite, induces immune suppression remains poorly understood. Herein, we show that the increased production of kynurenine correlates with defective interleukin-2 (IL-2) signaling in memory CD4 T cells from HIV-infected subjects. Defective IL-2 signaling in these subjects, which drives reduced protection from Fas-mediated apoptosis, was also associated with memory CD4 T-cell loss. Treatment of memory CD4 T cells with the concentration of kynurenine found in plasma inhibited IL-2 signaling through the production of reactive oxygen species. We further show that IL-2 signaling in memory CD4 T cells is improved by the antioxidant N-acetylcysteine. Early initiation of antiretroviral therapy restored the IL-2 response in memory CD4 T cells by reducing reactive oxygen species and kynurenine production. The study findings provide a kynurenine-dependent mechanism through IL-2 signaling for reduced CD4 T-cell survival, which can be reversed by early treatment initiation in HIV-1 infection. IMPORTANCE The persistence of functional memory CD4 T cells represents the basis for long-lasting immune protection in individuals after exposure to HIV-1. Unfortunately, primary HIV-1 infection results in the massive loss of these cells within weeks of infection, which is mainly driven by inflammation and massive infection by the virus. These new findings show that the enhanced production of kynurenine, a metabolite related to tryptophan catabolism, also impairs memory CD4 T-cell survival and interferes with IL-2 signaling early during HIV-1 infection.
Collapse
|
29
|
Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Adv Drug Deliv Rev 2016; 103:5-19. [PMID: 27117711 DOI: 10.1016/j.addr.2016.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023]
Abstract
Acquired immune deficiency syndrome has been one of the most devastating epidemics of the last century. The current estimate for people living with the HIV is 36.9 million. Today, despite availability of potent and safe drugs for effective treatment, lifelong therapy is required for preventing HIV re-emergence from a pool of latently infected cells. However, recent evidence show the importance to expand HIV testing, to offer antiretroviral treatment to all infected individuals, and to ensure retention through all the cascade of care. In addition, circumcision, pre-exposure prophylaxis, and other biomedical tools are now available for included in a comprehensive preventive package. Use of all the available tools might allow cutting the HIV transmission in 2030. In this article, we review the status of the epidemic, the latest advances in prevention and treatment, the concept of treatment as prevention and the challenges and opportunities for the HIV cure agenda.
Collapse
|
30
|
Iyer JV, Agrawal R, Yeo TK, Gunasekeran DV, Balne PK, Lee B, Au VB, Connolly J, Teoh SCB. Aqueous humor immune factors and cytomegalovirus (CMV) levels in CMV retinitis through treatment - The CRIGSS study. Cytokine 2016; 84:56-62. [PMID: 27239802 DOI: 10.1016/j.cyto.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/29/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aims to perform comprehensive longitudinal immune factor analysis of aqueous humor in relation to the aqueous CMV viral load and systemic CD4 counts during treatment of patients with co-infection of HIV and CMVR. METHODS Aqueous humor samples were collected from 17 HIV-positive patients with CMVR scheduled to undergo weekly intravitreal ganciclovir therapy as part of the prospective CMV Retinitis Intravitreal Ganciclovir Singapore Study (CRIGSS) over the course of 1year. Full data across all the 4 time points was obtained and analyzed for CMV DNA viral load, 41 cytokine and chemokine factors using real-time PCR with the FlexMAP 3D (Luminex®) platform and assessed using the Milliplex Human Cytokine® kit. RESULTS The following immune factors (Spearman correlation coefficient r value in parenthesis, p<0.05) showed strong correlation with CMV DNA load in the aqueous - MCP-1 (0.80, IFN-g (0.83), IP-10 (0.82), IL-8 (0.81), fractalkine (0.73), RANTES (0.68) - while the following showed moderate correlation - PDGF-AA (0.58), Flt-3L (0.59) and G-CSF (0.53). Only PDGF-AA revealed a statistically significant negative correlation with serum CD4 levels (r=-0.74). CONCLUSION Immune factors that correlate with intraocular CMV DNA load are identified. They are indicative of a Th1 and monocyte-macrophage mediated response, and exhibit a decreasing trend longitudinally through the course of treatment. These factors may be an important new consideration in individualizing the treatment of patients with CMVR.
Collapse
Affiliation(s)
- Jayant Venkatramani Iyer
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Singapore National Eye Center, Singapore.
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Tun Kuan Yeo
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | | | | | - Bernett Lee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Veonice Bijin Au
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - John Connolly
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Stephen C B Teoh
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
31
|
Debes JD, Pisano MB, Lotto M, Re V. Hepatitis E virus infection in the HIV-positive patient. J Clin Virol 2016; 80:102-6. [PMID: 27243210 DOI: 10.1016/j.jcv.2016.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is a RNA virus that can cause hepatitis. In immunocompetent individuals, infection with HEV usually leads to asymptomatic seroconversion. However, in immunosuppressed patients, such as transplant recipients, HEV can develop into a chronic infection. Studies regarding the seroprevalence and clinical implications of HEV in patients infected with the human immunodeficiency virus (HIV) are conflicting. Levels of CD4 count in blood seem to be the most widely associated risk factor, while other factors such as meat consumption or proximity to animals are less clearly associated with HEV infection. Progression to chronicity, as well as extrahepatic manifestations of HEV seem rare in HIV, and the implications of HEV in liver disease progression are poorly understood in the HIV-infected. In this review we describe the epidemiology, risk factors, and clinical implications of HEV infection in individuals infected with HIV.
Collapse
Affiliation(s)
- Jose D Debes
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States, United States.
| | - Maria Belen Pisano
- Instituto de Virología "Dr. J. M. Vanella" Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Martin Lotto
- Instituto de Virología "Dr. J. M. Vanella" Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Viviana Re
- Instituto de Virología "Dr. J. M. Vanella" Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
32
|
One of the immune activation profiles observed in HIV-1-infected adults with suppressed viremia is linked to metabolic syndrome: The ACTIVIH study. EBioMedicine 2016; 8:265-276. [PMID: 27428436 PMCID: PMC4919610 DOI: 10.1016/j.ebiom.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Immune activation in HIV-1-infected individuals is reduced under antiretroviral therapies, but persists, resulting in various morbidities. To better characterize this phenomenon, using a panel of 68 soluble and cell surface markers, we measured the level of activation in circulating CD4+ and CD8+ T cells, B cells, monocytes, NK cells, polynuclear and endothelial cells as well as of inflammation and fibrinolysis in 120 virologic responders over 45 years of age. As compared with age- and sex-matched uninfected individuals, we observed a persistence of activation in all the cell subpopulations analyzed, together with marks of inflammation and fibrinolysis. Two independent hierarchical clustering analyses allowed us to identify five clusters of markers that varied concurrently, and five patient groups, each with the same activation profile. The five groups of patients could be characterized by a marker of CD4+ T cell, CD8+ T cell, NK cell, monocyte activation or of inflammation, respectively. One of these profiles was strongly associated with marks of metabolic syndrome, particularly with hyperinsulinemia (OR 12.17 [95% CI 1.79–82.86], p = 0.011). In conclusion, our study unveils biomarkers linked to metabolic syndrome that could be tested as predictive markers, and opens the way to new therapeutic approaches tailored to each patient group. HIV patients aviremic under antiretroviral therapy present with five different profiles of persistent immune activation. One of these profiles is strongly linked to marks of metabolic syndrome.
Research in context HIV-infected individuals under treatment present with a global activation of their immune system. We show that these patients may be clustered into five groups of immune activation. One of these groups presented with a high frequency of metabolic disorders known to favour cardiovascular and liver diseases. Our data suggest that particular types of immune activation might pave the way for particular chronic diseases. This might be the case in other situations of chronic immune activation, including aging. Unveiling the molecular links between immune activation and chronic diseases might provide with markers predictive of these diseases and with specific therapeutic targets.
Collapse
|
33
|
Shi L, Eugenin EA, Subbian S. Immunometabolism in Tuberculosis. Front Immunol 2016; 7:150. [PMID: 27148269 PMCID: PMC4838633 DOI: 10.3389/fimmu.2016.00150] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Immunometabolism, the study of the relationship between bioenergetic pathways and specific functions of immune cells, has recently gained increasing appreciation. In response to infection, activation of the host innate and adaptive immune cells is accompanied by a switch in the bioenergetic pathway from oxidative phosphorylation to glycolysis, a metabolic remodeling known as the Warburg effect, which is required for the production of antimicrobial and pro-inflammatory effector molecules. In this review, we summarize the current understanding of the Warburg effect and discuss its association with the expression of host immune responses in tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb). We also discuss potential mechanisms underlying the Warburg effect with a focus on the expression and regulation of hypoxia-inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a major transcription regulator involved in cellular stress adaptation processes, including energy metabolism and antimicrobial responses. We also propose a novel hypothesis that Mtb perturbs the Warburg effect of immune cells to facilitate its survival and persistence in the host. A better understanding of the dynamics of metabolic states of immune cells and their specific functions during TB pathogenesis can lead to the development of immunotherapies capable of promoting Mtb clearance and reducing Mtb persistence and the emergence of drug resistant strains.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| |
Collapse
|
34
|
Palmer CS, Cherry CL, Sada-Ovalle I, Singh A, Crowe SM. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine 2016; 6:31-41. [PMID: 27211546 PMCID: PMC4856752 DOI: 10.1016/j.ebiom.2016.02.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023] Open
Abstract
Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein-Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, Monash University, Melbourne, Australia.
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, Monash University, Melbourne, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Australia; School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Isabel Sada-Ovalle
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, India
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, Monash University, Melbourne, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
35
|
Billings H, Crowe SM, Palmer CS. Does immunometabolism provide new targets to treat HIV-mediated inflammatory diseases? Future Virol 2016. [DOI: 10.2217/fvl.16.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne 3001, Australia
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne 3001, Australia
- Department of Infectious Diseases, Monash University, Melbourne 3800, Australia
- Infectious Diseases Department, The Alfred Hospital, Melbourne 3004, Australia
| | - Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne 3001, Australia
- Department of Infectious Diseases, Monash University, Melbourne 3800, Australia
| |
Collapse
|
36
|
Aounallah M, Dagenais-Lussier X, El-Far M, Mehraj V, Jenabian MA, Routy JP, van Grevenynghe J. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects. Cytokine Growth Factor Rev 2016; 28:1-10. [PMID: 26851985 DOI: 10.1016/j.cytogfr.2016.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/01/2016] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
HIV-1 infection leads to a depletion of CD4 T-cells associated with a persistent immune inflammation and changes in cellular metabolism. Most effort of managing HIV infection with combination of antiretroviral therapies (ART) has been focused on CD4 T-cell recovery, while control of persistent immune inflammation and metabolism were relatively underappreciated in the past. Recent discoveries on the interplay between innate immunity, inflammation (especially the inflammasome) and metabolic changes in the context of cancer and autoimmunity provide an emerging field for chronic viral infections including HIV-1. In a previous review, we described the deregulated metabolism contributing to immune dysfunctions such as alteration of memory T-cell responses, mucosal protection, and dendritic cell-related antigen presentation. Here, we summarize the latest knowledge on the detrimental influence of long-lasting inflammation and inflammasome activation induced by HIV-1, gut dysbiosis, and bacterial translocation, on metabolism during the course of viral infection. We also report on the inability of ART to fully counteract inflammation, resulting in partial metabolic improvement and leading to an insufficient decrease in the risk of non-AIDS events. Further advances in our understanding of the relationship between inflammation, altered metabolism, and long-term ART is warranted. Additionally, there is a critical need for developing new strategies to regulate the pro-inflammatory signals to enhance cellular metabolism and immune functions in order to improve the quality of life of individuals living with HIV-1.
Collapse
Affiliation(s)
- Mouna Aounallah
- INRS-Institut Armand Frappier, Laval, Quebec H7V 1B7, Canada
| | | | | | - Vikram Mehraj
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | |
Collapse
|
37
|
Routy JP, Mehraj V, Cao W. HIV immunotherapy comes of age: implications for prevention, treatment and cure. Expert Rev Clin Immunol 2015; 12:91-4. [PMID: 26629806 DOI: 10.1586/1744666x.2016.1112269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antiretroviral therapy (ART) has reshaped the lives of millions of individuals infected with human immunodeficiency virus (HIV). Patients initiating ART early in the course of infection benefit from a considerable reduction in the risks of acquired immune deficiency syndrome (AIDS) and HIV-related inflammatory events. However, the absence of cure and lifelong requirements of treatment highlight the need of a vaccine and an immunotherapeutic strategy. Like for cancer, a paradigm shift has occurred with the contribution of immune activation and microbial translocation priming aberrant systemic immunity in restricting the ability of the host to mount an effective immune response. The approaches of implementing an effective vaccine to prevent infection and inhibition of immune activation with breakage of viral latency followed by vaccination should lead to an HIV-free generation.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- a Division of Hematology and Chronic Viral Illness Service , McGill University Health Centre , Montréal , QC , Canada.,b Research Institute of the McGill University Health Centre: Glen site , Montréal , QC , Canada
| | - Vikram Mehraj
- b Research Institute of the McGill University Health Centre: Glen site , Montréal , QC , Canada
| | - Wei Cao
- b Research Institute of the McGill University Health Centre: Glen site , Montréal , QC , Canada.,c Department of Infectious Diseases, Peking Union Medical , College Hospital , Beijing , China
| |
Collapse
|