1
|
Kvach AY, Kutyumov VA, Starunov VV, Ostrovsky AN. Transcriptomic Landscape of Polypide Development in the Freshwater Bryozoan Cristatella mucedo: From Budding to Degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:119-135. [PMID: 39831659 DOI: 10.1002/jez.b.23285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Colonial invertebrates consist of iterative semi-autonomous modules (usually termed zooids) whose lifespan is significantly shorter than that of the entire colony. Typically, module development begins with budding and ends with degeneration. Most studies on the developmental biology of colonial invertebrates have focused on blastogenesis, whereas the changes occurring throughout the entire zooidal life were examined only for a few tunicates. Here we provide the first description of transcriptomic changes during polypide development in the freshwater bryozoan Cristatella mucedo. For the first time for Bryozoa, we performed bulk RNA sequencing of six polypide stages in C. mucedo (buds, juvenile polypides, three mature stages, and degeneration stage) and generated a high-quality de novo reference transcriptome. Based on these data, we analyzed clusters of differentially expressed genes for enriched pathways and biological processes that may be involved in polypide budding, growth, active functioning, and degradation. Although stem cells have never been described in Bryozoa, our analysis revealed the expression of conservative "stemness" markers in developing buds and juvenile polypides. Our data also indicate that polypide degeneration is a complex regulated process involving autophagy and other types of programmed cell death. We hypothesize that the mTOR signaling pathway plays an important role in regulating the polypide lifespan.
Collapse
Affiliation(s)
- A Yu Kvach
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V A Kutyumov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Evolutionary Morphology, Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - A N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Cima F, Burighel P, Brunelli N, Ben Hamo O, Ballarin L. Phagocyte dynamics in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri: Cell senescence, segregation and clearance after efferocytosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105271. [PMID: 39306217 DOI: 10.1016/j.dci.2024.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
In the colonial ascidian Botryllus schlosseri, phagocytes are involved in the clearance of apoptotic cells and corpses during the periodical generation changes or takeovers (TOs) that assure the renewal of the colonial zooids. The persistent respiratory burst associated with efferocytosis, leads to the induction of senescence. Indeed, giant, senescent phagocytes are abundant in the colonial circulation at TO, whereas, in the other phases of the colonial blastogenetic cycle, they colonise the ventral islands (VIs), a series of mesenchymal niches located in the lateral lacunae of the mantle, on both sides of the subendostylar sinus. VI phagocytes produce reactive oxygen species probably as a consequence of the massive phagocytosis of effete cells. VIs are progressively dismantled with the progress of the blastogenetic phases and phagocytes are released in the peribranchial chamber via transepithelial expulsion to be definitely expelled with the outflowing water through the cloacal siphon.
Collapse
Affiliation(s)
- Francesca Cima
- Department of Biology, University of Padova, Padova, Italy
| | - Paolo Burighel
- Department of Biology, University of Padova, Padova, Italy
| | | | - Oshrat Ben Hamo
- Israel Oceanographic and Limnological Research Institute, Haifa, Israel
| | | |
Collapse
|
3
|
Ballarin L, Peronato A, Malagoli D, Macor P, Sacchi S, Sales G, Franchi N. Evidence of a Lytic Pathway in an Invertebrate Complement System: Identification of a Terminal Complement Complex Gene in a Colonial Tunicate and Its Evolutionary Implications. Int J Mol Sci 2024; 25:11995. [PMID: 39596065 PMCID: PMC11593599 DOI: 10.3390/ijms252211995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The complement system is a pivotal component of innate immunity, extensively studied in vertebrates but also present in invertebrates. This study explores the existence of a terminal complement pathway in the tunicate Botryllus schlosseri, aiming to understand the evolutionary integration of innate and adaptive immunity. Through transcriptome analysis, we identified a novel transcript, BsITCCP, encoding a protein with both MACPF and LDLa domains-a structure resembling that of vertebrate C9 but with a simpler organization. Phylogenetic reconstruction positions BsITCCP between invertebrate perforins and vertebrate terminal complement proteins, suggesting an evolutionary link. Localization studies confirmed that bsitccp is transcribed in cytotoxic morula cells (MCs), which are also responsible for producing other complement components like BsC3, BsMBL, BsMASP, and BsBf. Functional assays demonstrated that bsitccp transcription is upregulated in response to nonself challenges and is dependent on BsC3 activity; inhibition of BsC3 led to a significant reduction in BsITCCP expression. Electron microscopy revealed that MCs form contact with perforated yeast cells, indicating a possible mechanism of cell lysis similar to the immunological synapse observed in vertebrates. These findings suggest that a C3-governed lytic complement pathway exists in B. schlosseri, challenging the assumption that a C5 ortholog is necessary for such a pathway. This work enhances our understanding of the evolution of the complement system and suggests that invertebrates possess a terminal complement complex capable of mediating cell lysis, regulated by C3. Future studies will focus on confirming the pore-forming ability of BsITCCP and its role in the immunological synapse.
Collapse
Affiliation(s)
- Loriano Ballarin
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.B.)
| | - Anna Peronato
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.B.)
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy (S.S.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy (S.S.)
| | - Gabriele Sales
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.B.)
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy (S.S.)
| |
Collapse
|
4
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Qarri A, Hamar J. Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604351. [PMID: 39211222 PMCID: PMC11360967 DOI: 10.1101/2024.07.19.604351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The colonial ascidian Boytryllus schlosseri is an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that the B. schlosseri expressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins in B. schlosseri field and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics during B. schlosseri development and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. NEW & NOTEWORTHY Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri , a widely distributed, highly invasive, and economically important biofouling ascidian and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins physiologically sequesters reactive oxygen species, which enhances fitness and resilience during environmental change.
Collapse
|
5
|
Krasovec G, Renaud C, Quéinnec É, Sasakura Y, Chambon JP. Extrinsic apoptosis participates to tail regression during the metamorphosis of the chordate Ciona. Sci Rep 2024; 14:5729. [PMID: 38459045 PMCID: PMC10923776 DOI: 10.1038/s41598-023-48411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/26/2023] [Indexed: 03/10/2024] Open
Abstract
Apoptosis is a regulated cell death ubiquitous in animals defined by morphological features depending on caspases. Two regulation pathways are described, currently named the intrinsic and the extrinsic apoptosis. While intrinsic apoptosis is well studied and considered ancestral among metazoans, extrinsic apoptosis is poorly studied outside mammals. Here, we address extrinsic apoptosis in the urochordates Ciona, belonging to the sister group of vertebrates. During metamorphosis, Ciona larvae undergo a tail regression depending on tissue contraction, migration and apoptosis. Apoptosis begin at the tail tip and propagates towards the trunk as a polarized wave. We identified Ci-caspase 8/10 by phylogenetic analysis as homolog to vertebrate caspases 8 and 10 that are the specific initiator of extrinsic apoptosis. We detected Ci-caspase 8/10 expression in Ciona larvae, especially at the tail tip. We showed that chemical inhibition of Ci-caspase 8/10 leads to a delay of tail regression, and Ci-caspase 8/10 loss of function induced an incomplete tail regression. The specificity between apoptotic pathways and initiator caspase suggests that extrinsic apoptosis regulates cell death during the tail regression. Our study presents rare in vivo work on extrinsic apoptosis outside mammals, and contribute to the discussion on its evolutionary history in animals.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France.
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| | - Cécile Renaud
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
6
|
Qarri A, Rinkevich B. Transient impacts of UV-B irradiation on whole body regeneration in a colonial urochordate. Dev Biol 2023; 503:83-94. [PMID: 37619713 DOI: 10.1016/j.ydbio.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Within the chordates, only some colonial ascidians experience whole body regeneration (WBR), where amputated small colonial fragments containing blood-vessels have the capability to regenerate the entire functional adult zooid within 1-3 weeks. Studying WBR in small colonial fragments taken at different blastogenic stages (the weekly developmental process characteristic to botryllid ascidians) from the ascidian Botrylloides leachii, about half of the fragments were able to complete regeneration (cWBR) three weeks following separation, about half were still in uncomplete, running regeneration (rWBR), and only a small percentage died. cWBR significantly increased in fragments that originated from a late blastogenic stage compared to an early stage. Most B. leachii populations reside in shallow waters, under variable daily natural UV irradiation, and it is of interest to elucidate irradiation effects on development and regeneration. Here, we show that UV-B irradiation resulted in enhanced mortality, with abnormal morphological changes in surviving fragments, yet with non-significant cWBR vs. rWBRs. Further, UV-B irradiation influenced the proportion of blood cells (morula cells, hemoblasts) and of multinucleated cells, a new WBR-associated cell type. At 24-h post-amputation we observed enhanced expression of β-catenin (a signaling pathway that plays indispensable roles in cell renewal and regeneration), H3 and PCNA in all cell types of non-irradiated as compared to irradiated fragments. These elevated levels were considerably reduced 9-days later. Since WBR is a highly complex phenomenon, the employment of specific experimental conditions, as UV-B irradiation, alongside blastogenesis (the weekly developmental process), elucidates undisclosed facets of this unique biological occurrence such as transient expression of signature genes.
Collapse
Affiliation(s)
- Andy Qarri
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, POB 9753, Tel Shikmona 3109701, Haifa, Israel; The Department of Maritime Civilizations, Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 3498838, Israel.
| | - Baruch Rinkevich
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, POB 9753, Tel Shikmona 3109701, Haifa, Israel
| |
Collapse
|
7
|
Drago L, Perin G, Santovito G, Ballarin L. The stress granule component TIAR during the non-embryonic development of the colonial ascidian Botryllusschlosseri. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108999. [PMID: 37604264 DOI: 10.1016/j.fsi.2023.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
TIAR, is a nucleic acid binding protein involved in the formation of cytoplasmic foci known as stress granules, in which mRNA translation is temporarily blocked in response to stressful conditions. TIAR is used as stress granules molecular marker in vertebrates, but it is not so deeply investigated in invertebrates, especially in marine organisms. In the present work, we investigated the role of TIAR in the colonial ascidian Botryllus schlosseri during its non-embryonic development, featured by the cyclical renewal of the colony. We studied the extent of transcription during the colonial blastogenetic cycle and the location of the transcripts in Botryllus tissues. Using an anti-TIAR antibody specific for ascidians, by immunocytochemistry and immunohistochemistry assays, we studied the expression of the protein in haemolymph cells and body tissues and by transmission electron microscopy we identified its subcellular localisation. The anti-TIAR antibody was also microinjected in the circulatory system of B. schlosseri to study its effect on non-embryonic development and immune responses. Results indicate a delay in the progression of the blastogenetic cycle in injected colonies. In addition, degranulation of circulating cytotoxic cells and phagocytosis by professional, circulating phagocytes, two fundamental processes of innate immunity, were also negatively affected.
Collapse
Affiliation(s)
- Laura Drago
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Giulia Perin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Gianfranco Santovito
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
8
|
Anselmi C, Caicci F, Bocci T, Guidetti M, Priori A, Giusti V, Levy T, Raveh T, Voskoboynik A, Weissman IL, Manni L. Multiple Forms of Neural Cell Death in the Cyclical Brain Degeneration of A Colonial Chordate. Cells 2023; 12:1041. [PMID: 37048113 PMCID: PMC10093557 DOI: 10.3390/cells12071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Human neuronal loss occurs through different cellular mechanisms, mainly studied in vitro. Here, we characterized neuronal death in B. schlosseri, a marine colonial tunicate that shares substantial genomic homology with mammals and has a life history in which controlled neurodegeneration happens simultaneously in the brains of adult zooids during a cyclical phase named takeover. Using an ultrastructural and transcriptomic approach, we described neuronal death forms in adult zooids before and during the takeover phase while comparing adult zooids in takeover with their buds where brains are refining their structure. At takeover, we found in neurons clear morphologic signs of apoptosis (i.e., chromatin condensation, lobed nuclei), necrosis (swollen cytoplasm) and autophagy (autophagosomes, autolysosomes and degradative multilamellar bodies). These results were confirmed by transcriptomic analyses that highlighted the specific genes involved in these cell death pathways. Moreover, the presence of tubulovesicular structures in the brain medulla alongside the over-expression of prion disease genes in late cycle suggested a cell-to-cell, prion-like propagation recalling the conformational disorders typical of some human neurodegenerative diseases. We suggest that improved understanding of how neuronal alterations are regulated in the repeated degeneration-regeneration program of B. schlosseri may yield mechanistic insights relevant to the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy
| | - Tommaso Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Matteo Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Alberto Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | | | - Tom Levy
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ayelet Voskoboynik
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucia Manni
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
New Data on the Rhamnose-Binding Lectin from the Colonial Ascidian Botryllus schlosseri: Subcellular Distribution, Secretion Mode and Effects on the Cyclical Generation Change. Mar Drugs 2023; 21:md21030171. [PMID: 36976220 PMCID: PMC10053368 DOI: 10.3390/md21030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Botryllus schlosseri in a cosmopolitan ascidian, considered a reliable model organism for studies on the evolution of the immune system. B. schlosseri rhamnose-binding lectin (BsRBL) is synthesised by circulating phagocytes and behaves as an opsonin by interacting with foreign cells or particles and acting as a molecular bridge between them and the phagocyte surface. Although described in previous works, many aspects and roles of this lectin in Botryllus biology remain unknown. Here, we studied the subcellular distribution of BsRBL during immune responses using light and electron microscopy. In addition, following the hints from extant data, suggesting a possible role of BsRBL in the process of cyclical generation change or takeover, we investigated the effects of interfering with this protein, by injecting a specific antibody in the colonial circulation, starting one day before the generation change. Results confirm the requirement of the lectin for a correct generation change and open new queries on the roles of this lectin in Botryllus biology.
Collapse
|
10
|
Anselmi C, Kowarsky M, Gasparini F, Caicci F, Ishizuka KJ, Palmeri KJ, Raveh T, Sinha R, Neff N, Quake SR, Weissman IL, Voskoboynik A, Manni L. Two distinct evolutionary conserved neural degeneration pathways characterized in a colonial chordate. Proc Natl Acad Sci U S A 2022; 119:e2203032119. [PMID: 35858312 PMCID: PMC9303981 DOI: 10.1073/pnas.2203032119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
Colonial tunicates are marine organisms that possess multiple brains simultaneously during their colonial phase. While the cyclical processes of neurogenesis and neurodegeneration characterizing their life cycle have been documented previously, the cellular and molecular changes associated with such processes and their relationship with variation in brain morphology and individual (zooid) behavior throughout adult life remains unknown. Here, we introduce Botryllus schlosseri as an invertebrate model for neurogenesis, neural degeneration, and evolutionary neuroscience. Our analysis reveals that during the weekly colony budding (i.e., asexual reproduction), prior to programmed cell death and removal by phagocytes, decreases in the number of neurons in the adult brain are associated with reduced behavioral response and significant change in the expression of 73 mammalian homologous genes associated with neurodegenerative disease. Similarly, when comparing young colonies (1 to 2 y of age) to those reared in a laboratory for ∼20 y, we found that older colonies contained significantly fewer neurons and exhibited reduced behavioral response alongside changes in the expression of 148 such genes (35 of which were differentially expressed across both timescales). The existence of two distinct yet apparently related neurodegenerative pathways represents a novel platform to study the gene products governing the relationship between aging, neural regeneration and degeneration, and loss of nervous system function. Indeed, as a member of an evolutionary clade considered to be a sister group of vertebrates, this organism may be a fundamental resource in understanding how evolution has shaped these processes across phylogeny and obtaining mechanistic insight.
Collapse
Affiliation(s)
- Chiara Anselmi
- Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Mark Kowarsky
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, 35131, Padova, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, 35131, Padova, Italy
| | | | - Karla J. Palmeri
- Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco CA 94158
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco CA 94158
- Departments of Applied Physics and Bioengineering, Stanford University, Stanford, CA 94305
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco CA 94158
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
| | - Ayelet Voskoboynik
- Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco CA 94158
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, 35131, Padova, Italy
| |
Collapse
|
11
|
Searching for the Origin and the Differentiation of Haemocytes before and after Larval Settlement of the Colonial Ascidian Botryllus schlosseri: An Ultrastructural Viewpoint. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The colonial ascidian Botryllus schlosseri possesses an innate immunity, which plays fundamental roles in its survival, adaptability, worldwide spread and ecological success. Three lines of differentiation pathways of circulating haemocytes are known to be present in the haemolymph, starting from undifferentiated haemoblasts: (i) the phagocytic line (hyaline amoebocytes and macrophage-like cells), (ii) the cytotoxic line (granular amoebocytes and morula cells) and (iii) the storage cell line (pigment cells and nephrocytes). Many questions remain about their origin, and thus, observations during various stages of development were undertaken in this study. Haemocytes were detected beginning from the early tailbud embryo stage. Haemoblasts were always present and morula cells were the first differentiated haemocytes detected. In both the next stage, just before hatching, and the swimming tadpole larva stage, hyaline amoebocytes and pigment cells were also recognisable. Some morula cells containing active phenoloxidase migrated from the haemolymph into the tunic after having crossed the epidermis, and this behaviour could be related to the preparation of a defensive function for spatial competition. During larval metamorphosis, macrophage-like cells appeared with their phagosomes positive to acid phosphatase activity and containing apoptotic cells from tail tissue degeneration. After metamorphosis, in the filter-feeding oozoid stage, nephrocytes involved in nitrogen catabolism finally appeared. In both the subendostylar sinus and the peripheral blind-sac vessels (ampullae), clusters of haemoblasts were recognisable, some of which showed incipient specialisations, considering the hypothesis of the presence of putative niches of haemolymph stem cells.
Collapse
|
12
|
A P, G M, M T, L B, N F. Characterisation and functional role of a novel C1qDC protein from a colonial ascidian. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104077. [PMID: 33905781 DOI: 10.1016/j.dci.2021.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As an invertebrate, the compound ascidian Botryllus schlosseri faces nonself only with innate immunity. In this species, we already identified the key components of the lectin and alternative complement activation pathways. In the present work, by mining the transcriptome, we identified a single transcript codifying for a protein, member of the C1q-domain-containing protein family, with a signal peptide followed by two globular C1q (gC1q) domains. It shares a similar domain organisation with C1q/TNF-related proteins 4, the only vertebrate protein family with two gC1q domains. Our gC1q domain-containing protein, called BsC1qDC, is actively transcribed by immunocytes. The transcription is modulated during the Botryllus blastogenetic cycle and is upregulated following the injection of Bacillus clausii cells in the circulation. Furthermore, the injection of bsc1qdc iRNA in the vasculature results in decreased transcription of the gene and a significant impairment of phagocytosis and degranulation, suggesting the involvement of this molecule in immune responses.
Collapse
Affiliation(s)
- Peronato A
- Department of Biology, University of Padova, Italy
| | - Minervini G
- Department of Biomedical Sciences, University of Padova, Italy
| | - Tabarelli M
- PhD School in Agricultural Science and Biotechnology, University of Udine, Italy
| | - Ballarin L
- Department of Biology, University of Padova, Italy.
| | - Franchi N
- Department of Biology, University of Padova, Italy
| |
Collapse
|
13
|
Peronato A, Franchi N, Loriano B. BsTLR1: A new member of the TLR family of recognition proteins from the colonial ascidian Botryllus schlosseri. FISH & SHELLFISH IMMUNOLOGY 2020; 106:967-974. [PMID: 32919053 DOI: 10.1016/j.fsi.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Toll-like receptors (TLRs) represent a well-known family of conserved pattern recognition receptors the importance of which, in non-self recognition, was demonstrated in both vertebrates and invertebrates. Tunicates represent the vertebrate sister group and, as invertebrates, they rely only on innate immunity for their defence. As regards TLRs, two transcripts have been described and characterised in the solitary species Ciona intestinalis, referred to as CiTLR1 and CiTLR2. Using the Ciona TLR nucleotide sequences, we mined our available transcriptome of the colonial ascidian Botryllus schlosseri looking for similar sequences. We were able to identify a sequence, with similarity to CiTLR2 and, through in silico transduction and subsequent sequence analysis, we studied the domain content of the putative protein. The sequence, called BsTLR1, has a TIR and a transmembrane domain, four LLR and two LRR-CT domains. It is actively transcribed by both phagocytes and morula cells, the two circulating immunocyte types. In addition, we analysed bstlr1 transcription in vivo and in vitro, in different phases of the Botryllus blastogenetic cycle and under various experimental conditions. Our data show that there is a change in gene expression and mRNA location, according to the blastogenetic phase. Furthermore, we used a commercial antibody raised against the ectodomain of hTLR5 to study the possible functional role of Botryllus TLR(s). We observed that anti-hTLR5 significantly decreased in vitro phagocytosis and morula cell degranulation, two typical responses to the recognition of nonself. Collectively, our data add new information on the mechanisms of nonself recognition in a colonial ascidian.
Collapse
|
14
|
Peronato A, Drago L, Rothbächer U, Macor P, Ballarin L, Franchi N. Complement system and phagocytosis in a colonial protochordate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103530. [PMID: 31669308 DOI: 10.1016/j.dci.2019.103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
In the present work, we investigated, in the colonial ascidian Botryllus schlosseri, the role of complement C3 (BsC3) in phagocytosis. We studied the modulation of BsC3 transcription in the course of the colonial blastogenetic cycle, with particular reference to the takeover, when apoptotic cells in the tissues of old zooids are cleared by circulating phagocytes. In situ hybridisation with BsC3 riboprobes labelled only morula cells, the most abundant haemocytes. Anti-hC3 antibody recognised morula cells and also phagocytes when haemocytes were previously incubated with zymosan. The inhibition of C3 activation prevented the labelling of phagocytes. In phagocytosis assays with haemocytes from colonies injected with anti-hC3 antibody or bsc3 iRNA, the capability to ingest target cells was significantly (p < 0.001) reduced. Therefore, our results strongly support a key role of BsC3 in phagocytosis and open to new investigations on the nature of the receptors of the products of BsC3 activation.
Collapse
Affiliation(s)
| | - Laura Drago
- Department of Biology, University of Padova, Italy
| | | | - Paolo Macor
- Department of Life Sciences, University of Trieste, Italy
| | | | | |
Collapse
|
15
|
Rodriguez D, Nourizadeh S, De Tomaso AW. The biology of the extracorporeal vasculature of Botryllus schlosseri. Dev Biol 2019; 448:309-319. [PMID: 30760410 DOI: 10.1016/j.ydbio.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shane Nourizadeh
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
16
|
Manni L, Anselmi C, Burighel P, Martini M, Gasparini F. Differentiation and Induced Sensorial Alteration of the Coronal Organ in the Asexual Life of a Tunicate. Integr Comp Biol 2019; 58:317-328. [PMID: 29873734 DOI: 10.1093/icb/icy044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tunicates, the sister group of vertebrates, possess a mechanoreceptor organ, the coronal organ, which is considered the best candidate to address the controversial issue of vertebrate hair cell evolution. The organ, located at the base of the oral siphon, controls the flow of seawater into the organism and can drive the "squirting" reaction, i.e., the rapid body muscle contraction used to eject dangerous particles during filtration. Coronal sensory cells are secondary mechanoreceptors and share morphological, developmental, and molecular traits with vertebrate hair cells. In the colonial tunicate Botryllus schlosseri, we described coronal organ differentiation during asexual development. Moreover, we showed that the ototoxic aminoglycoside gentamicin caused morphological and mechanosensorial impairment in coronal cells. Finally, fenofibrate had a strong protective effect on coronal sensory cells due to gentamicin-induced toxicity, as occurs in vertebrate hair cells. Our results reinforce the hypothesis of homology between vertebrate hair cells and tunicate coronal sensory cells.
Collapse
Affiliation(s)
- Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Chiara Anselmi
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Paolo Burighel
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Margherita Martini
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
17
|
Rosner A, Kravchenko O, Rinkevich B. IAP genes partake weighty roles in the astogeny and whole body regeneration in the colonial urochordate Botryllus schlosseri. Dev Biol 2018; 448:320-341. [PMID: 30385275 DOI: 10.1016/j.ydbio.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Inhibitors of Apoptosis Protein (IAP) genes participate in processes like apoptosis, proliferation, innate immunity, inflammation, cell motility, differentiation and in malignancies. Here we reveal 25 IAP genes in the tunicate Botryllus schlosseri's genome and their functions in two developmental biology phenomena, a new mode of whole body regeneration (WBR) induced by budectomy, and blastogenesis, the four-staged cycles of botryllid ascidian astogeny. IAP genes that were specifically upregulated during these developmental phenomena were identified, and protein expression patterns of one of these genes, IAP28, were followed. Most of the IAP genes upregulation recorded at blastogenetic stages C/D was in concert with the upregulation at 100 μM H2O2 apoptotic-induced treatment and in parallel to expressions of AIF1, Bax, Mcl1, caspase 2 and two orthologues of caspase 7. Wnt agonist altered the takeover duration along with reduced IAP expressions, and displacement of IAP28+ phagocytes. WBR was initiated solely at blastogenetic stage D, where zooidal absorption was attenuated and regeneration centers were formed either from remains of partially absorbed zooids or from deformed ampullae. Subsequently, bud-bearing zooids developed, in concert with a massive IAP28-dependent phagocytic wave that eliminated the old zooids, then proceeded with the establishment of morphologically normal-looking colonies. IAP4, IAP14 and IAP28 were also involved in WBR, in conjunction with the expression of the pro-survival PI3K-Akt pathway. IAPs function deregulation by Smac mimetics resulted in severe morphological damages, attenuation in bud growth and differentiation, and in destabilization of colonial coordination. Longtime knockdown of IAP functions prior to the budectomy, resulted in colonial death.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel.
| | - Olha Kravchenko
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel; National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony, Str 17, building 2, of 45, Kyiv 03041, Ukraine
| | - Baruch Rinkevich
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel
| |
Collapse
|
18
|
Ben-Hamo O, Rosner A, Rabinowitz C, Oren M, Rinkevich B. Coupling astogenic aging in the colonial tunicate Botryllus schlosseri with the stress protein mortalin. Dev Biol 2017; 433:33-46. [PMID: 29128264 DOI: 10.1016/j.ydbio.2017.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Botryllus schlosseri, a colonial marine invertebrate, exhibits three generations of short-lived astogenic modules that continuously grow and die throughout the colony's entire lifespan, within week-long repeating budding cycles (blastogenesis), each consisting of four stages (A-D). At stage D, aging is followed by the complete absorption of adult modules (zooids) via a massive apoptotic process. Here we studied in Botryllus the protein mortalin (HSP70s member), a molecule largely known for its association with aging and proliferation. In-situ hybridization and qPCR assays reveal that mortalin follows the cyclic pattern of blastogenesis. Colonies at blastogenic stage D display the highest mortalin levels, and young modules exhibit elevated mortalin levels compared to old modules. Manipulations of mortalin with the specific allosteric inhibitor MKT-077 has led to a decrease in the modules' growth rate and the development of abnormal somatic/germinal morphologies (primarily in vasculature and in organs such as the endostyle, the stomach and gonads). We therefore propose that mortalin plays a significant role in the astogeny and aging of colonial modules in B. schlosseri, by direct involvement in the regulation of blastogenesis.
Collapse
Affiliation(s)
- Oshrat Ben-Hamo
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel.
| | - Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel
| | - Claudette Rabinowitz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel
| | - Matan Oren
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel; Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| |
Collapse
|
19
|
Cima F, Peronato A, Ballarin L. The haemocytes of the colonial aplousobranch ascidian Diplosoma listerianum: Structural, cytochemical and functional analyses. Micron 2017; 102:51-64. [PMID: 28889072 DOI: 10.1016/j.micron.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
Diplosoma listerianum is a colonial aplousobranch ascidian of the family Didemnidae that is native to the northeast Atlantic and exhibits a cosmopolitan distribution in temperate waters. It lacks a shared colonial circulation crossing the tunic, and the zooids are connected only by the common tunic. In the present study, the haemocytes of this ascidian were analysed via light and electron microscopy. Their phagocytic and enzymatic activities, staining and immunostaining properties, and lectin affinity were examined with various classical methods reconsidered and modified for small marine invertebrates. Eight morphotypes were identified in reference to corresponding cell types described in other ascidians: undifferentiated cells (haemoblasts), storage cells for nitrogenous catabolites (nephrocytes) and immunocytes. The immunocytes are involved in immune responses, acting as (1) phagocytes, rich in hydrolases and involved in the clearance of both foreign particles and effete cells (hyaline amoebocytes and macrophage-like cells); (2) cytotoxic cells, able to degranulate and induce cytotoxicity through the release of the enzyme phenoloxidase after an immune stimulus (granular amoebocytes and morula cells); and (3) basophilic cells with an affinity for ConA and NPA that contain heparin and histamine and that show sensitivity to the compound 48/80, promoting their degranulation (mast cell-like granulocytes). In addition, a particular cell type showing exceptional development of the Golgi apparatus and large vacuoles containing a filamentous material has been recognised (spherule cell), for which a role in tunic repair and fibrogenesis has been hypothesised.
Collapse
|
20
|
Franchi N, Ballarin L. Immunity in Protochordates: The Tunicate Perspective. Front Immunol 2017; 8:674. [PMID: 28649250 PMCID: PMC5465252 DOI: 10.3389/fimmu.2017.00674] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position explains the increasing interest toward tunicate immunobiology. They are filter-feeding organisms, and this greatly influences their defense strategies. The majority of the studies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier against pathogens and parasites. In addition, the oral siphon and the pharynx represent two major, highly vascularized, immune organs, where circulating hemocytes can sense non-self material and trigger immune responses that, usually, lead to inflammation and phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxidase (PO)-containing cells in the infected area, where they degranulate as a consequence of non-self recognition and release cytokines, complement factors, and the enzyme PO. The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polymerize to melanin, and reactive oxygen species, which induce oxidative stress. Both the alternative and the lectin pathways of complement activation converge to activate C3: C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of foreign materials, respectively. The interaction of circulating professional phagocytes with potentially pathogenic foreign material can be direct or mediated by opsonins, either complement dependent or complement independent. Together with cytotoxic cells, phagocytes are active in the encapsulation of large materials. Cells involved in immune responses, collectively called immunocytes, represent a large fraction of hemocytes, and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition receptors and opsonizing agents. In addition, variable region-containing chitin-binding proteins, identified in the solitary ascidian Ciona intestinalis, control the settlement and colonization of bacteria in the gut.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
21
|
Franchi N, Ballin F, Ballarin L. Protection from Oxidative Stress in Immunocytes of the Colonial Ascidian Botryllus schlosseri: Transcript Characterization and Expression Studies. THE BIOLOGICAL BULLETIN 2017; 232:45-57. [PMID: 28445096 DOI: 10.1086/691694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Botryllus schlosseri is a cosmopolitan colonial ascidian that undergoes cyclical generation changes, or take-overs, during which adult zooids are resorbed and replaced by their buds. At take-over, adult tissues undergo diffuse apoptosis and effete cells are massively ingested by circulating phagocytes, with a consequent increase in oxygen consumption and in production of reactive oxygen species (ROS). The latter are responsible for the death of phagocytes involved in the clearance of apoptotic cells and corpses by phagocytosis-induced apoptosis. However, the majority of phagocytes and hemocytes do not die, even if they experience oxidative stress. This fact suggests the presence of detoxification mechanisms assuring their protection. To test this assumption, we searched for transcripts of genes involved in detoxification in the transcriptome of B. schlosseri. We identified and characterized transcripts for Cu/Zn superoxide dismutase (SOD), γ-glutamyl-cysteine ligase modulatory subunit (GCLM), glutathione synthase (GS), and two glutathione peroxidases (i.e., GPx3 and GPx5), all involved in protection from ROS. We also carried out a phylogenetic analysis of the putative amino acid sequences, confirming their similarity to their vertebrate counterparts, and studied the location of their mRNAs by in situ hybridization on hemocyte monolayers. We also analyzed gene transcription during the colonial blastogenetic cycle, which is the interval of time between one take-over and the next, by qRT-PCR. In addition, we investigated the effects of cadmium (Cd), an inducer of oxidative stress, on gene transcription. Our results indicated that i) antioxidant gene expression is modulated in the course of the blastogenetic cycle and upon exposure to Cd, and ii) hemocytes synthesize both enzymatic and nonenzymatic antioxidants, in line with the idea that they represent a major detoxification system for ascidians.
Collapse
Key Words
- AG, adenine guanine (splicing consensus signal)
- ATG, start signal
- CDS, coding sequences
- Cd, cadmium
- Cu/Zn SOD, Cu-Zn superoxide dismutase
- EST, expressed sequence tag
- FSW, filtered seawater
- GCL, γ-glutamyl-cysteine ligase
- GCLC, catalytic subunit of γ-glutamyl-cysteine ligase
- GCLM, modulatory subunit of γ-glutamyl-cysteine ligase
- GPx, glutathione peroxidase
- GS, glutathione synthase
- GSH, glutathione
- GSSG, oxidized glutathione
- GT, guanine timine (splicing consensus signal)
- ISH, in situ hybridization
- MC, mid-cycle
- ME, minimum evolution
- ML, maximum likelihood
- MP, maximum parsimony
- NADPH, nicotinamide adenine dinucleotide phosphate
- NJ, neighbor-joining
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PO, phenoloxidase
- RACE, rapid amplification of the cDNA ends
- ROS: reactive oxygen species
- SEC, selenocysteine
- SECIS, selenocysteine insertion sequence
- SOD, superoxide dismutase
- SODb, type B SOD
- TAG, stop codon
- TGA, thymine, guanine, and adenine nucleotides (stop codon)
- TO, take-over
- UPGMA, unweighted pair group with arithmetic mean
- UTR, untranslated region
Collapse
|
22
|
Franchi N, Ballin F, Manni L, Schiavon F, Basso G, Ballarin L. Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:8-16. [PMID: 27106705 DOI: 10.1016/j.dci.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Colonies of the marine, filter-feeding ascidian Botryllus schlosseri undergo cyclical generation changes or takeovers. These events are characterised by the progressive resorption of adult zooids and their replacement by their buds that grow to adult size, open their siphons and start filtering. During the take-over, tissues of adult zooids undergo extensive apoptosis; circulating, spreading phagocytes enter the effete tissues, ingest dying cells acquiring a giant size and a round morphology. Then, phagocytes re-enter the circulation where they represent a considerable fraction (more than 20%) of circulating haemocytes. In this study, we evidence that most of these circulating phagocytes show morphological and biochemical signs of apoptosis. Accordingly, these phagocytes express transcripts of orthologues of the apoptosis-related genes Bax, AIF1 and PARP1. Electron microscopy shows that giant phagocytes contain apoptotic phagocytes inside their own phagocytic vacuole. The transcript of the orthologues of the anti-apoptotic gene IAP7 was detected only in spreading phagocytes, mostly abundant in phases far from the take-over. Therefore, the presented data suggest that, at take-over, phagocytes undergo phagocytosis-induced apoptosis (PIA). In mammals, PIA is assumed to be a process assuring the killing and the complete elimination of microbes, by promoting the disposal of terminally differentiated phagocytes and the resolution of infection. In B. schlosseri, PIA assumes a so far undescribed role, being required for the control of asexual development and colony homeostasis.
Collapse
Affiliation(s)
| | | | - Lucia Manni
- Department of Biology, University of Padova, Italy.
| | | | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| | | |
Collapse
|
23
|
Campagna D, Gasparini F, Franchi N, Vitulo N, Ballin F, Manni L, Valle G, Ballarin L. Transcriptome dynamics in the asexual cycle of the chordate Botryllus schlosseri. BMC Genomics 2016; 17:275. [PMID: 27038623 PMCID: PMC4818882 DOI: 10.1186/s12864-016-2598-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Background We performed an analysis of the transcriptome during the blastogenesis of the chordate Botryllus schlosseri, focusing in particular on genes involved in cell death by apoptosis. The tunicate B. schlosseri is an ascidian forming colonies characterized by the coexistence of three blastogenetic generations: filter-feeding adults, buds on adults, and budlets on buds. Cyclically, adult tissues undergo apoptosis and are progressively resorbed and replaced by their buds originated by asexual reproduction. This is a feature of colonial tunicates, the only known chordates that can reproduce asexually. Results Thanks to a newly developed web-based platform (http://botryllus.cribi.unipd.it), we compared the transcriptomes of the mid-cycle, the pre-take-over, and the take-over phases of the colonial blastogenetic cycle. The platform is equipped with programs for comparative analysis and allows to select the statistical stringency. We enriched the genome annotation with 11,337 new genes; 581 transcripts were resolved as complete open reading frames, translated in silico into amino acid sequences and then aligned onto the non-redundant sequence database. Significant differentially expressed genes were classified within the gene ontology categories. Among them, we recognized genes involved in apoptosis activation, de-activation, and regulation. Conclusions With the current work, we contributed to the improvement of the first released B. schlosseri genome assembly and offer an overview of the transcriptome changes during the blastogenetic cycle, showing up- and down-regulated genes. These results are important for the comprehension of the events underlying colony growth and regression, cell proliferation, colony homeostasis, and competition among different generations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2598-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Davide Campagna
- CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Fabio Gasparini
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Nicola Franchi
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Nicola Vitulo
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesca Ballin
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| |
Collapse
|
24
|
Gasparini F, Skobo T, Benato F, Gioacchini G, Voskoboynik A, Carnevali O, Manni L, Dalla Valle L. Characterization of Ambra1 in asexual cycle of a non-vertebrate chordate, the colonial tunicate Botryllus schlosseri, and phylogenetic analysis of the protein group in Bilateria. Mol Phylogenet Evol 2015; 95:46-57. [PMID: 26611831 DOI: 10.1016/j.ympev.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022]
Abstract
Ambra1 is a positive regulator of autophagy, a lysosome-mediated degradative process involved both in physiological and pathological conditions. Nowadays, Ambra1 has been characterized only in mammals and zebrafish. Through bioinformatics searches and targeted cloning, we report the identification of the complete Ambra1 transcript in a non-vertebrate chordate, the tunicate Botryllus schlosseri. Tunicata is the sister group of Vertebrata and the only chordate group possessing species that reproduce also by blastogenesis (asexual reproduction). B. schlosseri Ambra1 deduced amino acid sequence is shorter than vertebrate homologues but still contains the typical WD40 domain. qPCR analyses revealed that the level of B. schlosseri Ambra1 transcription is temporally regulated along the colonial blastogenetic cycle. By means of similarity searches we identified Wdr5 and Katnb1 as proteins evolutionarily associated to Ambra1. Phylogenetic analyses on Bilateria indicate that: (i) Wdr5 is the most related to Ambra1, so that they may derive from an ancestral gene, (ii) Ambra1 forms a group of ancient genes evolved before the radiation of the taxon, (iii) these orthologous Ambra1 share the two conserved WD40/YVTN repeat-like-containing domains, and (iv) they are characterized by ancient duplications of WD40 repeats within the N-terminal domain.
Collapse
Affiliation(s)
- Fabio Gasparini
- Department of Biology, University of Padova, Via Ugo Bassi 35131 Padova, Italy.
| | - Tatjana Skobo
- Department of Biology, University of Padova, Via Ugo Bassi 35131 Padova, Italy.
| | - Francesca Benato
- Department of Biology, University of Padova, Via Ugo Bassi 35131 Padova, Italy.
| | - Giorgia Gioacchini
- Department of Life Science and Environment, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Ayelet Voskoboynik
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 265 Campus Drive, 3rd Floor, CA 94305, Stanford, United States.
| | - Oliana Carnevali
- Department of Life Science and Environment, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Lucia Manni
- Department of Biology, University of Padova, Via Ugo Bassi 35131 Padova, Italy.
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Via Ugo Bassi 35131 Padova, Italy.
| |
Collapse
|
25
|
Voskoboynik A, Weissman IL. Botryllus schlosseri, an emerging model for the study of aging, stem cells, and mechanisms of regeneration. INVERTEBR REPROD DEV 2014; 59:33-38. [PMID: 26136618 PMCID: PMC4464096 DOI: 10.1080/07924259.2014.944673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
Abstract
The decline of tissue regenerative potential with the loss of stem cell function is a hallmark of mammalian aging. We study Botryllus schlosseri, a colonial chordate which exhibits robust stem cell-mediated regeneration capacities throughout life. Larvae, derived by sexual reproduction and chordate development, metamorphose to clonal founders that undergo weekly formation of new individuals by budding from stem cells. Individuals are transient structures which die through massive apoptosis, and successive buds mature to replicate an entire new body. As a result, their stem cells, which are the only self-renewing cells in a tissue, are the only cells which remain through the entire life of the genotype and retain the effects of time. During aging, a significant decrease in the colonies' regenerative potential is observed and both sexual and asexual reproductions will eventually halt. When a parent colony is experimentally separated into a number of clonal replicates, they frequently undergo senescence simultaneously, suggesting a heritable factor that determines lifespan in these colonies. The availability of the recently published B. schlosseri genome coupled with its unique life cycle features promotes the use of this model organism for the study of the evolution of aging, stem cells, and mechanisms of regeneration.
Collapse
Affiliation(s)
- Ayelet Voskoboynik
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, and Hopkins Marine Station , Stanford , CA , USA
| | - Irving L Weissman
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, and Hopkins Marine Station , Stanford , CA , USA ; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
26
|
Manni L, Gasparini F, Hotta K, Ishizuka KJ, Ricci L, Tiozzo S, Voskoboynik A, Dauga D. Ontology for the asexual development and anatomy of the colonial chordate Botryllus schlosseri. PLoS One 2014; 9:e96434. [PMID: 24789338 PMCID: PMC4006837 DOI: 10.1371/journal.pone.0096434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.
Collapse
Affiliation(s)
- Lucia Manni
- Department of Biology, University of Padova, Padova, Italy
| | | | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kouhoku-ku, Yokohama, Japan
| | - Katherine J. Ishizuka
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | - Lorenzo Ricci
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Stefano Tiozzo
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | | |
Collapse
|
27
|
Braden BP, Taketa DA, Pierce JD, Kassmer S, Lewis DD, De Tomaso AW. Vascular regeneration in a basal chordate is due to the presence of immobile, bi-functional cells. PLoS One 2014; 9:e95460. [PMID: 24736432 PMCID: PMC3988187 DOI: 10.1371/journal.pone.0095460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
The source of tissue turnover during homeostasis or following injury is usually due to proliferation of a small number of resident, lineage-restricted stem cells that have the ability to amplify and differentiate into mature cell types. We are studying vascular regeneration in a chordate model organism, Botryllus schlosseri, and have previously found that following surgical ablation of the extracorporeal vasculature, new tissue will regenerate in a VEGF-dependent process within 48 hrs. Here we use a novel vascular cell lineage tracing methodology to assess regeneration in parabiosed individuals and demonstrate that the source of regenerated vasculature is due to the proliferation of pre-existing vascular resident cells and not a mobile progenitor. We also show that these cells are bi-potential, and can reversibly adopt two fates, that of the newly forming vessels or the differentiated vascular tissue at the terminus of the vasculature, known as ampullae. In addition, we show that pre-existing vascular resident cells differentially express progenitor and differentiated cell markers including the Botryllus homologs of CD133, VEGFR-2, and Cadherin during the regenerative process.
Collapse
Affiliation(s)
- Brian P. Braden
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daryl A. Taketa
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - James D. Pierce
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Susannah Kassmer
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daniel D. Lewis
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
28
|
Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D, Koh W, Passarelli B, Fan HC, Mantalas GL, Palmeri KJ, Ishizuka KJ, Gissi C, Griggio F, Ben-Shlomo R, Corey DM, Penland L, White RA, Weissman IL, Quake SR. The genome sequence of the colonial chordate, Botryllus schlosseri. eLife 2013; 2:e00569. [PMID: 23840927 PMCID: PMC3699833 DOI: 10.7554/elife.00569] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022] Open
Abstract
Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI:http://dx.doi.org/10.7554/eLife.00569.001.
Collapse
Affiliation(s)
- Ayelet Voskoboynik
- Department of Pathology , Institute for Stem Cell Biology and Regenerative Medicine, Stanford University , Stanford , United States ; Hopkins Marine Station , Stanford University , Pacific Grove , United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Insight on signal transduction pathways involved in phagocytosis in the colonial ascidian Botryllus schlosseri. J Invertebr Pathol 2013; 112:260-6. [DOI: 10.1016/j.jip.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/05/2012] [Accepted: 12/08/2012] [Indexed: 11/20/2022]
|
30
|
Lauzon RJ, Brown C, Kerr L, Tiozzo S. Phagocyte dynamics in a highly regenerative urochordate: insights into development and host defense. Dev Biol 2012; 374:357-73. [PMID: 23174529 DOI: 10.1016/j.ydbio.2012.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/31/2012] [Accepted: 11/09/2012] [Indexed: 11/29/2022]
Abstract
Phagocytosis is a cellular process by which particles and foreign bodies are engulfed and degraded by specialized cells. It is functionally involved in nutrient acquisition and represents a fundamental mechanism used to remove pathogens and cellular debris. In the marine invertebrate chordate Botryllus schlosseri, cell corpse engulfment by phagocytic cells is the recurrent mechanism of programmed cell clearance and a critical process for the successful execution of asexual regeneration and colony homeostasis. In the present study, we have utilized a naturally occurring process of vascular parabiosis coupled with intravascular microinjection of fluorescent bioparticles and liposomes as tools to investigate the dynamics of phagocyte behavior in real-time during cyclical body regeneration. Our findings indicate that B. schlosseri harbors two major populations of post-mitotic phagocytes, which display distinct phagocytic specificity and homing patterns: a static population that lines the circulatory system epithelia, and a mobile population that continuously recirculates throughout the colony and exhibits a characteristic homing pattern within mesenchymal niches called ventral islands (VI). We observed that a significant proportion of ventral island phagocytes (VIP) die and are engulfed by other VIP following takeover. Selective impairment of VIP activity curtailed zooid resorption and asexual development. Together, these findings strongly suggest that ventral islands are sites of phagocyte homing and turnover. As botryllid ascidians represent invertebrate chordates capable of whole body regeneration in a non-embryonic scenario, we discuss the pivotal role that phagocytosis plays in homeostasis, tissue renewal and host defense.
Collapse
Affiliation(s)
- Robert J Lauzon
- Department of Biological Sciences, Union College, Science and Engineering Center, Schenectady, NY 12308, USA.
| | | | | | | |
Collapse
|
31
|
Immune roles of a rhamnose-binding lectin in the colonial ascidian Botryllus schlosseri. Immunobiology 2011; 216:725-36. [DOI: 10.1016/j.imbio.2010.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/29/2010] [Indexed: 02/07/2023]
|
32
|
Ballarin L, Del Favero M, Manni L. Relationships among hemocytes, tunic cells, germ cells, and accessory cells in the colonial ascidian Botryllus schlosseri. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:284-95. [PMID: 21246708 DOI: 10.1002/jez.b.21400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/09/2010] [Accepted: 12/15/2010] [Indexed: 11/07/2022]
Abstract
Monoclonal antibodies were raised against hemocytes of the colonial ascidian Botryllus schlosseri as possible tools to study hemocyte differentiation. In this species, blood cells are involved in various biological functions, such as immunosurveillance, encapsulation of foreign bodies, metal accumulation, and allorecognition. The latter process drives the fusion or rejection of contacting colonies, according to whether they do or do not share at least one allele at the fusibility/histocompatibility (Fu/HC) locus. Hemocytes take part in the rejection reaction, which suggests that they express molecules, coded by the Fu/HC locus, on their surface. A homozygous colony at the Fu/HC locus was used to produce the antibodies, which were screened by immunocytochemistry on hemocyte monolayers, immunohistochemistry on colony paraffin sections, and immunoblotting on colony homogenates. Here, we report on one of the obtained antibodies (1D8), which recognized a surface epitope on hemocytes of the donor colony and other colonies, apparently in a manner specific to the Fu/HC genotype. It also labeled a single 80-kDa band in colony homogenates. In addition, it specifically recognized tunic cells, germ cells, and their accessory cells. These results strengthen the assumption of a close relationship among these types of cells and blood cells, and suggest a close relationship among the above cells, probably deriving from undifferentiated blood cells.
Collapse
|