1
|
Nodarse-Cuni H, Bravo O, Cañete R, Vázquez-Blomquist D, Quintana D, Aguilera-Barreto A, Guillen-Nieto G, Arteaga A, Morales I. Pharmacodynamic of Recombinant Human Interferon Alpha-2b Nasal Drops and Effective Prophylaxis Against SARS-COV-2 Infection. J Interferon Cytokine Res 2024; 44:271-280. [PMID: 38597374 DOI: 10.1089/jir.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The recombinant human interferon alpha-2b (IFN-α2b) nasal drop formulation (Nasalferon) was studied as prophylaxis for SARS-CoV-2. Healthy volunteers between 19 and 80 years of age received 0.5 million international units of IFN in one drop (0.05 mL ) in each nostril, twice a day, for 10 consecutive days. The nondetection of SARS-CoV-2 by real-time polymerase chain reaction was the primary outcome variable. Several IFN-α biomarkers, including intranasal gene expression and innate immune effector activity, were increased in participants who received intranasal IFN-α2b. The study included 2,930 international travelers and 5,728 persons who were their close contacts. The subjects were treated with Nasalferon in January 2021, and 9,162 untreated travelers were included as controls. COVID-19 rate in treated subjects was significantly lower than in untreated subjects (0.05% vs. 4.84%). The proportion of travelers with COVID-19 decreased from 60.9% to 2.2% between December 2020 and February 2021. Furthermore, 1,719 tourism workers also received Nasalferon, and no cases of SARS-CoV-2 infection were detected, whereas 39 COVID-19 cases (10.6%) were reported in 367 untreated subjects. The main adverse events associated with the use of intranasal IFN-α2b were nasal congestion, headache, and rhinorrhea. Our prophylactic health interventions study demonstrates that the daily administration of Nasalferon for 10 days decreases the risk of developing COVID-19 in healthy volunteers. [Figure: see text].
Collapse
Affiliation(s)
- Hugo Nodarse-Cuni
- Clinical Research Department, Center for Genetic Engineering and Biotechnology, La Habana, Cuba
| | - Odalys Bravo
- National Science and Innovation Directorate, Ministry of Public Health, Havana, Cuba
| | - Roberto Cañete
- Research Department, Medical College of Matanzas, Matanzas, Cuba
| | - Dania Vázquez-Blomquist
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, La Habana, Cuba
| | - Diogenes Quintana
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, La Habana, Cuba
| | - Ana Aguilera-Barreto
- Technological Development Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillen-Nieto
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, La Habana, Cuba
| | - Amaylid Arteaga
- Research Department, National Coordinating Center for Clinical Trials, Havana, Cuba
| | - Ileana Morales
- National Science and Innovation Directorate, Ministry of Public Health, Havana, Cuba
| |
Collapse
|
2
|
Chronopoulou S, Tsochantaridis I, Tokamani M, Kokkinopliti KD, Tsomakidis P, Giannakakis A, Galanis A, Pappa A, Sandaltzopoulos R. Expression and purification of human interferon alpha 2a (IFNα2a) in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 2023; 211:106339. [PMID: 37467825 DOI: 10.1016/j.pep.2023.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Human interferon alpha 2a (IFNα2a) is a secreted glycoprotein that exerts a wide spectrum of biological effects, such as triggering of antiviral, antitumor and immunosuppressive responses. IFNα2a is used as pharmaceutical polypeptide in chronic hepatitis C virus (HCV) infection, chronic myelogenous leukemia, advanced renal cell carcinoma, and metastatic malignant melanoma. So far, the pharmaceutical polypeptide of this cytokine is produced in prokaryotic expression systems (E. coli). Here we report the expression and purification of recombinant human IFNα2a in the methylotrophic yeast Pichia pastoris. The cDNA encoding for human IFNα2a, modified to bear the P. pastoris codon bias, was cloned into the pPinkα-HC vector in order to be expressed as a secreted protein upon induction. Proper expression and secretion of recombinant human IFNα2a (approximately 19 kDa) was confirmed by PCR-sequencing, SDS-PAGE and Western blot analysis following methanol-induced expression in a number of individual transformed strains. Purification of the recombinant protein was performed by affinity chromatography, achieving a robust yield of purified active form. The purified recombinant protein showed an impressive stability to thermal denaturation as observed by Differential Scanning Fluorimetry. The biological activity of the P. pastoris-produced IFNα2a was confirmed in A549 and HT29 cells by monitoring transcriptional up-regulation of a panel of known interferon-stimulated genes (ISGs). Our results document that the P. pastoris expression system is a suitable system for producing biologically functional IFNα2a in a secreted form.
Collapse
Affiliation(s)
- Sofia Chronopoulou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Maria Tokamani
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | | | - Petros Tsomakidis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Antonis Giannakakis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
3
|
Xu W, Wen X, Cong X, Jiang W. COVID-19 mRNA vaccine, but not a viral vector-based vaccine, promotes neutralizing anti-type I interferon autoantibody production in a small group of healthy individuals. J Med Virol 2023; 95:e29137. [PMID: 37792386 PMCID: PMC10603818 DOI: 10.1002/jmv.29137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) vaccines are highly effective but also induce adverse events, in particular, autoimmunity. Findings from several studies revealed that patients with life-threatening SARS-CoV-2 infection had increased, pre-existing, neutralizing antibodies against type I interferons (IFNs). However, whether COVID-19 vaccination induces the anti-type I IFN antibody remains unclear. In the current study, we evaluated plasma levels of 103 autoantibodies against various human self-antigens and 16 antibodies against viral antigens in healthy individuals pre- and post-COVID-19 vaccination. Twelve participants received a COVID-19 mRNA vaccine (Pfizer-BioNTech or Moderna), and 8 participants received a viral vector-based vaccine (Janssen). All participants produced increased antibody levels against SARS-CoV-2 antigens following vaccination. Among the 103 autoantibodies, only plasma levels of IgG autoantibodies against type I IFNs increased in participants who received a mRNA vaccine (3/12), but not in those who received the viral vector-based vaccine (0/8) at postvaccination compared to pre-vaccination. Among the three individuals showing increased anti-IFN IgG following vaccination, both plasma samples and plasma-purified total IgGs showed a dose-dependent binding ability to IFN-α; two of the three showed neutralizing activity to IFN-α-2a-induced phosphorated STAT1 responses in human peripheral blood mononuclear cells postvaccination compared to baseline in vitro. Among the 103 autoantibodies tested, the COVID-19 mRNA vaccine, but not the viral vector-based vaccine, specifically induced neutralizing anti-type I IFN autoantibodies in a small group of healthy individuals (~10%). Findings from this study imply that COVID-19 mRNA vaccines may suppress IFN-mediated innate immunity and impair immune defense through induced autoimmunity in some healthy individuals, who may need to switch to another type of COVID-19 vaccine (e.g., a viral vector-based vaccine).
Collapse
Affiliation(s)
- Wanli Xu
- University of Connecticut, Storrs, Connecticut, USA, 06269
| | - Xiaoting Wen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Suite 822, MSC 637, Charleston, SC, 29425, USA
| | - Xiaomei Cong
- Yale University, P.O. Box 27399, West Haven, CT 06516
| | - Wei Jiang
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425
| |
Collapse
|
4
|
Sweet DR, Freeman ML, Zidar DA. Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention. Pathog Immun 2023; 8:17-50. [PMID: 37427016 PMCID: PMC10324469 DOI: 10.20411/pai.v8i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has had profound effects on the health of individuals and on healthcare systems worldwide. While healthcare workers on the frontlines have fought to quell multiple waves of infection, the efforts of the larger research community have changed the arch of this pandemic as well. This review will focus on biomarker discovery and other efforts to identify features that predict outcomes, and in so doing, identify possible effector and passenger mechanisms of adverse outcomes. Identifying measurable soluble factors, cell-types, and clinical parameters that predict a patient's disease course will have a legacy for the study of immunologic responses, especially stimuli, which induce an overactive, yet ineffectual immune system. As prognostic biomarkers were identified, some have served to represent pathways of therapeutic interest in clinical trials. The pandemic conditions have created urgency for accelerated target identification and validation. Collectively, these COVID-19 studies of biomarkers, disease outcomes, and therapeutic efficacy have revealed that immunologic systems and responses to stimuli are more heterogeneous than previously assumed. Understanding the genetic and acquired features that mediate divergent immunologic outcomes in response to this global exposure is ongoing and will ultimately improve our preparedness for future pandemics, as well as impact preventive approaches to other immunologic diseases.
Collapse
Affiliation(s)
- David R. Sweet
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- Cardiology Section, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
5
|
Garcia-Huidobro D, Iturriaga C, Perez-Mateluna G, Fajuri P, Severino N, Urzúa M, Fraga JP, de la Cruz J, Poli C, Castro-Rodríguez JA, Fish E, Borzutzky A. Safety, Tolerability, Bioavailability, and Biological Activity of Inhaled Interferon-α2b in Healthy Adults: The IN 2COVID Phase I Randomized Trial. Clin Drug Investig 2023:10.1007/s40261-023-01278-3. [PMID: 37347370 DOI: 10.1007/s40261-023-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Interferons have been identified as a potential treatment alternative for coronavirus disease 2019. This study assessed the safety, tolerability, bioavailability, and biological activity of inhaled interferon-α2b (IFN)-α2b in healthy adults. METHODS A double-blind, randomized, phase I clinical trial was conducted with two cohorts of healthy subjects aged 18-50 years. The first cohort received 2.5 MIU of inhaled IFN-α2b twice daily for 10 days (n = 6) or placebo (n = 3); the second cohort received 5.0 MIU of inhaled IFN-α2b in a similar scheme (n = 6) or placebo (n = 3). The first two doses were administered in an emergency department, then participants completed their treatment at home. Safety was measured through vital signs, new symptoms, and laboratory tests. Tolerability was measured as participants' treatment acceptability. Bioavailability and biological activity were measured from serum IFNα concentrations and real-time quantitative polymerase chain reaction of interferon-induced genes in blood before and after treatments. RESULTS Exposure to inhaled IFN-α2b at 2.5-MIU or 5-MIU doses did not produce statistically significant changes in participant vital signs, or elicit new symptoms, and standard hematological and biochemical blood measurements were comparable to those recorded in individuals who received placebo. A total of 58 adverse events were observed. All were mild or moderate and did not require medical care. All participants reported very high tolerability towards a twice-daily nebulized treatment for 10 days (98.0, 97.0, and 97.0 in the placebo, 2.5-MIU, and 5-MIU groups, respectively, on a 0- to 100-mm visual analog scale). A dose-dependent mild increase in serum IFN-α concentrations and an increase in serum RNA expression of IFN-induced genes were observed 11 days after treatment (p < 0.05 for all between-group comparisons). CONCLUSIONS Inhaled IFN-α2b was preliminarily safe and well tolerated, and induced systemic biological activity in healthy subjects. CLINICAL TRIAL REGISTRATION The trial was registered in ClinicalTrials.gov (NCT04988217), 3 August, 2021.
Collapse
Affiliation(s)
- Diego Garcia-Huidobro
- Department of Family Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Iturriaga
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Perez-Mateluna
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Fajuri
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Severino
- Pharmacology and Toxicology ProgramSchool of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Urzúa
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Fraga
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera de la Cruz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Poli
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - José A Castro-Rodríguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eleanor Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arturo Borzutzky
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
7
|
Kamyshnyi A, Koval H, Kobevko O, Buchynskyi M, Oksenych V, Kainov D, Lyubomirskaya K, Kamyshna I, Potters G, Moshynets O. Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. Int J Mol Sci 2023; 24:ijms24086887. [PMID: 37108051 PMCID: PMC10138580 DOI: 10.3390/ijms24086887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Despite several targeted antiviral drugs against SARS-CoV-2 currently being available, the application of type I interferons (IFNs) still deserves attention as an alternative antiviral strategy. This study aimed to assess the therapeutic effectiveness of IFN-α in hospitalized patients with COVID-19-associated pneumonia. The prospective cohort study included 130 adult patients with coronavirus disease (COVID-19). A dose of 80,000 IU of IFN-α2b was administered daily intranasally for 10 days. Adding IFN-α2b to standard therapy reduces the length of the hospital stay by 3 days (p < 0.001). The level of CT-diagnosed lung injuries was reduced from 35% to 15% (p = 0.011) and CT injuries decreased from 50% to 15% (p = 0.017) by discharge. In the group of patients receiving IFN-α2b, the SpO2 index before and after treatment increased from 94 (92-96, Q1-Q3) to 96 (96-98, Q1-Q3) (p < 0.001), while the percentage of patients with normal saturation increased (from 33.9% to 74.6%, p < 0.05), but the level of SpO2 decreased in the low (from 52.5% to 16.9%) and very low (from 13.6% to 8.5%) categories. The addition of IFN-α2b to standard therapy has a positive effect on the course of severe COVID-19.
Collapse
Affiliation(s)
- Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Halyna Koval
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Teatralnaya Square, 2, 58002 Chernivtsi, Ukraine
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Olha Kobevko
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical University, Maiakovskyi Avenue 26, 69000 Zaporizhzhia, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kyiv, Ukraine
| |
Collapse
|
8
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|
9
|
Buchynskyi M, Kamyshna I, Lyubomirskaya K, Moshynets O, Kobyliak N, Oksenych V, Kamyshnyi A. Efficacy of interferon alpha for the treatment of hospitalized patients with COVID-19: A meta-analysis. Front Immunol 2023; 14:1069894. [PMID: 36776844 PMCID: PMC9909279 DOI: 10.3389/fimmu.2023.1069894] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION IFN-α intervention may block SARS-CoV-2 replication and normalize the deregulated innate immunity of COVID-19. AIM This meta-analysis aimed to investigate the efficacy of interferon IFN-α-containing regimens when treating patients with moderate-to-severe COVID-19. MATERIAL AND METHODS PubMed, SCOPUS, and ClinicalTrials.gov were searched from inception to 15 January 2022. A systematic literature search was conducted by applying relevant terms for 'COVID-19' and 'interferon-α'. The primary outcome enclosed the all-cause hospital mortality. The secondary outcomes constituted the length of hospital stay; hospital discharge; nucleic acid negative conversion. RESULTS Eleven studies are enclosed in the meta-analysis. No significant difference in the all-cause mortality rate was found between the study and control groups (OR 0.2; 95% CI 0.05-1.2; I2 = 96%). The implementation of interferon did not influence such outcomes as the length of hospital stay (OR 0.9; 95% CІ, 0.3-2.6; I2 = 91%), nucleic acid negative conversion (OR 0.8; 95% CI, 0.04-17.2; I2 = 94%). Nevertheless, IFN-α treatment resulted in a higher number of patients discharged from the hospital (OR 26.6; 95% CІ, 2.7-254.3; I2 = 95%). CONCLUSIONS Thus, IFN-α does not benefit the survival of hospitalized COVID-19 patients but may increase the number of patients discharged from the hospital. SYSTEMATIC REVIEW REGISTRATION www.crd.york.ac.uk/prospero, identifier (CRD42022374589).
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | | | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
10
|
Jiang Y, Rubin L, Zhou Z, Zhang H, Su Q, Hou ST, Lazarovici P, Zheng W. Pharmacological therapies and drug development targeting SARS-CoV-2 infection. Cytokine Growth Factor Rev 2022; 68:13-24. [PMID: 36266222 PMCID: PMC9558743 DOI: 10.1016/j.cytogfr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/30/2023]
Abstract
The development of therapies for SARS-CoV-2 infection, based on virus biology and pathology, and of large- and small-scale randomized controlled trials, have brought forward several antiviral and immunomodulatory drugs targeting the disease severity. Casirivimab/Imdevimab monoclonal antibodies and convalescent plasma to prevent virus entry, Remdesivir, Molnupiravir, and Paxlovid nucleotide analogs to prevent viral replication, a variety of repurposed JAK-STAT signaling pathway inhibitors, corticosteroids, and recombinant agonists/antagonists of cytokine and interferons have been found to provide clinical benefits in terms of mortality and hospitalization. However, current treatment options face multiple clinical needs, and therefore, in this review, we provide an update on the challenges of the existing therapeutics and highlight drug development strategies for COVID-19 therapy, based on ongoing clinical trials, meta-analyses, and clinical case reports.
Collapse
Affiliation(s)
- Yizhou Jiang
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Zhiwei Zhou
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Haibo Zhang
- Anesthesia, Critical Care Medicine and Physiology, St. Michael’s Hospital, University of Toronto, Ontario, Canada
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China,Correspondence to: Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Philip Lazarovici
- Pharmacology, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Correspondence to: Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Avenida de Universidade, Taipa, Macau, China
| |
Collapse
|
11
|
Impact of COVID-19 on the liver and on the care of patients with chronic liver disease, hepatobiliary cancer, and liver transplantation: An updated EASL position paper. J Hepatol 2022; 77:1161-1197. [PMID: 35868584 PMCID: PMC9296253 DOI: 10.1016/j.jhep.2022.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has presented a serious challenge to the hepatology community, particularly healthcare professionals and patients. While the rapid development of safe and effective vaccines and treatments has improved the clinical landscape, the emergence of the omicron variant has presented new challenges. Thus, it is timely that the European Association for the Study of the Liver provides a summary of the latest data on the impact of COVID-19 on the liver and issues guidance on the care of patients with chronic liver disease, hepatobiliary cancer, and previous liver transplantation, as the world continues to deal with the consequences of the COVID-19 pandemic.
Collapse
|
12
|
Wang M, Zhao Y, Liu J, Li T. SARS-CoV-2 modulation of RIG-I-MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches. MEDCOMM - FUTURE MEDICINE 2022; 1:e29. [PMID: 37521851 PMCID: PMC9878249 DOI: 10.1002/mef2.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 05/27/2023]
Abstract
The coronavirus disease 2019 (COVID-19) is a global infectious disease aroused by RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients may suffer from severe respiratory failure or even die, posing a huge challenge to global public health. Retinoic acid-inducible gene I (RIG-I) is one of the major pattern recognition receptors, function to recognize RNA viruses and mediate the innate immune response. RIG-1 and melanoma differentiation-associated gene 5 contain an N-terminal caspase recruitment domain that is activated upon detection of viral RNA in the cytoplasm of virus-infected cells. Activated RIG-I and mitochondrial antiviral signaling (MAVS) protein trigger a series of corresponding immune responses such as the production of type I interferon against viral infection. In this review, we are summarizing the role of the structural, nonstructural, and accessory proteins from SARS-CoV-2 on the RIG-I-MAVS pathway, and exploring the potential mechanism how SARS-CoV-2 could evade the host antiviral response. We then proposed that modulation of the RIG-I-MAVS signaling pathway might be a novel and effective therapeutic strategy to against COVID-19 as well as the constantly mutating coronavirus.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Department of Clinical Immunology, Institute of Clinical Laboratory MedicineGuangdong Medical UniversityDongguanChina
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| |
Collapse
|
13
|
Chen M, Ma Y, Chang W. SARS-CoV-2 and the Nucleus. Int J Biol Sci 2022; 18:4731-4743. [PMID: 35874947 PMCID: PMC9305274 DOI: 10.7150/ijbs.72482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The ongoing COVID-19 pandemic is caused by an RNA virus, SARS-CoV-2. The genome of SARS-CoV-2 lacks a nuclear phase in its life cycle and is replicated in the cytoplasm. However, interfering with nuclear trafficking using pharmacological inhibitors greatly reduces virus infection and virus replication of other coronaviruses is blocked in enucleated cells, suggesting a critical role of the nucleus in virus infection. Here, we summarize the alternations of nuclear pathways caused by SARS-CoV-2, including nuclear translocation pathways, innate immune responses, mRNA metabolism, epigenetic mechanisms, DNA damage response, cytoskeleton regulation, and nuclear rupture. We consider how these alternations contribute to virus replication and discuss therapeutic treatments that target these pathways, focusing on small molecule drugs that are being used in clinical studies.
Collapse
Affiliation(s)
- Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yue Ma
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
14
|
Frasca F, Scordio M, Santinelli L, Gabriele L, Gandini O, Criniti A, Pierangeli A, Angeloni A, Mastroianni CM, d'Ettorre G, Viscidi RP, Antonelli G, Scagnolari C. Anti-IFN-α/-ω neutralizing antibodies from COVID-19 patients correlate with downregulation of IFN response and laboratory biomarkers of disease severity. Eur J Immunol 2022; 52:1120-1128. [PMID: 35419822 PMCID: PMC9087404 DOI: 10.1002/eji.202249824] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
A significant number of COVID‐19 patients were shown to have neutralizing antibodies (NAB) against IFN; however, NAB specificity, fluctuation over time, associations with biochemical and hematological parameters, and IFN gene expression are not well characterized. Binding antibodies (BAB) to IFN‐α/‐β were screened in COVID‐19 patients’ serum. All BAB positive sera, and a subset of respiratory samples, were tested for NAB against IFN‐α/‐β/‐ω, using an antiviral bioassay. Transcript levels of IFN‐α/‐β/‐ω and IFN‐stimulated genes (ISGs) were quantified. Anti‐IFN‐I BAB were found in 61 out of 360 (17%) of patients. Among BAB positive sera, 21.3% had a high NAB titer against IFN‐α. A total of 69.2% of anti‐IFN‐α NAB sera displayed cross‐reactivity to IFN‐ω. Anti‐IFN‐I NAB persisted in all patients. NAB to IFN‐α were also detected in 3 out of 17 (17.6%) of respiratory samples. Anti‐IFN‐I NAB were higher in males (p = 0.0017), patients admitted to the ICU (p < 0.0001), and patients with a fatal outcome (p < 0.0001). NAB were associated with higher levels of CRP, LDH, d‐Dimer, and higher counts of hematological parameters. ISG‐mRNAs were reduced in patients with persistently NAB titer. NAB are detected in a significant proportion of severe COVID‐19. NAB positive patients presented a defective IFN response and increased levels of laboratory biomarkers of disease severity.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mirko Scordio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Letizia Santinelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Anna Criniti
- Department of Experimental Medicine, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|