1
|
Hu J, Feng X, Yao L, Meng M, Du Y, Dong Y, Song Z, Tian M, Chen Y. A Thermally Stable Protein EPP1 of Corn Borer Ostrinia furnacalis Regulates Hemocytic Encapsulation. J Innate Immun 2021; 13:280-294. [PMID: 33789282 DOI: 10.1159/000515122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Encapsulation is a vital cellular immune reaction of host insects against endoparasitoids; however, how encapsulation is regulated is still unclear. Utilizing a cell line, SYSU-OfHem C, derived from larval hemocytes of the Asian corn borer Ostrinia furnacalis to assay for encapsulation response, an encapsulation-promoting protein (OfEPP1) was isolated from the plasma of O. furnacalis larvae. OfEPP1 is a novel secretory protein, which exists only in O. furnacalis to date. The OfEpp1 gene is intronless and encodes a protein containing several groups of short repetitive sequences and a high proportion of proline residues (18.3%). OfEPP1 is a thermally stable protein that is mainly expressed in fat bodies, and its accumulation could be induced by the injection of foreign objects (Sephadex beads). Eukaryotically expressed recombinant OfEPP1 promoted hemocytes to encapsulate Sephadex beads, while prokaryotically expressed protein did not, indicating that posttranscriptional modification affects the function of OfEPP1. The encapsulation-promoting function of OfEPP1 could be neutralized by the addition of polyclonal antibodies against OfEPP1 or disrupted by the injection of dsRNA targeting OfEpp1. Eukaryotically expressed OfEPP1 promoted the aggregation, but not spreading, of both granulocytes and plasmatocytes. Immunocytochemistry analysis showed that eukaryotically expressed OfEPP1 could bind to the surface of hemocytes. Therefore, we speculate that OfEPP1 possibly promotes hemocytic encapsulation by binding to the surface of hemocytes as a ligand to induce their aggregation. This study provides evidence clarifying the mechanism of encapsulation in insects.
Collapse
Affiliation(s)
- Jian Hu
- School of Agriculture, Sun Yat-Sen University, Guangzhou, China.,State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiangping Feng
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Li Yao
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Meng Meng
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yan Du
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yipei Dong
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhenkun Song
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mengli Tian
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yu Chen
- State key Laboratory of Biocontrol, School of life sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Variation in Parasitoid Virulence of Tetrastichus brontispae during the Targeting of Two Host Beetles. Int J Mol Sci 2021; 22:ijms22073581. [PMID: 33808261 PMCID: PMC8036858 DOI: 10.3390/ijms22073581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
In host-parasitoid interactions, antagonistic relationship drives parasitoids to vary in virulence in facing different hosts, which makes these systems excellent models for stress-induced evolutionary studies. Venom compositions varied between two strains of Tetrastichus brontispae, Tb-Bl and Tb-On. Tb-Bl targets Brontispa longissima pupae as hosts, and Tb-On is a sub-population of Tb-Bl, which has been experimentally adapted to a new host, Octodonta nipae. Aiming to examine variation in parasitoid virulence of the two strains toward two hosts, we used reciprocal injection experiments to compare effect of venom/ovarian fluids from the two strains on cytotoxicity, inhibition of immunity and fat body lysis of the two hosts. We found that Tb-Onvenom was more virulent towards plasmatocyte spreading, granulocyte function and phenoloxidase activity than Tb-Blvenom. Tb-Blovary was able to suppress encapsulation and phagocytosis in both hosts; however, Tb-Onovary inhibition targeted only B. longissima. Our data suggest that the venom undergoes rapid evolution when facing different hosts, and that the wasp has good evolutionary plasticity.
Collapse
|
3
|
Song ZK, Tian ML, Dong YP, Ren CB, Du Y, Hu J. The C-type lectin IML-10 promotes hemocytic encapsulation by enhancing aggregation of hemocytes in the Asian corn borer Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103314. [PMID: 31926881 DOI: 10.1016/j.ibmb.2020.103314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
C-type lectins participate in hemocytic encapsulation as pattern recognition receptors; however, the molecular mechanisms underlying their function remain unknown. In this study, we determined that the encapsulation-promoting function of a C-type lectin, IML-10, may be related to its interaction with hemocytes in the agricultural pest Ostrinia furnacalis. IML-10 possesses two carbohydrate-recognition domains (CRDs) containing EPN and QPD motifs with 4 and 6 conserved cysteine residues, respectively. IML-10 was found to mainly be secreted by the fat body into the larval plasma, and its expression was induced by Sephadex A-25 beads. Anti-IML-10 antibodies inhibited encapsulation-promoting function of IML-10 in the larval plasma. The encapsulation rate of Sephadex A-25 beads decreased from approximately 90%-30% when expression of IML-10 in O. furnacalis larvae was inhibited by RNAi. Moreover, the Sephadex bead-encapsulating ability of hemocytes decreased to almost zero in O. furnacalis larvae with IML-10 knocked out by CRISPR/Cas9, with IML-10 expression clearly decreasing compared to that of the control. Similar to the larval plasma, recombinant IML-10 promoted Sephadex bead encapsulation by hemocytes. Immunohistochemistry analysis showed that IML-10 was able to bind to the surface of both granulocytes and plasmatocytes but not to Sephadex beads as foreign objects. Furthermore, recombinant IML-10 promoted hemocyte aggregation but not adhesion. Therefore, we speculate that IML-10 binds to the surface of hemocytes to promote their aggregation and further improve their encapsulation capacity. These results contribute to clarifying the function of insect C-type lectins in encapsulation.
Collapse
Affiliation(s)
- Zhen-Kun Song
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Meng-Li Tian
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Yi-Pei Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Chao-Bo Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Yan Du
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Meng E, Qiao T, Tang B, Hou Y, Yu W, Chen Z. Effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on the immune response of Octodonta nipae (Coleoptera: Chrysomelidae). JOURNAL OF INSECT PHYSIOLOGY 2018; 109:125-137. [PMID: 30025717 DOI: 10.1016/j.jinsphys.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Although the importance of parasitoids as biocontrol agents has long been recognized, systematic studies of the physiological mechanisms are scarce, especially in those parasitoids that are able to successfully invade their hosts by activating host immune responses. This study explored this phenomenon by investigating the effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on host immunity. The results showed that the injection of venom alone induced higher phenoloxidase activity, while a mixture of ovarian plus venom fluids provoked higher granulocyte and plasmatocyte spreading ratios, highlighting the role that egg surface characteristics may play in successful parasitism. After thorough investigation, the presence of a hemomucin homologue was documented on the egg surface (which was named Tetrastichus brontispae adipocyte plasma membrane associated protein-like, TbAPMAP-like), while the absence of polydnaviruses, fibrous layers and virus-like filaments was confirmed. The higher encapsulation index of eggs incubated with TbAPMAP-like polyclonal antibody demonstrated the protection of the protein against encapsulation. These results contribute to our understanding of the mechanisms used by endoparasitoids to evade encapsulation during the early parasitism stage while enriching our knowledge of local active regulatory mechanisms. It is likely that this is the first study to determine the egg protective properties of TbAPMAP-like in host-parasite systems.
Collapse
Affiliation(s)
- E Meng
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting Qiao
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baozhen Tang
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Weizhen Yu
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiming Chen
- Fuzhou Entry-Exit Inspection & Quarantine Bureau of P.R.C, Fuzhou, 350002, China
| |
Collapse
|
5
|
Yin C, Li M, Hu J, Lang K, Chen Q, Liu J, Guo D, He K, Dong Y, Luo J, Song Z, Walters JR, Zhang W, Li F, Chen X. The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics 2018; 19:420. [PMID: 29848290 PMCID: PMC5977540 DOI: 10.1186/s12864-018-4783-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parasitoid wasps are well-known natural enemies of major agricultural pests and arthropod borne diseases. The parasitoid wasp Macrocentrus cingulum (Hymenoptera: Braconidae) has been widely used to control the notorious insect pests Ostrinia furnacalis (Asian Corn Borer) and O. nubilalis (European corn borer). One striking phenomenon exhibited by M. cingulum is polyembryony, the formation of multiple genetically identical offspring from a single zygote. Moreover, M. cingulum employs a passive parasitic strategy by preventing the host's immune system from recognizing the embryo as a foreign body. Thus, the embryos evade the host's immune system and are not encapsulated by host hemocytes. Unfortunately, the mechanism of both polyembryony and immune evasion remains largely unknown. RESULTS We report the genome of the parasitoid wasp M. cingulum. Comparative genomics analysis of M. cingulum and other 11 insects were conducted, finding some gene families with apparent expansion or contraction which might be linked to the parasitic behaviors or polyembryony of M. cingulum. Moreover, we present the evidence that the microRNA miR-14b regulates the polyembryonic development of M. cingulum by targeting the c-Myc Promoter-binding Protein 1 (MBP-1), histone-lysine N-methyltransferase 2E (KMT2E) and segmentation protein Runt. In addition, Hemomucin, an O-glycosylated transmembrane protein, protects the endoparasitoid wasp larvae from being encapsulated by host hemocytes. Motif and domain analysis showed that only the hemomucin in two endoparasitoids, M. cingulum and Venturia canescens, possessing the ability of passive immune evasion has intact mucin domain and similar O-glycosylation patterns, indicating that the hemomucin is a key factor modulating the immune evasion. CONCLUSIONS The microRNA miR-14b participates in the regulation of polyembryonic development, and the O-glycosylation of the mucin domain in the hemomucin confers the passive immune evasion in this wasp. These key findings provide new insights into the polyembryony and immune evasion.
Collapse
Affiliation(s)
- Chuanlin Yin
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Kun Lang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Qiming Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Jinding Liu
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dianhao Guo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yipei Dong
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Jiapeng Luo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Zhenkun Song
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - James R. Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66046 USA
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Xuexin Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
6
|
Hu J, Wang P, Zhang W. Two types of embryos with different functions are generated in the polyembryonic wasp Macrocentrus cingulum (Hymenoptera: Braconidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:677-687. [PMID: 25936922 DOI: 10.1016/j.asd.2015.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
In this study, we report that two types of embryos, normal and pseudogerm, are generated from a single egg of the polyembryonic larval endoparasitoid Macrocentrus cingulum (Braconidae). M. cingulum larvae develop in the host hemocoel, emerging from the host to pupate. After egg cleavage and embryo proliferation dozens of normal embryos and thousands of pseudogerms are generated in the host larva. The difference between normal embryos and pseudogerms is that the former develop into larvae while the latter do not. The primordium that develops in normal embryos is surrounded by an extraembryonic membrane that originates from the syncytium. Pseudogerms in contrast consist only of a syncytium containing many large nuclei and are continuously generated during embryonic development. Both pseudogerms and early embryos possess dense microvilli that function to absorb nutrients from the host. After eclosion wasp larvae produced from normal embryos feed on pseudogerms. Therefore, two types of embryos originating from the same egg serve different functions. These results contribute to our understanding of the development of polyembryonic parasitoids.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| | - Peng Wang
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital, Guangzhou, People's Republic of China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
7
|
Hu J, Feng X, Yang Z, Chen Z, Zhang W. A continuous cell line, SYSU-OfHe-C, from hemocytes of Ostrinia furnacalis possesses immune ability depending on the presence of larval plasma. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:10-20. [PMID: 24513271 DOI: 10.1016/j.dci.2014.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
A continuous cell line, SYSU-OfHe-C, from larval hemocytes of corn borer, Ostrinia furnacalis was established. With increasing passages, the cells grew increasingly faster, and approximately 45% of the cells were in division at passage 55. The culture was mainly composed of two types of cells, granulocytes and plasmatocytes, which showed different division and proliferation behaviors, but possessed similar phagocytic ability. Its spreading ability was significantly weaker than that of hemocytes from naïve larva; however, it could be promoted by larval plasma. Furthermore, its encapsulation ability was also promoted by larval plasma to form multilayer capsules on Sephadex A-25 beads. Finally, the expression of several immune-related genes was verified after provocation by microbes or Sephadex beads. These results indicated that the cell line possessed immune ability depending on the presence of plasma of naïve larvae and are beneficial to studies of insect cellular systems.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| | - Xiangping Feng
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhongguo Yang
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhuoxin Chen
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
8
|
Hu J, Xu Q, Hu S, Yu X, Liang Z, Zhang W. Hemomucin, an O-glycosylated protein on embryos of the wasp Macrocentrus cingulum that protects it against encapsulation by hemocytes of the host Ostrinia furnacalis. J Innate Immun 2014; 6:663-75. [PMID: 24776378 DOI: 10.1159/000360819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
It is unclear how endoparasites passively evade their host's immune reactions in most parasite-host systems. Hemomucin from the parasitoid wasp Macrocentrus cingulum (McHEM) is a 97-kDa transmembrane protein containing 51 potential O-glycosylation sites that can be specifically recognized by Arachis hypogaea lectin. Mchem mRNA is highly expressed in M. cingulum eggs, morulae and secondary embryos, and McHEM protein is mainly located on the extraembryonic membrane of embryos. When secondary embryos of M. cingulum were transplanted into naïve larvae of their host, Ostrinia furnacalis, the embryos proliferated to generate dozens of embryos. However, more than 90% of these embryos were encapsulated by host hemocytes after blocking with anti-McHEM serum. Similarly, following knockdown of Mchem expression using double-stranded RNA encoding Mchem (dshem), many more embryos were encapsulated by host hemocytes after transplantation compared to controls (p < 0.01). Furthermore, approximately 70% of the embryos were encapsulated by host hemocytes following digestion with O-glycosidase, which specifically digests β-gal (1→3) linkages between GalNAc and Ser/Thr of proteins. Western blotting results showed that O-glycosidase digested McHEM into a smaller product. These results indicate that McHEM may protect embryos from being encapsulated by their host and that the McHEM sugar chains play an important role.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Havard S, Pélissier C, Ponsard S, Campan EDM. Suitability of three Ostrinia species as hosts for Macrocentrus cingulum: a comparison of their encapsulation abilities. INSECT SCIENCE 2014; 21:93-102. [PMID: 23956040 DOI: 10.1111/1744-7917.12009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2012] [Indexed: 06/02/2023]
Abstract
Two cornborer species, Ostrinia furnacalis (Lepidoptera: Crambidae) and O. nubilalis, are major corn pests in Asia and Europe, respectively. In both continents, the larval endoparasitoid Macrocentrus cingulum (Hymenoptera: Braconidae) develops on another, closely related stemborer, O. scapulalis, which feeds on mugwort and other dicotyledons. M. cingulum also emerges from O. furnacalis in Asia and O. nubilalis in North America, but not from O. nubilalis in Europe. We assessed the ability of three populations of each of the three Ostrinia species to encapsulate foreign bodies of a size similar to that of a M. cingulum egg. We conclude that variations in encapsulation ability alone cannot account for the differences observed in the field between parasite emergence rates in these different host species and geographic areas.
Collapse
Affiliation(s)
- Sébastien Havard
- Université de Toulouse, INP, UPS, EcoLab, 31062, Toulouse; CNRS, EcoLab, 31062, Toulouse, France
| | | | | | | |
Collapse
|
10
|
Wang L, Fang Q, Qian C, Wang F, Yu XQ, Ye G. Inhibition of host cell encapsulation through inhibiting immune gene expression by the parasitic wasp venom calreticulin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:936-946. [PMID: 23933213 DOI: 10.1016/j.ibmb.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Parasitoid wasps inject venom into the host to protect their offspring against host immune responses. In our previous study, we identified a calreticulin (CRT) in Pteromalus puparum venom. In this study, we expressed the wild-type and the coiled-coil domain deletion mutant P. puparum calreticulins (PpCRTs) in Escherichia coli and prepared polyclonal antibody in rabbit against PpCRT. Western blot analysis showed that PpCRT protein was not only present in the venom but also in all the tissues tested. Real time PCR results indicated that PpCRT mRNA was highly expressed in the venom gland. The transcript level of PpCRT in the venom gland was peaked at 2 days post-eclosion, while the PpCRT protein in the venom was maintained at a constant level. Both recombinant wild-type and mutant PpCRT proteins could bind to the surface of P. puparum eggs. Recombinant PpCRT inhibited hemocyte spreading and cellular encapsulation of the host Pieris rapae in vitro, and the coiled-coil domain is important for the inhibitory function of PpCRT. Immunocytochemistry results showed that PpCRT entered P. rapae hemocytes, and the coiled-coil domain played a role in this process. After injection of recombinant PpCRT into P. rapae pupae, real time PCR results showed that PpCRT inhibited transcript levels of host encapsulation-related genes, including calreticulin and scavenger receptor genes. In conclusion, our results suggest that P. puparum venom protects its offspring against host cellular immune responses via its functional component PpCRT to inhibit the expression of host cellular response-related genes.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Laboratory of Sericulture, College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | | | | | | | | | | |
Collapse
|
11
|
Dorémus T, Jouan V, Urbach S, Cousserans F, Wincker P, Ravallec M, Wajnberg E, Volkoff AN. Hyposoter didymator uses a combination of passive and active strategies to escape from the Spodoptera frugiperda cellular immune response. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:500-508. [PMID: 23458339 DOI: 10.1016/j.jinsphys.2013.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 06/01/2023]
Abstract
An endoparasitic life style is widespread among Hymenoptera, and various different strategies allowing parasitoids to escape from the host encapsulation response have been reported. Species carrying polydnaviruses (PDVs), such as the ichneumonid Hyposoter didymator, generally rely on the viral symbionts to evade host immune responses. In this work, we show that H. didymator eggs can evade encapsulation by the host in the absence of calyx fluid (containing the viral particles), whereas protection of the larvae requires the presence of calyx fluid. This evasion by the eggs depends on proteins associated with the exochorion. This type of local passive strategy has been described for a few species carrying PDVs. Immune evasion by braconid eggs appears to be related to PDVs or proteins synthesized in the oviducts being associated with the egg. We report that in H. didymator, by contrast, proteins already present in the ovarian follicles are responsible for the eggs avoiding encapsulation. Mass spectrometry analysis of the egg surface proteins revealed the presence of host immune-related proteins, including one with similarities with apolipophorin-III, and also the presence of three viral proteins encoded by IVSPERs (Ichnovirus Structural Protein Encoding Regions).
Collapse
Affiliation(s)
- Tristan Dorémus
- INRA (UMR 1333), Université de Montpellier 2, Insect-Microorganisms Diversity, Genomes and Interactions, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|