1
|
van Heuvelen MJG, van der Lei MB, Alferink PM, Roemers P, van der Zee EA. Cognitive deficits in human ApoE4 knock-in mice: A systematic review and meta-analysis. Behav Brain Res 2024; 471:115123. [PMID: 38972485 DOI: 10.1016/j.bbr.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Apolipoprotein-E4 (ApoE4) is an important genetic risk factor for Alzheimer's disease. The development of targeted-replacement human ApoE knock-in mice facilitates research into mechanisms by which ApoE4 affects the brain. We performed meta-analyses and meta-regression analyses to examine differences in cognitive performance between ApoE4 and ApoE3 mice. We included 61 studies in which at least one of the following tests was assessed: Morris Water Maze (MWM), novel object location (NL), novel object recognition (NO) and Fear Conditioning (FC) test. ApoE4 vs. ApoE3 mice performed significantly worse on the MWM (several outcomes, 0.17 ≤ g ≤ 0.60), NO (exploration, g=0.33; index, g=0.44) and FC (contextual, g=0.49). ApoE4 vs. ApoE3 differences were not systematically related to sex or age. We conclude that ApoE4 knock-in mice in a non-AD condition show some, but limited cognitive deficits, regardless of sex and age. These effects suggest an intrinsic vulnerability in ApoE4 mice that may become more pronounced under additional brain load, as seen in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Mathijs B van der Lei
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands; Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium.
| | - Pien M Alferink
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Peter Roemers
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
2
|
McLean JW, Bhattrai A, Vitali F, Raikes AC, Wiegand JPL, Brinton RD. Contributions of sex and genotype to exploratory behavior differences in an aged humanized APOE mouse model of late-onset Alzheimer's disease. Learn Mem 2022; 29:321-331. [PMID: 36206387 PMCID: PMC9488030 DOI: 10.1101/lm.053588.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Age, genetics, and chromosomal sex have been identified as critical risk factors for late-onset Alzheimer's disease (LOAD). The predominant genetic risk factor for LOAD is the apolipoprotein E ε4 allele (APOE4), and the prevalence of LOAD is higher in females. However, the translational validity of APOE4 mouse models for AD-related cognitive impairment remains to be fully determined. The present study investigated the role of both sex and genotype on learning and memory in aged, humanized APOE knock-in mice. Aged (23.27 mo ± 1.21 mo; 39 male/37 female) APOE3/3, APOE3/4, and APOE4/4 mice performed a novel object recognition (NOR) assay. Task-related metrics were analyzed using two-way sex by genotype ANOVAs. Sex differences were more prominent relative to APOE genotype. Prior to NOR, female mice exhibited thigmotaxic center zone avoidance during the open field task relative to males, regardless of genotype. Within object familiarization and NOR tasks, females had greater object interaction and locomotion. Interestingly, only APOE4/4 females on average recognized the novel object. These results suggest that APOE4, although strongly related to LOAD pathogenesis, does not drive cognitive decline in the absence of other risk factors even in very aged mice. Chromosomal sex is a key driver of behavioral phenotypes and thus is a critical variable for translatability of interventions designed to preserve learning and memory in animal models of LOAD. Last, there was a very high degree of variability in behavioral performance across APOE genotypes. A cluster analysis of the behavioral data revealed a low-activity and a high-activity cluster. APOE4 carriers were overrepresented in the low-activity cluster, while male:female distributions did not differ. Collectively, the behavioral data indicate that chromosomal sex has the greatest impact on behavioral phenotype, and APOE4 carrier status may confer greater risk for cognitive decline in some animals.
Collapse
Affiliation(s)
- John W McLean
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona 85721, USA
| | - Avnish Bhattrai
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, USA
| | - Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, USA
| | - Jean-Paul L Wiegand
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
3
|
Lee CS, Lee ML, Gibbons LE, Yanagihara RT, Blazes M, Kam JP, McCurry SM, Bowen JD, McCormick WC, Lee AY, Larson EB, Crane PK. Associations Between Retinal Artery/Vein Occlusions and Risk of Vascular Dementia. J Alzheimers Dis 2021; 81:245-253. [PMID: 33749651 DOI: 10.3233/jad-201492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vascular disease is a risk factor for Alzheimer's disease (AD) and related dementia in older adults. Retinal artery/vein occlusion (RAVO) is an ophthalmic complication of systemic vascular pathology. Whether there are associations between RAVO and dementia risk is unknown. OBJECTIVE To determine whether RAVOs are associated with an increased risk of developing vascular dementia or AD. METHODS Data from Adult Changes in Thought (ACT) study participants were analyzed. This prospective, population-based cohort study followed older adults (age ≥65 years) who were dementia-free at enrollment for development of vascular dementia or AD based on research criteria. RAVO diagnoses were extracted from electronic medical records. Cox-regression survival analyses were stratified by APOEɛ4 genotype and adjusted for demographic and clinical factors. RESULTS On review of 41,216 person-years (4,743 participants), 266 (5.6%) experienced RAVO. APOEɛ4 carriers who developed RAVO had greater than four-fold higher risk for developing vascular dementia (Hazard Ratio [HR] 4.54, 95% Confidence Interval [CI] 1.86, 11.10, p = 0.001). When including other cerebrovascular disease (history of carotid endarterectomy or transient ischemic attack) in the model, the risk was three-fold higher (HR 3.06, 95% CI 1.23, 7.62). No other conditions evaluated in the secondary analyses were found to confound this relationship. There was no effect in non-APOEɛ4 carriers (HR 1.03, 95% CI 0.37, 2.80). There were no significant associations between RAVO and AD in either APOE group. CONCLUSION Older dementia-free patients who present with RAVO and carry the APOEɛ4 allele appear to be at higher risk for vascular dementia.
Collapse
Affiliation(s)
- Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Michael L Lee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ryan T Yanagihara
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Marian Blazes
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jason P Kam
- Kaiser Permanente Washington, Seattle, WA, USA
| | - Susan M McCurry
- Department of Child, Family, and Population Health Nursing, University of Washington, Seattle, WA, USA
| | - James D Bowen
- Department of Neurology, Swedish Medical Center, Seattle, WA, USA
| | | | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Roda AR, Montoliu-Gaya L, Villegas S. The Role of Apolipoprotein E Isoforms in Alzheimer's Disease. J Alzheimers Dis 2020; 68:459-471. [PMID: 30775980 DOI: 10.3233/jad-180740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia worldwide, is characterized by high levels of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Genetically, the ɛ4 allele of apolipoprotein E (ApoE) has been established as the major risk factor for developing late-onset AD (LOAD), the most common form of the disease. Although the role ApoE plays in AD is still not completely understood, a differential role of its isoforms has long been known. The current review compiles the involvement of ApoE isoforms in amyloid-β protein precursor transcription, Aβ aggregation and clearance, synaptic plasticity, neuroinflammation, lipid metabolism, mitochondrial function, and tau hyperphosphorylation. Due to the complexity of LOAD, an accurate description of the interdependence among all the related molecular mechanisms involved in the disease is needed for developing successful therapies.
Collapse
Affiliation(s)
- Alejandro R Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laia Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Tensaouti Y, Yu TS, Kernie SG. Apolipoprotein E regulates the maturation of injury-induced adult-born hippocampal neurons following traumatic brain injury. PLoS One 2020; 15:e0229240. [PMID: 32119690 PMCID: PMC7051085 DOI: 10.1371/journal.pone.0229240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
Various brain injuries lead to the activation of adult neural stem/progenitor cells in the mammalian hippocampus. Subsequent injury-induced neurogenesis appears to be essential for at least some aspects of the innate recovery in cognitive function observed following traumatic brain injury (TBI). It has previously been established that Apolipoprotein E (ApoE) plays a regulatory role in adult hippocampal neurogenesis, which is of particular interest as the presence of the human ApoE isoform ApoE4 leads to significant risk for the development of late-onset Alzheimer's disease, where impaired neurogenesis has been linked with disease progression. Moreover, genetically modified mice lacking ApoE or expressing the ApoE4 human isoform have been shown to impair adult hippocampal neurogenesis under normal conditions. Here, we investigate how controlled cortical impact (CCI) injury affects dentate gyrus development using hippocampal stereotactic injections of GFP-expressing retroviruses in wild-type (WT), ApoE-deficient and humanized (ApoE3 and ApoE4) mice. Infected adult-born hippocampal neurons were morphologically analyzed once fully mature, revealing significant attenuation of dendritic complexity and spine density in mice lacking ApoE or expressing the human ApoE4 allele, which may help inform how ApoE influences neurological diseases where neurogenesis is defective.
Collapse
Affiliation(s)
- Yacine Tensaouti
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| | - Steven G. Kernie
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| |
Collapse
|
6
|
Tensaouti Y, Stephanz EP, Yu TS, Kernie SG. ApoE Regulates the Development of Adult Newborn Hippocampal Neurons. eNeuro 2018; 5:ENEURO.0155-18.2018. [PMID: 30079373 PMCID: PMC6072333 DOI: 10.1523/eneuro.0155-18.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023] Open
Abstract
Adult hippocampal neurogenesis occurs throughout life and is believed to participate in cognitive functions such as learning and memory. A number of genes that regulate adult hippocampal neurogenesis have been identified, although most of these have been implicated in progenitor proliferation and survival, but not in the development into fully differentiated neurons. Among these genes, apolipoprotein E (ApoE) is particularly compelling because the human ApoE isoform E4 is a risk factor for the development of Alzheimer's disease, where hippocampal neurogenesis is reported to be dysfunctional. To investigate the effects of ApoE and its human isoforms on adult hippocampal neurogenesis and neuronal development, retroviruses carrying a GFP-expressing vector were injected into wild-type (WT), ApoE-deficient, and human targeted replacement (ApoE3 and ApoE4) mice to infect progenitors in the dentate gyrus and analyze the morphology of fully developed GFP-expressing neurons. Analysis of these adult-born neurons revealed significant decreases in the complexity of dendritic arborizations and spine density in ApoE-deficient mice compared with WT mice, as well as in ApoE4 mice compared with ApoE3. These findings demonstrate that ApoE deficiency and the ApoE4 human isoform both impair hippocampal neurogenesis and give insight into how ApoE may influence hippocampal-related neurological diseases.
Collapse
Affiliation(s)
- Yacine Tensaouti
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Elizabeth P. Stephanz
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Steven G. Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
7
|
Salomon-Zimri S, Glat MJ, Barhum Y, Luz I, Boehm-Cagan A, Liraz O, Ben-Zur T, Offen D, Michaelson DM. Reversal of ApoE4-Driven Brain Pathology by Vascular Endothelial Growth Factor Treatment. J Alzheimers Dis 2018; 53:1443-58. [PMID: 27372644 DOI: 10.3233/jad-160182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apolipoprotein E4 (ApoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD), is associated with increased neurodegeneration and vascular impairments. Vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, has recently been shown to play a crucial role in the nervous system. The objective of this research is to examine the role of VEGF in mediating the apoE4-driven pathologies. We show that hippocampal VEGF levels are lower in apoE4 targeted replacement mice compared to the corresponding apoE3 mice. This effect was accompanied by a specific decrease in both VEGF receptor-2 and HIF1-α. We next set to examine whether upregulation of VEGF can reverse apoE4-driven pathologies, namely the accumulation of hyperphosphorylated tau (AT8) and Aβ42, and reduced levels of the pre-synaptic marker, VGluT1, and of the ApoE receptor, ApoER2. This was first performed utilizing intra-hippocampal injection of VEGF-expressing-lentivirus (LV-VEGF). This revealed that LV-VEGF treatment reversed the apoE4-driven cognitive deficits and synaptic pathologies. The levels of Aβ42 and AT8, however, were increased in apoE3 mice, masking any potential effects of this treatment on the apoE4 mice. Follow-up experiments utilizing VEGF-expressing adeno-associated-virus (AAV-VEGF), which expresses VEGF specifically under the GFAP astrocytic promoter, prevented this effects on apoE3 mice, and reversed the apoE4-related increase in Aβ42 and AT8. Taken together, these results suggest that apoE4-driven pathologies are mediated by a VEGF-dependent pathway, resulting in cognitive impairments and brain pathology. These animal model findings suggest that the VEGF system is a promising target for the treatment of apoE4 carriers in AD.
Collapse
Affiliation(s)
- Shiran Salomon-Zimri
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Micaela Johanna Glat
- Sackler School of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Barhum
- Sackler School of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ishai Luz
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Boehm-Cagan
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ori Liraz
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ben-Zur
- Sackler School of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Sackler School of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel M Michaelson
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 Agonist Reverses the ApoE4-Driven Cognitive and Brain Pathologies. J Alzheimers Dis 2018; 54:1219-1233. [PMID: 27567858 DOI: 10.3233/jad-160467] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The allele ɛ4 of apolipoprotein E (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and is therefore a promising therapeutic target. Human and animal model studies suggest that apoE4 is hypolipidated; accordingly, we have previously shown that the retinoid X receptor (RXR) agonist bexarotene upregulates ABCA1, the main apoE-lipidating protein, resulting in increased lipidation of apoE4, and the subsequent reversal of the pathological effects of apoE4, namely: accumulation of Aβ42 and hyperphosphorylated tau, as well as reduction in the levels of synaptic markers and cognitive deficits. Since the RXR system has numerous other targets, it is important to devise the means of activating ABCA1 selectively. We presently utilized CS-6253, a peptide shown to directly activate ABCA1 in vitro, and examined the extent to which it can affect the degree of lipidation of apoE4 in vivo and counteract the associated brain and behavioral pathologies. This revealed that treatment of young apoE4-targeted replacement mice with CS-6253 increases the lipidation of apoE4. This was associated with a reversal of the apoE4-driven Aβ42 accumulation and tau hyperphosphorylation in hippocampal neurons, as well as of the synaptic impairments and cognitive deficits. These findings suggest that the pathological effects of apoE4 in vivo are associated with decreased activation of ABCA1 and impaired lipidation of apoE4 and that the downstream brain-related pathology and cognitive deficits can be counteracted by treatment with the ABCA1 agonist CS-6253. These findings have important clinical ramifications and put forward ABCA1 as a promising target for apoE4-related treatment of AD.
Collapse
Affiliation(s)
- Anat Boehm-Cagan
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Bar
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ori Liraz
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - John K Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | | | - Daniel M Michaelson
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Venzi M, Tóth M, Häggkvist J, Bogstedt A, Rachalski A, Mattsson A, Frumento P, Farde L. Differential Effect of APOE Alleles on Brain Glucose Metabolism in Targeted Replacement Mice: An [ 18F]FDG-μPET Study. J Alzheimers Dis Rep 2017; 1:169-180. [PMID: 30480236 PMCID: PMC6159693 DOI: 10.3233/adr-170006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The Apolipoprotein E (ApoE) alleles ɛ2, ɛ3, and ɛ4 are known to differentially modulate cerebral glucose metabolism and the risk for Alzheimer’s disease (AD) via both amyloid-β (Aβ)-dependent and independent mechanisms. Objective: We investigated the influence of ApoE on cerebral glucose metabolism in humanized APOE Targeted Replacement (TR) mice at ages that precede the comparison of Aβ parenchymal deposits in APOE4-TR mice. Methods: Fludeoxyglucose ([18F]FDG) positron emission tomography (PET) measures were performed longitudinally in homozygous APOE-TR mice (APOE2, APOE3, APOE4; n = 10 for each group) at 3, 5, 11, and 15 months. Results were quantified using standard uptake values and analyzed statistically using a linear mixed effects model. Levels of the Aβ40 and Aβ42 peptides were quantified ex vivo using enzyme-linked immunosorbent assay (ELISA) at 15 months in the same animals. Results: APOE2 mice (versus APOE3) showed a significant increase in glucose metabolism starting at 6 months, peaking at 9 months. No evidence of hypometabolism was apparent in any region or time point for APOE4 mice, which instead displayed a hypermetabolism at 15 months. Whole brain soluble Aβ40 and Aβ42 levels were not significantly different between genotypes at 15 months. Conclusions: Introduction of human APOE alleles ɛ2 and ɛ4 is sufficient to produce alterations in brain glucose metabolism in comparison to the control allele ɛ3, without a concomitant alteration in Aβ40 and Aβ42 levels. These results suggest novel Aβ-independent metabolic phenotypes conferred by ɛ2 and ɛ4 alleles and have important implications for preclinical studies using TR-mice.
Collapse
Affiliation(s)
- Marcello Venzi
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca, PET Science Centre, Karolinska Institutet, Sweden
| | - Miklós Tóth
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bogstedt
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge, Sweden
| | - Adeline Rachalski
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca, PET Science Centre, Karolinska Institutet, Sweden
| | - Anna Mattsson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Frumento
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Biostatistics, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
10
|
Montagne A, Zhao Z, Zlokovic BV. Alzheimer's disease: A matter of blood-brain barrier dysfunction? J Exp Med 2017; 214:3151-3169. [PMID: 29061693 PMCID: PMC5679168 DOI: 10.1084/jem.20171406] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Montagne et al. examine the role of blood–brain barrier (BBB) dysfunction in Alzheimer’s neurodegeneration and how targeting the BBB can influence the course of neurological disorder in transgenic models with human APP, PSEN1 and TAU mutations, APOE4 (major genetic risk), and pericyte degeneration causing loss of BBB integrity. The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.
Collapse
Affiliation(s)
- Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
Chouinard-Watkins R, Vandal M, Léveillé P, Pinçon A, Calon F, Plourde M. Docosahexaenoic acid prevents cognitive deficits in human apolipoprotein E epsilon 4-targeted replacement mice. Neurobiol Aging 2017; 57:28-35. [PMID: 28595105 DOI: 10.1016/j.neurobiolaging.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 11/26/2022]
Abstract
At a population level, dietary consumption of fish rich in docosahexaenoic acid (DHA) is associated with prevention of cognitive decline but this association is not clear in carriers of the apolipoprotein E epsilon 4 allele (E4). Plasma and liver DHA concentrations show significant alterations in E4 carriers, in part corrected by DHA supplementation. However, whether DHA sufficiency in E4 carriers has consequences on cognition is unknown. Mice expressing human E4 or apolipoprotein E epsilon 3 allele (E3) were fed either a control diet or a diet containing DHA for 8 months and cognitive performance was tested using the object recognition test and the Barnes maze test. In E4 mice fed the control diet, impaired memory was detected and arachidonic acid concentrations were elevated in the hippocampus compared to E3 mice fed the control diet. DHA consumption prevented memory decline and restored arachidonic acid concentrations in the hippocampus of E4 mice. Our results suggest that long-term high-dose DHA intake may prevent cognitive decline in E4 carriers.
Collapse
Affiliation(s)
- Raphaël Chouinard-Watkins
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada; Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada; Department of Physiology, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Milène Vandal
- Institute of Nutrition and Functional Foods, Quebec City, Canada; Faculté de Pharmacie, Université Laval, Quebec City, Canada; Neurosciences Axis, Centre hospitalier universitaire de Québec Research Center, Quebec City, Canada
| | - Pauline Léveillé
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada; Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Anthony Pinçon
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada; Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Frédéric Calon
- Institute of Nutrition and Functional Foods, Quebec City, Canada; Faculté de Pharmacie, Université Laval, Quebec City, Canada; Neurosciences Axis, Centre hospitalier universitaire de Québec Research Center, Quebec City, Canada
| | - Mélanie Plourde
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada; Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|
12
|
DADM: The first 2 years of the Alzheimer Association's open access journal to support the research and development of novel biomarkers and diagnostic approaches. Alzheimers Dement 2016; 12:755-7. [PMID: 27370207 DOI: 10.1016/j.jalz.2016.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|