1
|
Jang H, Chun MY, Yun J, Kim JP, Kang SH, Kim HJ, Na DL, Lee EH, Shin D, Ham H, Gu Y, Kim CH, Woo SY, Seo SW. Distinct Cognitive Trajectories According to Amyloid Positivity in Non-Alzheimer Disease Dementias. Clin Nucl Med 2024; 49:1073-1078. [PMID: 39385364 DOI: 10.1097/rlu.0000000000005457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
BACKGROUND The clinical effects of β-amyloid positivity (Aβ+) on copathologies in various dementias remain relatively underexamined. Thus, the present study was conducted to investigate the prevalence and clinical effects of Aβ+ in subcortical vascular cognitive impairment (SVCI) and frontotemporal dementia (FTD). PATIENTS AND METHODS We enrolled SVCI (n = 583), FTD (n = 152), and cognitively unimpaired (CU) participants (n = 1,249) who underwent Aβ PET scans. The odds of having Aβ+ were subsequently compared among the diagnostic groups (CU, SVCI, and FTD) according to age and apolipoprotein E genotype. Additionally, a linear mixed-effects model was used to investigate the effects of Aβ+ on cognitive trajectories in SVCI and FTD. RESULTS Compared with CU, the SVCI group had a higher prevalence of Aβ+ in the 75 to 90 years age group (adjusted odds ratio, 1.97; 95% confidence interval, 1.36-2.85; P < 0.001), as well as within the apolipoprotein E ε3/ε3 group (adjusted odds ratio, 1.78; 95% confidence interval, 1.20-2.63; P = 0.001), whereas the FTD group showed no difference in Aβ+ prevalence. Aβ+ was associated with a worse cognitive trajectory in SVCI (adjusted β-coefficient = -0.6424; P < 0.001), but not in FTD. CONCLUSIONS These findings contribute to our understanding of Aβ biomarker traits in various dementias in Korea.
Collapse
Affiliation(s)
| | | | | | - Jun Pyo Kim
- From the Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Kang
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | - Eun Hye Lee
- From the Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daeun Shin
- From the Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | - Chi-Hun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Sook-Young Woo
- Biomedical Statistics Center, Data Science Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | | |
Collapse
|
2
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
3
|
Cotta Ramusino M, Massa F, Festari C, Gandolfo F, Nicolosi V, Orini S, Nobili F, Frisoni GB, Morbelli S, Garibotto V. Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review. Eur J Nucl Med Mol Imaging 2024; 51:1876-1890. [PMID: 38355740 DOI: 10.1007/s00259-024-06631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. METHODS Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. RESULTS Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. CONCLUSION Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
Collapse
Affiliation(s)
- Matteo Cotta Ramusino
- Unit of Behavior Neurology and Dementia Research Center, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy.
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Festari
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Federica Gandolfo
- Department of Geriatric Care, Orthogeriatrics and Rehabilitation, E.O. Galliera Hospital, Genoa, Italy
| | - Valentina Nicolosi
- UOC Neurologia Ospedale Magalini Di Villafranca Di Verona (VR) ULSS 9, Verona, Italy
| | - Stefania Orini
- Alzheimer's Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
4
|
Krishna G, Thangaraju Sivakumar P, Dahale AB, Subramanian S. Potential Utility of Plasma Biomarker Panels in Differential Diagnosis of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1-7. [PMID: 38229828 PMCID: PMC10789288 DOI: 10.3233/adr-230156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Blood tests are in need, in the clinical diagnosis of Alzheimer's disease (AD) as minimally invasive and less expensive alternatives to cerebrospinal fluid and neuroimaging methods. On these lines, single molecule array (Simoa) analysis of amyloid-β (Aβ42), total tau (t-tau), phospho-tau (p-tau 181), and neurofilament L (NfL) in the plasma samples of AD subjects, healthy controls (HC), and non-AD subjects was conducted. Findings from this study suggest that a panel of multiple plasma biomarkers (NfL, Aβ42, t-tau, and p-tau 181) combined with the clinical assessments could support differential diagnosis of AD and other dementias from healthy controls.
Collapse
Affiliation(s)
- Geethu Krishna
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | | | - Ajit B. Dahale
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| |
Collapse
|
5
|
Høilund-Carlsen PF, Alavi A, Barrio JR. PET/CT/MRI in Clinical Trials of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S579-S601. [PMID: 39422954 DOI: 10.3233/jad-240206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
With the advent of PET imaging in 1976, 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET became the preferred method for in vivo investigation of cerebral processes, including regional hypometabolism in Alzheimer's disease. With the emergence of amyloid-PET tracers, [11C]Pittsburgh Compound-B in 2004 and later [18F]florbetapir, [18F]florbetaben, and [18F]flumetamol, amyloid-PET has replaced FDG-PET in Alzheimer's disease anti-amyloid clinical trial treatments to ensure "amyloid positivity" as an entry criterion, and to measure treatment-related decline in cerebral amyloid deposits. MRI has been used to rule out other brain diseases and screen for 'amyloid-related imaging abnormalities' (ARIAs) of two kinds, ARIA-E and ARIA-H, characterized by edema and micro-hemorrhage, respectively, and, to a lesser extent, to measure changes in cerebral volumes. While early immunotherapy trials of Alzheimer's disease showed no clinical effects, newer monoclonal antibody trials reported decreases of 27% to 85% in the cerebral amyloid-PET signal, interpreted by the Food and Drug Administration as amyloid removal expected to result in a reduction in clinical decline. However, due to the lack of diagnostic specificity of amyloid-PET tracers, amyloid positivity cannot prevent the inclusion of non-Alzheimer's patients and even healthy subjects in these clinical trials. Moreover, the "decreasing amyloid accumulation" assessed by amyloid-PET imaging has questionable quantitative value in the presence of treatment-related brain damage (ARIAs). Therefore, future Alzheimer's clinical trials should disregard amyloid-PET imaging and focus instead on assessment of regional brain function by FDG-PET and MRI monitoring of ARIAs and brain volume loss in all trial patients.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
6
|
Carlos AF, Josephs KA. The Role of Clinical Assessment in the Era of Biomarkers. Neurotherapeutics 2023; 20:1001-1018. [PMID: 37594658 PMCID: PMC10457273 DOI: 10.1007/s13311-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Hippocratic Medicine revolved around the three main principles of patient, disease, and physician and promoted the systematic observation of patients, rational reasoning, and interpretation of collected information. Although these remain the cardinal features of clinical assessment today, Medicine has evolved from a more physician-centered to a more patient-centered approach. Clinical assessment allows physicians to encounter, observe, evaluate, and connect with patients. This establishes the patient-physician relationship and facilitates a better understanding of the patient-disease relationship, as the ultimate goal is to diagnose, prognosticate, and treat. Biomarkers are at the core of the more disease-centered approach that is currently revolutionizing Medicine as they provide insight into the underlying disease pathomechanisms and biological changes. Genetic, biochemical, radiographic, and clinical biomarkers are currently used. Here, we define a seven-level theoretical construct for the utility of biomarkers in neurodegenerative diseases. Level 1-3 biomarkers are considered supportive of clinical assessment, capable of detecting susceptibility or risk factors, non-specific neurodegeneration or dysfunction, and/or changes at the individual level which help increase clinical diagnostic accuracy and confidence. Level 4-7 biomarkers have the potential to surpass the utility of clinical assessment through detection of early disease stages and prediction of underlying pathology. In neurodegenerative diseases, biomarkers can potentiate, but cannot substitute, clinical assessment. In this current era, aside from adding to the discovery, evaluation/validation, and implementation of more biomarkers, clinical assessment remains crucial to maintaining the personal, humanistic, and sociocultural aspects of patient care. We would argue that clinical assessment is a custom that should never go obsolete.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA
| |
Collapse
|
7
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
8
|
Abstract
Brain PET adds value in diagnosing neurodegenerative disorders, especially frontotemporal dementia (FTD) due to its syndromic presentation that overlaps with a variety of other neurodegenerative and psychiatric disorders. 18F-FDG-PET has improved sensitivity and specificity compared with structural MR imaging, with optimal diagnostic results achieved when both techniques are utilized. PET demonstrates superior sensitivity compared with SPECT for FTD diagnosis that is primarily a supplement to other imaging and clinical evaluations. Tau-PET and amyloid-PET primary use in FTD diagnosis is differentiation from Alzheimer disease, although these methods are limited mainly to research settings.
Collapse
Affiliation(s)
- Joshua Ward
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA
| | - Maria Ly
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA
| | - Cyrus A. Raji
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA,Department of Neurology, Washington University in St. Louis, 4525 Scott Avenue, St. Louis, MO 63110, USA,Corresponding author. Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130.
| |
Collapse
|
9
|
Performance of the intracerebroventricularly injected streptozotocin Alzheimer's disease model in a translationally relevant, aged and experienced rat population. Sci Rep 2022; 12:20247. [PMID: 36424423 PMCID: PMC9691696 DOI: 10.1038/s41598-022-24292-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The intracerebroventricularly (icv) injected streptozotocin (STZ) induced brain state is a widely used model of sporadic Alzheimer-disease (AD). However, data have been generated in young, naive albino rats. We postulate that the translationally most relevant animal population of an AD model should be that of aged rats with substantial learning history. The objective of the study was thus to probe the model in old rats with knowledge in various cognitive domains. Long-Evans rats of 23 and 10 months age with acquired knowledge in five-choice serial reaction time task (5-CSRTT), a cooperation task, Morris water-maze (MWM) and "pot-jumping" exercise were treated with 3 × 1.5 mg/kg icv. STZ and their performance were followed for 3 months in the above and additional behavioral assays. Both STZ-treated age groups showed significant impairment in the MWM (spatial learning) and novel object recognition test (recognition memory) but not in passive avoidance and fear conditioning paradigms (fear memory). In young STZ treated rats, significant differences were also found in the 5CSRTT (attention) and pot jumping test (procedural learning) while in old rats a significant increase in hippocampal phospho-tau/tau protein ratio was observed. No significant difference was found in the cooperation (social cognition) and pairwise discrimination (visual memory) assays and hippocampal β-amyloid levels. STZ treated old animals showed impulsivity-like behavior in several tests. Our results partly coincide with partly deviate from those published on young, albino, unexperienced rats. Beside the age, strain and experience level of the animals differences can also be attributed to the increased dose of STZ, and the applied food restriction regime. The observed cognitive and non-cognitive activity pattern of icv. STZ in aged experienced rats call for more extensive studies with the STZ model to further strengthen and specify its translational validity.
Collapse
|
10
|
Koller EJ, Ibanez KR, Vo Q, McFarland KN, De La Cruz EG, Zobel L, Williams T, Xu G, Ryu D, Patel P, Giasson BI, Prokop S, Chakrabarty P. Combinatorial model of amyloid β and tau reveals synergy between amyloid deposits and tangle formation. Neuropathol Appl Neurobiol 2022; 48:e12779. [PMID: 34825397 PMCID: PMC8810717 DOI: 10.1111/nan.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
AIMS To illuminate the pathological synergy between Aβ and tau leading to emergence of neurofibrillary tangles (NFT) in Alzheimer's disease (AD), here, we have performed a comparative neuropathological study utilising three distinctive variants of human tau (WT tau, P301L mutant tau and S320F mutant tau). Previously, in non-transgenic mice, we showed that WT tau or P301L tau does not form NFT while S320F tau can spontaneously aggregate into NFT, allowing us to test the selective vulnerability of these different tau conformations to the presence of Aβ plaques. METHODS We injected recombinant AAV-tau constructs into neonatal APP transgenic TgCRND8 mice or into 3-month-old TgCRND8 mice; both cohorts were aged 3 months post injection. This allowed us to test how different tau variants synergise with soluble forms of Aβ (pre-deposit cohort) or with frank Aβ deposits (post-deposit cohort). RESULTS Expression of WT tau did not produce NFT or altered Aβ in either cohort. In the pre-deposit cohort, S320F tau induced Aβ plaque deposition, neuroinflammation and synaptic abnormalities, suggesting that early tau tangles affect the amyloid cascade. In the post-deposit cohort, contemporaneous expression of S320F tau did not exacerbate amyloid pathology, showing a dichotomy in Aβ-tau synergy based on the nature of Aβ. P301L tau produced NFT-type inclusions in the post-deposit cohort, but not in the pre-deposit cohort, indicating pathological synergy with pre-existing Aβ deposits. CONCLUSIONS Our data show that different tau mutations representing specific folding variants of tau synergise with Aβ to different extents, depending on the presence of cerebral deposits.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Kristen R Ibanez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Lillian Zobel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Tristan Williams
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Preya Patel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Langheinrich T, Kobylecki C, Jones M, Thompson JC, Snowden JS, Hinz R, Pickering-Brown S, Mann D, Roncaroli F, Herholz K, Gerhard A. Amyloid-PET-Positive Patient With bvFTD: Wrong Diagnosis, False Positive Scan, or Copathology? Neurol Clin Pract 2022; 11:e952-e955. [PMID: 34992994 DOI: 10.1212/cpj.0000000000001049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022]
Abstract
A 65-year-old man was referred to a local memory clinic with memory complaints but clinical assessment found no abnormalities. When he presented two years later to our clinic social disinhibition, reduced empathy, poor judgment and hoarding had become obvious. He showed no insight. He had ischemic heart disease and was on preventive treatment. His mother died aged 97 suffering from dementia. Neurological examination was normal. During neuropsychological examination he exhibited verbal and behavioral disinhibition, inattention, emotional blunting and unconcern. He had prominent difficulties in abstraction, set shifting and sequencing with significant impact on memory tests (table1). A clinical diagnosis of behavioral variant FTD (bvFTD) was made. MRI (figure A) showed right more than left-sided temporal atrophy, bilateral frontal and milder parietal atrophy. Fluorodeoxyglucose (FDG)-PET (figure B) demonstrated fronto-temporal hypometabolism. Metabolism in the posterior cingulate was normal. He was homozygous for the APOE ε4 allele and negative for the C9orf72 expansion and mutations in MAPT, GRN, PSEN1, and APP. [18F]-Florbetapir PET (figure C) revealed increased tracer binding in all cortical regions corresponding to a centiloid value of 74%.
Collapse
Affiliation(s)
- Tobias Langheinrich
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Christopher Kobylecki
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Matthew Jones
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Jennifer C Thompson
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Julie S Snowden
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Rainer Hinz
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Stuart Pickering-Brown
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - David Mann
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Federico Roncaroli
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Karl Herholz
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| | - Alex Gerhard
- Cerebral Function Unit (TL, MJ, JCT, JSS), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; Division of Neuroscience and Experimental Psychology (TL, CK, MJ, JCT, JSS, RH, SP-B, DM, FR, KH, AG), School of Biological Sciences, University of Manchester; Department of Neurology (CK), Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, United Kingdom; and Departments of Geriatric Medicine and Nuclear Medicine (AG), University of Duisburg-Essen, Germany
| |
Collapse
|
12
|
Dhakal S, Saha J, Wyant CE, Rangachari V. αS Oligomers Generated from Interactions with a Polyunsaturated Fatty Acid and a Dopamine Metabolite Differentially Interact with Aβ to Enhance Neurotoxicity. ACS Chem Neurosci 2021; 12:4153-4161. [PMID: 34665617 DOI: 10.1021/acschemneuro.1c00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is increasingly becoming clear that neurodegenerative diseases are not as discrete as originally thought to be but display significant overlap in histopathological and clinical presentations. For example, nearly half of the patients with Alzheimer's disease (AD) and synucleinopathies such as Parkinson's disease (PD) show symptoms and pathological features of one another. Yet, the molecular events and features that underlie such comorbidities in neurodegenerative diseases remain poorly understood. Here, inspired to uncover the molecular underpinnings of the overlap between AD and PD, we investigated the interactions between amyloid-β (Aβ) and α-synuclein (αS), aggregates of which form the major components of amyloid plaques and Lewy bodies, respectively. Specifically, we focused on αS oligomers generated from the dopamine metabolite called dihydroxyphenylacetaldehyde (DOPAL) and a polyunsaturated fatty acid docosahexaenoic acid (DHA). The two αS oligomers showed structural and conformational differences as confirmed by the disparity in size, secondary structure, susceptibility to proteinase K digestion, and cytotoxicity. More importantly, the two oligomers differentially modulated Aβ aggregation; while both inhibited Aβ aggregation to varying extents, they also induced structurally different Aβ assemblies. Furthermore, Aβ seeded with DHA-derived αS oligomers showed greater toxicity than DOPAL-derived αS oligomers in SH-SY5Y neuroblastoma cells. These results provide insights into the interactions between two amyloid proteins with empirically distinctive biophysical and cellular manifestations, enunciating a basis for potentially ubiquitous cross-amyloid interactions across many neurodegenerative diseases.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Courtney E. Wyant
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
13
|
Slegers A, Chafouleas G, Montembeault M, Bedetti C, Welch AE, Rabinovici GD, Langlais P, Gorno-Tempini ML, Brambati SM. Connected speech markers of amyloid burden in primary progressive aphasia. Cortex 2021; 145:160-168. [PMID: 34731686 DOI: 10.1016/j.cortex.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Positron emission tomography (PET) amyloid imaging has become an important part of the diagnostic workup for patients with primary progressive aphasia (PPA) and uncertain underlying pathology. Here, we employ a semi-automated analysis of connected speech (CS) with a twofold objective. First, to determine if quantitative CS features can help select primary progressive aphasia (PPA) patients with a higher probability of a positive PET amyloid imaging result. Second, to examine the relevant group differences from a clinical perspective. METHODS 117 CS samples from a well-characterised cohort of PPA patients who underwent PET amyloid imaging were collected. Expert consensus established PET amyloid status for each patient, and 40% of the sample was amyloid positive. RESULTS Leave-one-out cross-validation yields 77% classification accuracy (sensitivity: 74%, specificity: 79%). DISCUSSION Our results confirm the potential of CS analysis as a screening tool. Discriminant CS features from lexical, syntactic, pragmatic, and semantic domains are discussed.
Collapse
Affiliation(s)
- Antoine Slegers
- Department of Psychology, Université de Montréal, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
| | - Geneviève Chafouleas
- Department of Computer Science and Operational Research, Université de Montréal, Montréal, Canada
| | - Maxime Montembeault
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christophe Bedetti
- Department of Psychology, Université de Montréal, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
| | - Ariane E Welch
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Philippe Langlais
- Department of Computer Science and Operational Research, Université de Montréal, Montréal, Canada
| | - Maria L Gorno-Tempini
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Simona M Brambati
- Department of Psychology, Université de Montréal, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.
| |
Collapse
|
14
|
Whitwell JL, Tosakulwong N, Weigand SD, Graff-Radford J, Duffy JR, Clark HM, Machulda MM, Botha H, Utianski RL, Schwarz CG, Senjem ML, Strand EA, Ertekin-Taner N, Jack CR, Lowe VJ, Josephs KA. Longitudinal Amyloid-β PET in Atypical Alzheimer's Disease and Frontotemporal Lobar Degeneration. J Alzheimers Dis 2021; 74:377-389. [PMID: 32039841 DOI: 10.3233/jad-190699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rates of amyloid-β (Aβ) accumulation have been characterized across the cognitively normal to typical Alzheimer's dementia spectrum, but little is known about Aβ accumulation in atypical Alzheimer's disease (AD) and other neurodegenerative diseases, such as frontotemporal lobar degeneration (FTLD). OBJECTIVE We aimed tocharacterize longitudinal Aβ accumulation anddetermine the influence of age, apolipoprotein E (APOE) genotype, disease duration, and sexin atypical AD and FTLD. METHODS 322 patients (138 atypical AD, 184 FTLD) underwent Pittsburgh compound B PET scanning, with 73 having serialPiB-PET scans (42 atypical AD, 31 FTLD). Global Aβ standard uptake value ratios were calculated for every scan. Mixed effects models were used to assess the effect of age, APOE genotype, disease duration, and sex on baseline and change measures of Aβ. RESULTS Atypical AD showed higher baseline Aβ than FTLD. Rate of Aβ accumulation was not associated with baseline Aβ in either group. Older age was associated with greater baseline Aβ and faster rates of accumulation in FTLD. In patients under age 70, atypical AD showed faster rates of accumulation than FTLD. APOEɛ4 genotype was associated with greater baseline Aβ in FTLD but did not influence rates of accumulation. Rates of Aβ accumulation were faster in FTLD patents with time from onset-to-PET≤4 years. Female sex was associated with faster rates of accumulation in atypical AD. CONCLUSION Accumulation of Aβ is observed in atypical AD and FTLD, although different demographic factors influence accumulation in these diseases providing insight into potentially different biological mechanisms of Aβ deposition.
Collapse
Affiliation(s)
| | | | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Graff-Radford
- Department of Neurology, Division of Behavioral Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph R Duffy
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, USA
| | - Heather M Clark
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Division of Behavioral Neurology, Mayo Clinic, Rochester, MN, USA
| | - Rene L Utianski
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Edythe A Strand
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Keith A Josephs
- Department of Neurology, Division of Behavioral Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Chiu MJ, Yang SY, Chen TF, Lin CH, Yang FC, Chen WP, Zetterberg H, Blennow K. Synergistic Association between Plasma Aβ 1-42 and p-tau in Alzheimer's Disease but Not in Parkinson's Disease or Frontotemporal Dementia. ACS Chem Neurosci 2021; 12:1376-1383. [PMID: 33825443 PMCID: PMC9278807 DOI: 10.1021/acschemneuro.1c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Beta-amyloid (Aβ1–42) triggers the phosphorylation
of tau protein in Alzheimer’s disease (AD), but the relationship
between phosphorylated tau (p-tau) and Aβ1–42 in the blood is not elucidated. We investigated the association
in individuals with AD (n = 62, including amnesic
mild cognitive impairment and dementia), Parkinson’s disease
(n = 30), frontotemporal dementia (n = 25), and cognitively unimpaired controls (n =
41) using immunomagnetic reduction assays to measure plasma Aβ1–42 and p-tau181 concentrations. Correlation and regression
analyses were performed to examine the relation between plasma levels,
demographic factors, and clinical severity. Both plasma Aβ1–42 and p-tau concentrations were significantly higher
in AD and frontotemporal dementia than in the controls and Parkinson’s
disease. A significant positive association was found between plasma
p-tau and Aβ1–42 in controls (r = 0.579, P < 0.001) and AD (r = 0.699, P < 0.001) but not in frontotemporal
dementia or Parkinson’s disease. Plasma p-tau was significantly
associated with clinical severity in the AD in terms of scores of
clinical dementia rating (r = 0.288, P = 0.025) and mini-mental state examination (r =
−0.253, P = 0.049). Regression analysis showed
that plasma Aβ1–42 levels explain approximately
47.7% of the plasma p-tau levels in the AD after controlling age,
gender, and clinical severity. While in non-AD participants, the clinical
dementia rating explained about 47.5% of the plasma p-tau levels.
The disease-specific association between plasma Aβ1–42 and p-tau levels in AD implies a possible synergic effect in mechanisms
involving these two pathological proteins’ genesis.
Collapse
Affiliation(s)
- Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Psychology, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 116, Taiwan
| | - Shieh-Yueh Yang
- MagQu Co., Ltd., New Taipei City 231, Taiwan
- MagQu LLC, Surprise, Arizona 85378, United States
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 405 30, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
- UK Dementia Research Institute at UCL, London WC1E 6BT, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 405 30, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
16
|
Patel KP, Wymer DT, Bhatia VK, Duara R, Rajadhyaksha CD. Multimodality Imaging of Dementia: Clinical Importance and Role of Integrated Anatomic and Molecular Imaging. Radiographics 2021; 40:200-222. [PMID: 31917652 DOI: 10.1148/rg.2020190070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are a devastating group of disorders that can be difficult to accurately diagnose. Although these disorders are difficult to manage owing to relatively limited treatment options, an early and correct diagnosis can help with managing symptoms and coping with the later stages of these disease processes. Both anatomic structural imaging and physiologic molecular imaging have evolved to a state in which these neurodegenerative processes can be identified relatively early with high accuracy. To determine the underlying disease, the radiologist should understand the different distributions and pathophysiologic processes involved. High-spatial-resolution MRI allows detection of subtle morphologic changes, as well as potential complications and alternate diagnoses, while molecular imaging allows visualization of altered function or abnormal increased or decreased concentration of disease-specific markers. These methodologies are complementary. Appropriate workup and interpretation of diagnostic studies require an integrated, multimodality, multidisciplinary approach. This article reviews the protocols and findings at MRI and nuclear medicine imaging, including with the use of flurodeoxyglucose, amyloid tracers, and dopaminergic transporter imaging (ioflupane). The pathophysiology of some of the major neurodegenerative processes and their clinical presentations are also reviewed; this information is critical to understand how these imaging modalities work, and it aids in the integration of clinical data to help synthesize a final diagnosis. Radiologists and nuclear medicine physicians aiming to include the evaluation of neurodegenerative diseases in their practice should be aware of and familiar with the multiple imaging modalities available and how using these modalities is essential in the multidisciplinary management of patients with neurodegenerative diseases.©RSNA, 2020.
Collapse
Affiliation(s)
- Kunal P Patel
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - David T Wymer
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Vinay K Bhatia
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Ranjan Duara
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Chetan D Rajadhyaksha
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| |
Collapse
|
17
|
El-Wahsh S, Finger EC, Piguet O, Mok V, Rohrer JD, Kiernan MC, Ahmed RM. Predictors of survival in frontotemporal lobar degeneration syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324349. [PMID: 33441385 DOI: 10.1136/jnnp-2020-324349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
After decades of research, large-scale clinical trials in patients diagnosed with frontotemporal lobar degeneration (FTLD) are now underway across multiple centres worldwide. As such, refining the determinants of survival in FTLD represents a timely and important challenge. Specifically, disease outcome measures need greater clarity of definition to enable accurate tracking of therapeutic interventions in both clinical and research settings. Multiple factors potentially determine survival, including the clinical phenotype at presentation; radiological patterns of atrophy including markers on both structural and functional imaging; metabolic factors including eating behaviour and lipid metabolism; biomarkers including both serum and cerebrospinal fluid markers of underlying pathology; as well as genetic factors, including both dominantly inherited genes, but also genetic modifiers. The present review synthesises the effect of these factors on disease survival across the syndromes of frontotemporal dementia, with comparison to amyotrophic lateral sclerosis, progressive supranuclear palsy and corticobasal syndrome. A pathway is presented that outlines the utility of these varied survival factors for future clinical trials and drug development. Given the complexity of the FTLD spectrum, it seems unlikely that any single factor may predict overall survival in individual patients, further suggesting that a precision medicine approach will need to be developed in predicting disease survival in FTLD, to enhance drug target development and future clinical trial methodologies.
Collapse
Affiliation(s)
- Shadi El-Wahsh
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Elizabeth C Finger
- Department of Clinicial Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Ghirelli A, Tosakulwong N, Weigand SD, Clark HM, Ali F, Botha H, Duffy JR, Utianski RL, Buciuc M, Murray ME, Labuzan SA, Spychalla AJ, Pham NTT, Schwarz CG, Senjem ML, Machulda MM, Baker M, Rademakers R, Filippi M, Jack CR, Lowe VJ, Parisi JE, Dickson DW, Josephs KA, Whitwell JL. Sensitivity-Specificity of Tau and Amyloid β Positron Emission Tomography in Frontotemporal Lobar Degeneration. Ann Neurol 2020; 88:1009-1022. [PMID: 32869362 PMCID: PMC7861121 DOI: 10.1002/ana.25893] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine associations between tau and amyloid β (Aβ) molecular positron emission tomography (PET) and both Alzheimer-related pathology and 4-repeat tau pathology in autopsy-confirmed frontotemporal lobar degeneration (FTLD). METHODS Twenty-four patients had [18 F]-flortaucipir-PET and died with FTLD (progressive supranuclear palsy [PSP], n = 10; corticobasal degeneration [CBD], n = 10; FTLD-TDP, n = 3; and Pick disease, n = 1). All but 1 had Pittsburgh compound B (PiB)-PET. Braak staging, Aβ plaque and neurofibrillary tangle counts, and semiquantitative tau lesion scores were performed. Flortaucipir standard uptake value ratios (SUVRs) were calculated in a temporal meta region of interest (meta-ROI), entorhinal cortex and cortical/subcortical regions selected to match the tau lesion analysis. Global PiB SUVR was calculated. Autoradiography was performed in 1 PSP patient, with digital pathology used to quantify tau burden. RESULTS Nine cases (37.5%) had Aβ plaques. Global PiB SUVR correlated with Aβ plaque count, with 100% specificity and 50% sensitivity for diffuse plaques. Twenty-one (87.5%) had Braak stages I to IV. Flortaucipir correlated with neurofibrillary tangle counts in entorhinal cortex, but entorhinal and meta-ROI SUVRs were not elevated in Braak IV or primary age-related tauopathy. Flortaucipir uptake patterns differed across FTLD pathologies and could separate PSP and CBD. Flortaucipir correlated with tau lesion score in red nucleus and midbrain tegmentum across patients, but not in cortical or basal ganglia regions. Autoradiography demonstrated minimal uptake of flortaucipir, although flortaucipir correlated with quantitative tau burden across regions. INTERPRETATION Molecular PET shows expected correlations with Alzheimer-related pathology but lacks sensitivity to detect mild Alzheimer pathology in FTLD. Regional flortaucipir uptake was able to separate CBD and PSP. ANN NEUROL 2020;88:1009-1022.
Collapse
Affiliation(s)
- Alma Ghirelli
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
- Università Vita-Salute San Raffaele, Milan,
Italy
| | | | | | | | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| | | | | | - Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| | | | | | | | | | | | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN,
USA
- Department of Information Technology, Mayo Clinic,
Rochester, MN, USA
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic,
Rochester, MN, USA
| | - Matthew Baker
- Department of Health Sciences Research, Mayo Clinic,
Rochester, MN, USA
| | - Rosa Rademakers
- Department of Health Sciences Research, Mayo Clinic,
Rochester, MN, USA
| | - Massimo Filippi
- Università Vita-Salute San Raffaele, Milan,
Italy
- Neurology and Neurophysiology Units, and Neuroimaging
Research Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific
Institute, Milan, Italy
| | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN,
USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
19
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Bejanin A, La Joie R, Landeau B, Belliard S, de La Sayette V, Eustache F, Desgranges B, Chételat G. Distinct Interplay Between Atrophy and Hypometabolism in Alzheimer's Versus Semantic Dementia. Cereb Cortex 2020; 29:1889-1899. [PMID: 29668866 DOI: 10.1093/cercor/bhy069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
Multimodal neuroimaging analyses offer additional information beyond that provided by each neuroimaging modality. Thus, direct comparisons and correlations between neuroimaging modalities allow revealing disease-specific topographic relationships. Here, we compared the topographic discrepancies between atrophy and hypometabolism in two neurodegenerative diseases characterized by distinct pathological processes, namely Alzheimer's disease (AD) versus semantic dementia (SD), to unravel their specific influence on local and global brain structure-function relationships. We found that intermodality topographic discrepancies clearly distinguished the two patient groups: AD showed marked discrepancies between both alterations, with greater hypometabolism than atrophy in large posterior associative neocortical regions, while SD showed more topographic consistency between atrophy and hypometabolism across brain regions. These findings likely reflect the multiple pathologies versus the relatively unitary pathological process underlying AD versus SD respectively. Our results evidence that multimodal neuroimaging-derived indexes can provide clinically relevant information to discriminate the two diseases, and potentially reveal distinct neuropathological processes.
Collapse
Affiliation(s)
- Alexandre Bejanin
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Boulevard H. Becquerel, Caen, France
| | - Renaud La Joie
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Brigitte Landeau
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Boulevard H. Becquerel, Caen, France
| | - Serge Belliard
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Neurologie, CHU Pontchaillou, Rennes, France
| | - Vincent de La Sayette
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Neurologie, CHU de Caen, Caen, France
| | - Francis Eustache
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Béatrice Desgranges
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Gaël Chételat
- Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Boulevard H. Becquerel, Caen, France
| |
Collapse
|
21
|
Update on PET in neurodegenerative and neuroinflammatory disorders manifesting on a behavioural level: imaging for differential diagnosis. Curr Opin Neurol 2020; 32:548-556. [PMID: 31107281 DOI: 10.1097/wco.0000000000000706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To give an update on recent findings concerning the use of PET for differential diagnosis in neurodegenerative and neuroinflammatory disorders manifesting on a behavioural level. RECENT FINDINGS Although accurate differential diagnosis of dementia can be achieved by imaging disease-specific patterns of cerebral glucose metabolism with [F]fluorodeoxyglucose ([F]FDG)-PET, the diagnostic impact of [F]FDG-PET in primary psychiatric disorders is limited. Amyloid-beta PET provides an incremental value beyond [F]FDG-PET in the differential diagnosis of dementia and was proposed as a biomarker defining the so-called Alzheimer continuum. Recently developed tau-specific tracers might also aid in the diagnostic process (biological definition of Alzheimer's disease together with amyloid-beta). Surpassing the diagnostic accuracy of other techniques, such as MRI, [F]FDG-PET has also gained widespread clinical use for diagnosis and follow-up of paraneoplastic and autoimmune disorders of the central nervous system (CNS) as an important differential diagnosis for rapid progressive dementia and subacute onset of psychiatric syndromes. SUMMARY Molecular neuroimaging with PET is an established method for the differential diagnosis of neurodegenerative and autoimmune CNS disorders manifesting on a behavioural level with significant therapeutic and prognostic impact. Future prospective studies are needed to define the value of tau imaging for diagnosis and prognosis in neurodegenerative disorders.
Collapse
|
22
|
Amadoru S, Doré V, McLean CA, Hinton F, Shepherd CE, Halliday GM, Leyton CE, Yates PA, Hodges JR, Masters CL, Villemagne VL, Rowe CC. Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:22. [PMID: 32131891 PMCID: PMC7057642 DOI: 10.1186/s13195-020-00587-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Background The Centiloid scale was developed to standardise the results of beta-amyloid (Aβ) PET. We aimed to determine the Centiloid unit (CL) thresholds for CERAD sparse and moderate-density neuritic plaques, Alzheimer’s disease neuropathologic change (ADNC) score of intermediate or high probability of Alzheimer’s Disease (AD), final clinicopathological diagnosis of AD, and expert visual read of a positive Aβ PET scan. Methods Aβ PET results in CL for 49 subjects were compared with post-mortem findings, visual read, and final clinicopathological diagnosis. The Youden Index was used to determine the optimal CL thresholds from receiver operator characteristic (ROC) curves. Results A threshold of 20.1 CL (21.3 CL when corrected for time to death, AUC 0.97) yielded highest accuracy in detecting moderate or frequent plaque density while < 10 CL was optimal for excluding neuritic plaque. The threshold for ADNC intermediate or high likelihood AD was 49.4 CL (AUC 0.98). Those cases with a final clinicopathological diagnosis of AD yielded a median CL result of 87.7 (IQR ± 42.2) with 94% > 45 CL. Positive visual read agreed highly with results > 26 CL. Conclusions Centiloid values < 10 accurately reflected the absence of any neuritic plaque and > 20 CL indicated the presence of at least moderate plaque density, but approximately 50 CL or more best confirmed both neuropathological and clinicopathological diagnosis of Alzheimer’s disease. Supplementary information Supplementary information accompanies this paper at 10.1186/s13195-020-00587-5.
Collapse
Affiliation(s)
- Sanka Amadoru
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Vic. 3084, Australia.
| | - Vincent Doré
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Vic. 3084, Australia.,CSIRO Health and Biosecurity, Parkville, Victoria, 3052, Australia
| | - Catriona A McLean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Fairlie Hinton
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Claire E Shepherd
- Sydney Brain Bank, Neuroscience Research Australia and Faculty of Medicine, University of NSW, Sydney, Australia
| | - Glenda M Halliday
- Sydney Brain Bank, Neuroscience Research Australia and Faculty of Medicine, University of NSW, Sydney, Australia.,The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Cristian E Leyton
- The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Paul A Yates
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Vic. 3084, Australia
| | - John R Hodges
- The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Colin L Masters
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Vic. 3084, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Road, Heidelberg, Vic. 3084, Australia
| |
Collapse
|
23
|
Guven G, Bilgic B, Tufekcioglu Z, Erginel Unaltuna N, Hanagasi H, Gurvit H, Singleton A, Hardy J, Emre M, Gulec C, Bras J, Guerreiro R, Lohmann E. Peripheral GRN mRNA and Serum Progranulin Levels as a Potential Indicator for Both the Presence of Splice Site Mutations and Individuals at Risk for Frontotemporal Dementia. J Alzheimers Dis 2020; 67:159-167. [PMID: 30475763 DOI: 10.3233/jad-180599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progranulin (GRN) gene mutations are a major cause of frontotemporal dementia (FTD). Most mutations identified to date are null mutations, which are predicted to cause the pathology via haploinsufficiency. Decreased peripheral progranulin protein (PGRN) levels are associated with the presence of GRN null mutations and are accepted as reliable biomarkers. In this study, our aim was to test whether the presence of specific GRN splice site mutations (c.- 8+2T>G and c.708+6_9del), could be predicted by peripheral mRNA or protein GRN levels, by studying affected and asymptomatic individuals from FTD families. We also tested four missense GRN variants to assess if altered GRN levels depended on the type of mutation.Our results confirmed a reduction in both mRNA and protein PGRN levels in the splice site mutation carriers, which is consistent with previous reports for null mutations. Our results also suggested that both decreased peripheral GRN mRNA and serum PGRN levels indicate the presence of pathogenic mutations in affected individuals, and identify the asymptomatic individuals at risk, without previous knowledge of genetic status. Both inferences suggest a potential use of peripheral GRN mRNA or serum PGRN levels as biomarkers for families with FTD.
Collapse
Affiliation(s)
- Gamze Guven
- Department of Genetics, Aziz Sancar Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Başar Bilgic
- Department of Neurology, Behavioural Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Tufekcioglu
- Department of Neurology, Behavioural Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nihan Erginel Unaltuna
- Department of Genetics, Aziz Sancar Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Department of Neurology, Behavioural Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Department of Neurology, Behavioural Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Murat Emre
- Department of Neurology, Behavioural Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cagri Gulec
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jose Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,UK Dementia Research Institute at UCL (UK DRI), London, UK
| | - Rita Guerreiro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,UK Dementia Research Institute at UCL (UK DRI), London, UK
| | - Ebba Lohmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| |
Collapse
|
24
|
Li CH, Fan SP, Chen TF, Chiu MJ, Yen RF, Lin CH. Frontal variant of Alzheimer's disease with asymmetric presentation mimicking frontotemporal dementia: Case report and literature review. Brain Behav 2020; 10:e01548. [PMID: 31989779 PMCID: PMC7066333 DOI: 10.1002/brb3.1548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Frontal variant of Alzheimer's disease (fvAD) is a rare nonamnestic syndrome of Alzheimer's disease (AD). Differentiating it from behavior variant of frontotemporal dementia (bvFTD), which has implications for treatment responses and prognosis, remains a clinical challenge. METHODS Molecular neuroimaging and biofluid markers were performed for the index patient for accurate premortem diagnosis of fvAD. The clinical, neuroimaging, and biofluid characteristics of the patient were compared to those reported in previous studies of fvAD from 1999 to 2019. RESULTS A 66-year-old man presented with progressive executive dysfunction, personality and behavioral changes, and memory decline since age 59. He had no family history of neurodegenerative disorders. A stimulus-sensitive myoclonus was noted over his left upper extremity. Neuropsychological assessment revealed moderate dementia with a Mini-Mental State Exam score of 10/30 and compromised executive and memory performance. Brain imaging showed asymmetrical atrophy and hypometabolism over the right frontal and temporal areas, mimicking bvFTD. However, we observed increased tau depositions based on 18 F-labeled T807 Tau PET in these areas and diffusely increased amyloid deposition based on 11 C-labeled Pittsburgh compound B positron emission tomography (PET). Plasma biomarker measures indicated an AD profile with increased Aβ1-42 (18.66 pg/ml; cutoff: 16.42 pg/ml), Aβ1-42/Aβ1-40 ratio (0.45; cutoff: 0.30), total tau (29.78 pg/ml; cutoff: 23.89 pg/ml), and phosphorylated tau (4.11 pg/ml; cutoff: 3.08 pg/ml). These results supported a diagnosis of fvAD. CONCLUSIONS Our results with asymmetrical presentations extend current knowledge about this rare AD variant. Application of biofluid and molecular imaging markers could assist in early, accurate diagnosis.
Collapse
Affiliation(s)
- Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Hsinchu, Taiwan
| | - Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Graduate institute of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Vasquez V, Mitra J, Wang H, Hegde PM, Rao KS, Hegde ML. A multi-faceted genotoxic network of alpha-synuclein in the nucleus and mitochondria of dopaminergic neurons in Parkinson's disease: Emerging concepts and challenges. Prog Neurobiol 2020; 185:101729. [PMID: 31863801 PMCID: PMC7098698 DOI: 10.1016/j.pneurobio.2019.101729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
α-Synuclein is a hallmark amyloidogenic protein component of the Lewy bodies (LBs) present in dopaminergic neurons affected by Parkinson's disease (PD). Despite an enormous increase in emerging knowledge, the mechanism(s) of α-synuclein neurobiology and crosstalk among pathological events that are critical for PD progression remains enigmatic, creating a roadblock for effective intervention strategies. One confounding question is about the potential link between α-synuclein toxicity and genome instability in PD. We previously reported that pro-oxidant metal ions, together with reactive oxygen species (ROS), act as a "double whammy" in dopaminergic neurons by not only inducing genome damage but also inhibiting their repair. Our recent studies identified a direct role for chromatin-bound, oxidized α-synuclein in the induction of DNA strand breaks, which raised the question of a paradoxical role for α-synuclein's DNA binding in neuroprotection versus neurotoxicity. Furthermore, recent advances in our understanding of α-synuclein mediated mitochondrial dysfunction warrants revisiting the topics of α-synuclein pathophysiology in order to devise and assess the efficacy of α-synuclein-targeted interventions. In this review article, we discuss the multi-faceted neurotoxic role of α-synuclein in the nucleus and mitochondria with a particular emphasis on the role of α-synuclein in DNA damage/repair defects. We utilized a protein-DNA binding simulation to identify potential residues in α-synuclein that could mediate its binding to DNA and may be critical for its genotoxic functions. These emerging insights and paradigms may guide new drug targets and therapeutic modalities.
Collapse
Affiliation(s)
- Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA; Center for Neuroregeneration, Department of Neurosurgery, Methodist Neurological Institute, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA; Center for Neuroregeneration, Department of Neurosurgery, Methodist Neurological Institute, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA; Weill Cornell Medical College of Cornell University, New York, 10065, USA.
| |
Collapse
|
26
|
Bera G, Migliaccio R, Michelin T, Lamari F, Ferrieux S, Nogues M, Bertin H, Habert MO, Dubois B, Teichmann M, Kas A. Parietal Involvement in the Semantic Variant of Primary Progressive Aphasia with Alzheimer's Disease Cerebrospinal Fluid Profile. J Alzheimers Dis 2019; 66:271-280. [PMID: 30282352 DOI: 10.3233/jad-180087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Semantic variant of primary progressive aphasia (svPPA) is typically associated with non-Alzheimer's disease (AD) pathology. However, some anatomopathological studies have found AD lesions in those patients. We compared brain perfusion SPECT of 18 svPPA patients with cerebrospinal fluid (CSF) biomarkers indicative of non-AD pathology (svPPA-nonAD) and three svPPA patients with CSF biomarkers indicative of underlying AD (svPPA-AD). All svPPA patients had severe left temporopolar hypoperfusion. SvPPA-nonAD had additional anterior cingulate and mediofrontal hypoperfusion, whereas svPPA-AD had greater left parietal and posterior cingulate involvement. Parietal damage in svPPA constitutes a biomarker for underlying Alzheimer pathology thus refining the classification of this PPA variant.
Collapse
Affiliation(s)
- Géraldine Bera
- Service de Médecine Nucléaire, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), FrontLab, Paris CEDEX 13, France
| | - Raffaella Migliaccio
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), FrontLab, Paris CEDEX 13, France.,Département de Neurologie, Institut de la mémoire et de la maladie d'Alzheimer, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France
| | - Thibaut Michelin
- Service de Médecine Nucléaire, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France
| | - Foudil Lamari
- Laboratoire de Biochimie, AP-HP, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris CEDEX 13, France
| | - Sophie Ferrieux
- Département de Neurologie, Institut de la mémoire et de la maladie d'Alzheimer, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France
| | - Marie Nogues
- Département de Neurologie, Institut de la mémoire et de la maladie d'Alzheimer, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France
| | | | - Marie Odile Habert
- Service de Médecine Nucléaire, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France.,CATI, http://www.cati-neuroimaging.com.,Laboratoire d'Imagerie Biomédicale, INSERM U1146, Sorbonne Universités et Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Bruno Dubois
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), FrontLab, Paris CEDEX 13, France.,Département de Neurologie, Institut de la mémoire et de la maladie d'Alzheimer, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France
| | - Marc Teichmann
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), FrontLab, Paris CEDEX 13, France.,Département de Neurologie, Institut de la mémoire et de la maladie d'Alzheimer, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France
| | - Aurélie Kas
- Service de Médecine Nucléaire, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, AP-HP, Paris CEDEX 13, France.,CATI, http://www.cati-neuroimaging.com.,Laboratoire d'Imagerie Biomédicale, INSERM U1146, Sorbonne Universités et Université Pierre et Marie Curie-Paris 6, Paris, France
| |
Collapse
|
27
|
Verwey NA, Teunissen CE, Hoozemans JJM, Rozemuller AJM, Scheltens P, Pijnenburg YAL. Cerebrospinal Fluid Amyloid-β Subtypes in Confirmed Frontotemporal Lobar Degeneration Cases: A Pilot Study. J Alzheimers Dis 2019; 71:15-20. [PMID: 31356209 DOI: 10.3233/jad-190344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To investigate amyloid-β (Aβ) in frontotemporal dementia (FTD), cerebrospinal fluid (CSF) Aβ38, Aβ40, and Aβ42 in frontotemporal lobar degeneration (FTLD; N = 18 genetically and/or pathologically confirmed and N = 8 FTD with concomitant amyotrophic lateral sclerosis) were compared with Alzheimer's disease (AD; pathological or Pittsburgh-compound-B Positron-emission-tomography (PIB-PET) positive; N = 25) and controls (N = 24). For all the Aβ subtypes, group difference was seen and post-hoc analysis revealed lower levels in FTLD compared to controls (p≤0.05). Aβ42/40 ratio showed no difference between FTLD and controls; however, a difference was seen between AD versus FTLD (p < 0.01). This is an intriguing finding, suggesting a possible role of Aβ in FTLD pathogenesis.
Collapse
Affiliation(s)
- Nicolaas A Verwey
- Department of Neurology, Medisch Centrum Leeuwarden, The Netherlands
| | - Charlotte E Teunissen
- Departments of Clinical Chemistry, Amsterdam University Medical Center location VUmc, Alzheimer Center, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Departments of Pathology, Amsterdam University Medical Center location VUmc, Alzheimer Center, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Departments of Pathology, Amsterdam University Medical Center location VUmc, Alzheimer Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Departments of Neurology, Amsterdam University Medical Center location VUmc, Alzheimer Center, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Departments of Neurology, Amsterdam University Medical Center location VUmc, Alzheimer Center, Amsterdam, The Netherlands
| |
Collapse
|
28
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
29
|
Asghar M, Hinz R, Herholz K, Carter SF. Dual-phase [18F]florbetapir in frontotemporal dementia. Eur J Nucl Med Mol Imaging 2019; 46:304-311. [PMID: 30569187 PMCID: PMC6333719 DOI: 10.1007/s00259-018-4238-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The PET tracer [18F]florbetapir is a specific fibrillar amyloid-beta (Aβ) biomarker. During the late scan phase (> 40 min), it provides pathological information about Aβ status. Early scan phase (0-10 min) can provide FDG-'like' information. The current investigation tested the feasibility of using florbetapir as a dual-phase biomarker in behavioural variant frontotemporal dementia (bvFTD). METHODS Eight bvFTD patients underwent [18F]florbetapir and [18]FDG-PET scans. Additionally, ten healthy controls and ten AD patients underwent florbetapir-PET only. PET data were acquired dynamically for 60-min post-injection. The bvFTD PET data were used to define an optimal time window, representing blood flow-related pseudo-metabolism ('pseudo-FDG'), of florbetapir data that maximally correlated with the corresponding real FDG SUVR (40-60 min) in a composite neocortical FTD region. RESULTS A 2 to 5-min time window post-injection of the florbetapir-PET data provided the largest correlation (Pearson's r = 0.79, p = 0.02) to the FDG data. The pseudo-FDG images demonstrated strong internal consistency with actual FDG data and were also visually consistent with the bvFTD patients' hypometabolic profiles. The ability to identify bvFTD from blind visual rating of pseudo-FDG images was consistent with previous reports using FDG data (sensitivity = 75%, specificity = 85%). CONCLUSIONS This investigation demonstrates that early phase florbetapir uptake shows a reduction of frontal lobe perfusion in bvFTD, similar to metabolic findings with FDG. Thus, dynamic florbetapir scans can serve as a dual-phase biomarker in dementia patients to distinguish FTD from AD and cognitively normal elderly, removing the need for a separate FDG-PET scan in challenging dementia cases.
Collapse
Affiliation(s)
- Michael Asghar
- Wolfson Molecular Imaging Centre, Faculty of Medicine, Biology and Health, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, Faculty of Medicine, Biology and Health, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Faculty of Medicine, Biology and Health, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Stephen F Carter
- Wolfson Molecular Imaging Centre, Faculty of Medicine, Biology and Health, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK.
| |
Collapse
|
30
|
Forrest SL, Halliday GM, McCann H, McGeachie AB, McGinley CV, Hodges JR, Piguet O, Kwok JB, Spillantini MG, Kril JJ. Heritability in frontotemporal tauopathies. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:115-124. [PMID: 30723775 PMCID: PMC6351353 DOI: 10.1016/j.dadm.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction Exploring the degree of heritability in a large cohort of frontotemporal lobar degeneration with tau-immunopositive inclusions (FTLD-tau) and determining if different FTLD-tau subtypes are associated with stronger heritability will provide important insight into disease pathogenesis. Methods Using modified Goldman pedigree classifications, heritability was examined in pathologically proven FTLD-tau cases with dementia at any time (n = 124) from the Sydney-Cambridge collection. Results Thirteen percent of the FTLD-tau cohort have a suggested autosomal dominant pattern of inheritance, 25% have some family history, and 62% apparently sporadic. MAPT mutations were found in 9% of cases. Globular glial tauopathy was associated with the strongest heritability with 40% having a suggested autosomal dominant pattern of inheritance followed by corticobasal degeneration (19%), Pick's disease (8%), and progressive supranuclear palsy (6%). Discussion Similar to clinical frontotemporal dementia syndromes, heritability varies between pathological subtypes. Further identification of a genetic link in cases with strong heritability await discovery.
Collapse
Affiliation(s)
- Shelley L Forrest
- Faculty of Medicine and Health, Charles Perkins Centre and Discipline of Pathology, University of Sydney, Sydney, Australia
| | - Glenda M Halliday
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | - Ciara V McGinley
- Faculty of Medicine and Health, Charles Perkins Centre and Discipline of Pathology, University of Sydney, Sydney, Australia
| | - John R Hodges
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Olivier Piguet
- Neuroscience Research Australia, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Brain and Mind Centre and School of Psychology, University of Sydney, Sydney, Australia
| | - John B Kwok
- Faculty of Medicine and Health, Brain and Mind Centre and Central Clinical School, University of Sydney, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Maria G Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jillian J Kril
- Faculty of Medicine and Health, Charles Perkins Centre and Discipline of Pathology, University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
de Oliveira NKS, Almeida MRS, Pontes FMM, Barcelos MP, de Paula da Silva CHT, Rosa JMC, Cruz RAS, da Silva Hage-Melim LI. Antioxidant Effect of Flavonoids Present in Euterpe oleracea Martius and Neurodegenerative Diseases: A Literature Review. Cent Nerv Syst Agents Med Chem 2019; 19:75-99. [PMID: 31057125 DOI: 10.2174/1871524919666190502105855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Neurodegenerative diseases (NDDs) are progressive, directly affecting the central nervous system (CNS), the most common and recurrent are Alzheimer's disease (AD) and Parkinson's disease (PD). One factor frequently mentioned in the etiology of NDDs is the generation of free radicals and oxidative stress, producing cellular damages. Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been related to the low risk in the development of several diseases. Due to the antioxidant properties present in the food, a fruit that has been gaining prominence among these foods is the Euterpe oleracea Mart. (açaí), because it presents in its composition significant amounts of a subclass of the flavonoids, the anthocyanins. METHODS In the case review, the authors receive a basic background on the most common NDDs, oxidative stress and antioxidants. In addition, revisiting the various studies related to NDDs, including flavonoids and consumption of açaí. RESULTS Detailed analysis of the recently reported case studies reveal that dietary consumption of flavonoid-rich foods, such as açaí fruits, suggests the efficacy to attenuate neurodegeneration and prevent or reverse the age-dependent deterioration of cognitive function. CONCLUSION This systematic review points out that flavonoids presenting in açaí have the potential for the treatment of diseases such as PD and AD and are candidates for drugs in future clinical research. However, there is a need for in vitro and in vivo studies with polyphenol that prove and ratify the therapeutic potential of this fruit for several NDDs.
Collapse
Affiliation(s)
| | - Marcos Rafael Silva Almeida
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapa, Macapa, Brazil
| | - Franco Márcio Maciel Pontes
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapa, Macapa, Brazil
| | - Mariana Pegrucci Barcelos
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joaquín María Campos Rosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain, Instituto de Investigación, Biosanitaria ibs, Granada, Universidad de Granada, Granada, Spain
| | | | | |
Collapse
|
32
|
Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front Cell Neurosci 2018; 12:488. [PMID: 30618635 PMCID: PMC6305407 DOI: 10.3389/fncel.2018.00488] [Citation(s) in RCA: 488] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia represent a specialized population of macrophages-like cells in the central nervous system (CNS) considered immune sentinels that are capable of orchestrating a potent inflammatory response. Microglia are also involved in synaptic organization, trophic neuronal support during development, phagocytosis of apoptotic cells in the developing brain, myelin turnover, control of neuronal excitability, phagocytic debris removal as well as brain protection and repair. Microglial response is pathology dependent and affects to immune, metabolic. In this review, we will shed light on microglial activation depending on the disease context and the influence of factors such as aging, environment or cell-to-cell interaction.
Collapse
Affiliation(s)
- Sara Bachiller
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Itzia Jiménez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Agnes Paulus
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
33
|
Specific alterations in the circulating levels of the SIRT1, TLR4, and IL7 proteins in patients with dementia. Exp Gerontol 2018; 111:203-209. [DOI: 10.1016/j.exger.2018.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
|
34
|
Benussi A, Alberici A, Ferrari C, Cantoni V, Dell'Era V, Turrone R, Cotelli MS, Binetti G, Paghera B, Koch G, Padovani A, Borroni B. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:94. [PMID: 30227895 PMCID: PMC6145195 DOI: 10.1186/s13195-018-0423-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Background Cholinergic dysfunction is a key abnormality in Alzheimer disease (AD) that can be detected in vivo with transcranial magnetic stimulation (TMS) protocols. Although TMS has clearly demonstrated analytical validity, its clinical utility is still debated. In the present study, we evaluated the incremental diagnostic value, expressed in terms of diagnostic confidence of Alzheimer disease (DCAD; range 0–100), of TMS measures in addition to the routine clinical diagnostic assessment in patients evaluated for cognitive impairment as compared with validated biomarkers of amyloidosis. Methods One hundred twenty patients with dementia were included and scored in terms of DCAD in a three-step assessment based on (1) demographic, clinical, and neuropsychological evaluations (clinical work-up); (2) clinical work-up plus amyloid markers (cerebrospinal fluid or amyloid positron emission tomographic imaging); and (3) clinical work-up plus TMS intracortical connectivity measures. Two blinded neurologists were asked to review the diagnosis and diagnostic confidence at each step. Results TMS measures increased the discrimination of DCAD in two clusters (AD-like vs FTD-like) when added to the clinical and neuropsychological evaluations with levels comparable to established biomarkers of brain amyloidosis (cluster distance of 55.1 for clinical work-up alone, 76.0 for clinical work-up plus amyloid markers, 80.0 for clinical work-up plus TMS). Classification accuracy for the “gold standard” diagnosis (dichotomous - AD vs FTD - variable) evaluated in the three-step assessment, expressed as AUC, increased from 0.82 (clinical work-up alone) to 0.98 (clinical work-up plus TMS) and to 0.99 (clinical work-up plus amyloidosis markers). Conclusions TMS in addition to routine assessment in patients with dementia has a significant effect on diagnosis and diagnostic confidence that is comparable to well-established amyloidosis biomarkers. Electronic supplementary material The online version of this article (10.1186/s13195-018-0423-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Clarissa Ferrari
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Valentina Dell'Era
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rosanna Turrone
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Giuliano Binetti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Barbara Paghera
- Nuclear Medicine Unit, Spedali Civili Brescia, Brescia, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Rome, Italy.,Stroke Unit, Policlinico Tor Vergata, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
35
|
Tan RH, Yang Y, Halliday GM. Multiple neuronal pathologies are common in young patients with pathologically proven Frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 2018; 44:522-532. [DOI: 10.1111/nan.12455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- R H Tan
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | | | - G M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
36
|
Borroni B, Benussi A, Premi E, Alberici A, Marcello E, Gardoni F, Di Luca M, Padovani A. Biological, Neuroimaging, and Neurophysiological Markers in Frontotemporal Dementia: Three Faces of the Same Coin. J Alzheimers Dis 2018; 62:1113-1123. [PMID: 29171998 PMCID: PMC5870000 DOI: 10.3233/jad-170584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical, genetic, and neuropathological disorder. Clinical diagnosis and prediction of neuropathological substrates are hampered by heterogeneous pictures. Diagnostic markers are key in clinical trials to differentiate FTD from other neurodegenerative dementias. In the same view, identifying the neuropathological hallmarks of the disease is key in light of future disease-modifying treatments. The aim of the present review is to unravel the progress in biomarker discovery, discussing the potential applications of available biological, imaging, and neurophysiological markers.
Collapse
Affiliation(s)
- Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Enrico Premi
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| |
Collapse
|
37
|
Hampel H, Toschi N, Babiloni C, Baldacci F, Black KL, Bokde AL, Bun RS, Cacciola F, Cavedo E, Chiesa PA, Colliot O, Coman CM, Dubois B, Duggento A, Durrleman S, Ferretti MT, George N, Genthon R, Habert MO, Herholz K, Koronyo Y, Koronyo-Hamaoui M, Lamari F, Langevin T, Lehéricy S, Lorenceau J, Neri C, Nisticò R, Nyasse-Messene F, Ritchie C, Rossi S, Santarnecchi E, Sporns O, Verdooner SR, Vergallo A, Villain N, Younesi E, Garaci F, Lista S. Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. J Alzheimers Dis 2018; 64:S47-S105. [PMID: 29562524 PMCID: PMC6008221 DOI: 10.3233/jad-179932] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
- Institute for Research and Medical Care, IRCCS “San Raffaele Pisana”, Rome, Italy
| | - Filippo Baldacci
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - René S. Bun
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Francesco Cacciola
- Unit of Neurosurgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Enrica Cavedo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- IRCCS “San Giovanni di Dio-Fatebenefratelli”, Brescia, Italy
| | - Patrizia A. Chiesa
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Olivier Colliot
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; Department of Neuroradiology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Paris, France
| | - Cristina-Maria Coman
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Stanley Durrleman
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France
| | - Maria-Teresa Ferretti
- IREM, Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
- ZNZ Neuroscience Center Zurich, Zürich, Switzerland
| | - Nathalie George
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Remy Genthon
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Marie-Odile Habert
- Département de Médecine Nucléaire, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Karl Herholz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Foudil Lamari
- AP-HP, UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle Épinière - ICM, F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Jean Lorenceau
- Institut de la Vision, INSERM, Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, CNRS UMR7210, Paris, France
| | - Christian Neri
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, CNRS UMR 8256, Institut de Biologie Paris-Seine (IBPS), Place Jussieu, F-75005, Paris, France
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata” & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - Francis Nyasse-Messene
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Rossi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Department of Medicine, Surgery and Neurosciences, Section of Human Physiology University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| | | | - Andrea Vergallo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicolas Villain
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Casa di Cura “San Raffaele Cassino”, Cassino, Italy
| | - Simone Lista
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| |
Collapse
|