1
|
Shen CH, Tang M, Li XF, Zhu L, Li W, Deng P, Zhai Q, Wu G, Yan XH. Evaluation of reference genes for quantitative expression analysis in Mylabris sibirica (Coleoptera, Meloidae). Front Physiol 2024; 15:1345836. [PMID: 38651047 PMCID: PMC11033477 DOI: 10.3389/fphys.2024.1345836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Mylabris sibirica is a hypermetamorphic insect whose adults feed on oilseed rape. However, due to a shortage of effective and appropriate endogenous references, studies on molecular functional genes in Mylabris sibirica, have been tremendously limited. In this study, ten internal reference genes (ACT, ARF1, AK, EF1α, GAPDH, α-TUB, RPL6, RPL13, RPS3 and RPS18) were tested and assessed under four selected treatments including adult ages, adult tissues, temperatures, and sex by RT-qPCR based on five methods (Ct value, geNorm, NormFinder, BestKeeper and RefFinder). Our findings showed that RPL6 and RPL13 were the most optimal internal reference gene combination for gene expression during various adult ages and under diverse temperatures; The combination of RPL6 and RPS18 was recommended to test gene transcription levels under different adult tissues. AK and RPL6 were the best reference genes in male and female adults. RPL6 and RPL13 were the most appropriate reference gene pair to estimate gene expression levels under four different tested backgrounds. The relative transcript levels of a uridine diphosphate (UDP)-N-acetylglucosamine-pyrophosphorylase (MsUAP), varied greatly according to normalization with the two most- and least-suited reference genes. This study will lay the basis for further molecular physiology and biochemistry studies in M. sibirica, such as development, reproduction, sex differentiation, cold and heat resistance.
Collapse
Affiliation(s)
- Chen-Hui Shen
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Science/Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Min Tang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Science/Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiao-Fei Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Science/Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Li Zhu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Science/Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wei Li
- Northern Propagation Experiment Station, Center for Science and Technology Dissemination and Industrial Development, Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, China
| | - Pan Deng
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qing Zhai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Science/Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiao-Hong Yan
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Science/Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
2
|
Alesci A, Di Paola D, Fumia A, Marino S, D’Iglio C, Famulari S, Albano M, Spanò N, Lauriano ER. Internal Defense System of Mytilus galloprovincialis (Lamarck, 1819): Ecological Role of Hemocytes as Biomarkers for Thiacloprid and Benzo[a]Pyrene Pollution. TOXICS 2023; 11:731. [PMID: 37755742 PMCID: PMC10537264 DOI: 10.3390/toxics11090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
The introduction of pollutants, such as thiacloprid and benzo[a]pyrene (B[a]P), into the waters of urbanized coastal and estuarine areas through fossil fuel spills, domestic and industrial waste discharges, atmospheric inputs, and continental runoff poses a major threat to the fauna and flora of the aquatic environment and can have a significant impact on the internal defense system of invertebrates such as mussels. Using monoclonal and polyclonal anti-Toll-like receptor 2 (TLR2) and anti-inducible nitric oxide synthetase (iNOS) antibodies for the first time, this work aims to examine hemocytes in the mantle and gills of M. galloprovincialis as biomarkers of thiacloprid and B[a]P pollution and analyze their potential synergistic effect. To pursue this objective, samples were exposed to the pollutants, both individually and simultaneously. Subsequently, oxidative stress biomarkers were evaluated by enzymatic analysis, while tissue changes and the number of hemocytes in the different contaminated groups were assessed via histomorphological and immunohistochemical analyses. Our findings revealed that in comparison to a single exposure, the two pollutants together significantly elevated oxidative stress. Moreover, our data may potentially enhance knowledge on how TLR2 and iNOS work as part of the internal defense system of bivalves. This would help in creating new technologies and strategies, such as biosensors, that are more suitable for managing water pollution, and garnering new details on the condition of the marine ecosystem.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy;
| | - Sebastian Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Claudio D’Iglio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Sergio Famulari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Nunziacarla Spanò
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| |
Collapse
|
3
|
The immunogenic maturation of goat monocyte-derived dendritic cells and upregulation of toll-like receptors by five antigens of Haemonchus contortus in-vitro. Res Vet Sci 2021; 136:247-258. [PMID: 33721712 DOI: 10.1016/j.rvsc.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.
Collapse
|
4
|
Jiang B, Hu L, Zhang X, Zhang H, Zhang F, Chen L, Li Z, Zhao X, Xue C, Jiang X. Uncovering proteome variations of differently heat-treated sea cucumber (Apostichopus japonicus) by label-free mass spectrometry. Food Chem 2020; 344:128575. [PMID: 33191009 DOI: 10.1016/j.foodchem.2020.128575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
The effects of heat treatment on the proteome of Apostichopus japonicus have been evaluated using label-free quantitative proteomics by ultrahigh performance liquid chromatography-quadrupole/time of flight (UHPLC-Q/TOF) mass spectrometry with sequential window acquisition of all the theoretical fragment ion (SWATH) acquisition mode. Chemometric tools are integrated to reveal proteomic changes by mining the protein quantitation data from fresh and differently heat-treated samples. SWATH allows the quantitation of 548 proteins, of which 24 proteins are significantly sensitive to heat treatment and 13 proteins vary significantly responding to different heat procedures (boiling, steaming, and microwave heating), and 5 of them are sharing proteins. Gene ontology (GO) annotation of the differentiating proteins highlights most of them are relevant to molecular functions. The results can be favorable to evaluate the effects of heat treatment on the nutrition and function of processed sea cucumbers and facilitate the selection of an optimal thermal treatment.
Collapse
Affiliation(s)
- Bingxue Jiang
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Lingping Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaomei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, PR China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, PR China.
| | - Feng Zhang
- Chinese Academy of Inspection & Quarantine, Beijing 100176, PR China
| | - Lipin Chen
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhaojie Li
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Xue Zhao
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Changhu Xue
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, PR China
| | - Xiaoming Jiang
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
5
|
Zhao Y, Kang X, Shang D, Ning J, Ding H, Zhai Y, Sheng X. Hyperaccumulation of cadmium by scallop Chlamys farreri revealed by comparative transcriptome analysis. Biometals 2020; 33:397-413. [PMID: 33011849 DOI: 10.1007/s10534-020-00257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023]
Abstract
Cadmium (Cd) is a hazardous environmental contaminant, which has a serious effect on the ecosystem, food safety and human health. Scallop could accumulate high concentration of Cd from the environment and has been regarded as a Cd hyper-accumulator. In this work, we investigated the antioxidative defense, detoxification and transport of Cd in the kidneys of scallops by transcriptome analysis. A total of 598 differentially expressed genes including 387 up-regulated and 211 down-regulated ones were obtained during Cd exposure, and 46 up-regulated and 260 down-regulated ones were obtained during depuration. Cadmium exposure could cause oxidative stress in the kidneys, which was particularly shown in the pathways involved in proteasome and oxidative phosphorylation. The mRNA expression of 5 metallothionein (MT) genes were overexpressed under Cd exposure and significantly decreased during Cd depuration, which played a vital role in Cd chelation and detoxification. The expression of divalent metal transporter (DMT) genes were down-regulated insignificantly during accumulation and depuration of Cd, which suggested that the DMT played little roles in Cd transport in scallops. A positive relationship in the expression of the zinc transporter (ZIP6 and ZIP1) genes with Cd exposure and depuration was observed, which confirmed its important role for Cd uptake in the kidneys of scallops. 26S proteasome activities and MT expression were Cd-dependent. This study supplied the important reference on the hyperaccumulation of Cd by scallops and identified some effective bioindicators for the environmental risk assessment.
Collapse
Affiliation(s)
- Yanfang Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Xuming Kang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China. .,Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China.
| | - Derong Shang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Jinsong Ning
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China. .,Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China.
| | - Haiyan Ding
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Yuxiu Zhai
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Xiaofeng Sheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
6
|
Yang Z, Huang X, Liao H, Zhang Z, Sun F, Kou S, Bao Z. Structure and functional analysis reveal an important regulated role of arginine kinase in Patinopecten yessoensis under low pH stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105452. [PMID: 32092594 DOI: 10.1016/j.aquatox.2020.105452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Arginine kinase (AK), an important member of the phosphokinase family, is involved in temporal and spatial adenosine triphosphate (ATP) buffering systems. AK plays an important role in physiological function and metabolic regulations, in particular tissues with high and fluctuating energy demands. In present study, four AK genes were firstly identified from Yesso scallop (Patinopecten yessoensis) genome, respectively named PyAK1-4. PyAKs have highly conserved structures with a six-exon/five-exon structure, except for PyAK3. PyAK3 contains an unusual two-domain structure and a "bridge intron" between the two domains, which may originate from gene duplication and subsequent fusion. Phylogenetic analysis showed that all PyAKs belonged to an AK supercluster together with other AK proteins from Mollusca, Platyhelminthes, Arthropoda, and Nematode. A transcriptome database demonstrated that PyAK3 and PyAK4 were the main functional executors with high expression level during larval development and in adult tissues, while PyAK1 and PyAK2 were expressed at a low level. Furthermore, both PyAK2 and PyAK3 showed notably high expression in the male gonad, and PyAK4 was broadly expressed in almost all tissues with the highest level in striated muscle, indicating a tissue-specific expression pattern of PyAKs. In addition, quantitative real-time PCR results demonstrated that the expression of PyAK2, PyAK3 and PyAK4 were significantly upregulated in response to pH stress, especially in an extremely acidifying condition (pH 6.5), revealing the possible involvement of PyAKs in energetic homeostasis during environmental changes. Collectively, a comprehensive analysis of PyAKs was conducted in P. yessoensis. The diversity of PyAKs and their specific expression patterns promote a better understanding of energy metabolism in the growth, development and environmental response of P. yessoensis.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanhua Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sihua Kou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Tang YY, Liu QN, Wang C, Yang TT, Tang BP, Zhou CL, Dai LS. Proteomic analysis of differentially expressed proteins in the lipopolysaccharide-stimulated hepatopancreas of the freshwater crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:318-323. [PMID: 31972292 DOI: 10.1016/j.fsi.2020.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Procambarus clarkii is one of the most important aquatic invertebrates in China and has high commercial value. However, aquaculture has suffered great economic loss due to outbreaks of infectious diseases in P. clarkii. To identify red swamp crayfish related proteins involved in the response to bacterial infection, we analysed immune-related proteins following lipopolysaccharide (LPS) stimulation by quantitative proteomics. The proteome of the hepatopancreas of P. clarkii challenged with LPS and phosphate-buffered saline was analysed to evaluate the immune response. Based on liquid chromatography coupled with tandem mass spectrometry, 16 upregulated and 29 downregulated proteins were identified. A Gene Ontology analysis demonstrated 5 biological process, 11 cellular component, and 6 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the identified proteins were mainly involved in metabolism, phagosome, and ribosome. Real-time quantitative reverse transcription-PCR revealed that eight immune-related genes were upregulated after LPS stimulation compared to the control. Taken together, the data enhance our understanding of the immune response of crayfish to LPS.
Collapse
Affiliation(s)
- Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Cheng Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
8
|
Zhang X, Shi J, Chen S, Dong Y, Zhang L, Midgley AC, Kong D, Wang S. Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by nitric oxide generation. Regen Med 2019; 14:1089-1105. [PMID: 31829097 DOI: 10.2217/rme-2019-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Host remolding with scaffolds degradation and rapid formation of a complete endothelium, are prospective solutions for improving performance of small diameter vascular grafts. Materials & methods: For this purpose, microfibrous polycaprolactone (PCL)/gelatin scaffolds were prepared by electrospinning and subsequently functionalized with heparin and organoselenium-immobilized polyethyleneimine for nitric oxide generation through layer-by-layer self-assembly. Results: Our results showed that modified PCL/gelatin grafts had strong catalytic nitric oxide generation capacity and facilitated the enhanced attachment of endothelial cells, compared with control scaffold groups. Meanwhile, the modified grafts exhibited good hemocombatility, rapid endothelialization and smooth muscle cell regeneration. Conclusion: Modification of biodegradable scaffolds, proposed in this work, could enhance biological functions of vascular grafts and provides new strategies for the construction of small diameter vascular grafts.
Collapse
Affiliation(s)
- XiangYun Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Jie Shi
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - SiYuan Chen
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - YunSheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Lin Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - DeLing Kong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - ShuFang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| |
Collapse
|
9
|
Fan L, Wang L, Wang Z. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. FISH & SHELLFISH IMMUNOLOGY 2019; 92:438-449. [PMID: 31229644 DOI: 10.1016/j.fsi.2019.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
To understand the homeostasis mechanism of crustacean hepatopancreas to cold stress, iTRAQ proteomics based on the genome database of Litopenaeus vannamei (L. vannamei) was applied to investigate proteins changes and variety of the hepatopancreas during cold stress stage in this study. A total of 4062 distinct proteins were identified, 137 differentially expressed proteins (DEPs) including 62 differentially up-regulated proteins (DUPs) and 75 differentially down-regulated proteins (DDPs) were identified in G1 (18 °C) compared with CK (28 °C), 359 DEPs including 131 DUPs and 228 DDPs were identified in G2 (13 °C for 24 h) compared with CK. Based on bioinformatics analysis, the cold tolerance of L. vannamei might be related to energy metabolism such as amino acid, carbohydrate, lipid, and oxidative phosphorylation. Moreover, shrimp immunity was declined during cold stress stage. However, L. vannamei could cope with cold stress by enhancing the production of ATP and UFA. Notably, arginine kinase, heat shock proteins, and histones may act as positive regulators in L. vannamei under cold stress. Ten randomly selected proteins were used for validation using qRT-PCR and the expressions on the transcription level for most of the genes were similar to the results of iTRAQ. These results indicated that L. vannamei can maintain the organism homeostasis by a series of orderly regulatory process during cold stress. Furthermore, the results can provide guidance for shrimp farming.
Collapse
Affiliation(s)
- Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| | - Lei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Matsuura A, Yoshimura K, Kintsu H, Atsumi T, Tsuchihashi Y, Takeuchi T, Satoh N, Negishi L, Sakuda S, Asakura T, Imura Y, Yoshimura E, Suzuki M. Structural and functional analyses of calcium ion response factors in the mantle of Pinctada fucata. J Struct Biol 2018; 204:240-249. [DOI: 10.1016/j.jsb.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
|
12
|
Su W, Rong J, Zha S, Yan M, Fang J, Liu G. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa. Front Physiol 2018; 9:619. [PMID: 29875703 PMCID: PMC5974108 DOI: 10.3389/fphys.2018.00619] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/07/2018] [Indexed: 01/01/2023] Open
Abstract
An enormous amount of anthropogenic carbon dioxide (CO2) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of pCO2-driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of pCO2-driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam (Tegillarca granosa). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 (NOS2) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively regulate immune responses.
Collapse
Affiliation(s)
- Wenhao Su
- Agriculture-Environment-Biology Group, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiahuan Rong
- Agriculture-Environment-Biology Group, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shanjie Zha
- Agriculture-Environment-Biology Group, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Maocang Yan
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Jun Fang
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Guangxu Liu
- Agriculture-Environment-Biology Group, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
de la Ballina NR, Villalba A, Cao A. Proteomic profile of Ostrea edulis haemolymph in response to bonamiosis and identification of candidate proteins as resistance markers. DISEASES OF AQUATIC ORGANISMS 2018; 128:127-145. [PMID: 29733027 DOI: 10.3354/dao03220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
European flat oyster Ostrea edulis populations have suffered extensive mortalities caused by bonamiosis. The protozoan parasite Bonamia ostreae is largely responsible for this disease in Europe, while its congener B. exitiosa has been detected more recently in various European countries. Both of these intracellular parasites are able to survive and proliferate within haemocytes, the main cellular effectors of the immune system in molluscs. Two-dimensional electrophoresis was used to compare the haemolymph protein profile between Bonamia spp.-infected and non-infected oysters within 3 different stocks, a Galician stock of oysters selected for resistance against bonamiosis, a non-selected Galician stock and a selected Irish stock. Thirty-four proteins with a presumably relevant role in the oyster-Bonamia spp. interaction were identified; they were involved in major metabolic pathways, such as energy production, respiratory chain, oxidative stress, signal transduction, transcription, translation, protein degradation and cell defence. Furthermore, the haemolymph proteomic profiles of the non-infected oysters of the 2 Galician stocks were compared. As a result, 7 proteins representative of the non-infected Galician oysters selected for resistance against bonamiosis were identified; these 7 proteins could be considered as candidate markers of resistance to bonamiosis, which should be further assessed.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | | | | |
Collapse
|
14
|
Zuo H, Chen L, Kong M, Yang Y, Lü P, Qiu L, Wang Q, Ma S, Chen K. The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:313-323. [PMID: 29414353 DOI: 10.1016/j.envpol.2018.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Accumulation of excess fluoride has a destructive effect on the environment, endangering human health, affecting organism growth and development, and leading to damage to the biological chain, thereby affecting ecological environment balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity; however, fluoride-toxicity mechanisms in insect cells remain unclear. This study explored the toxic impact of sodium fluoride (NaF) on Spodoptera frugiperda 9 (Sf9) insect cells. High concentrations of NaF (10-4 M, 10-3 M and 10-2 M) resulted in cell enlargement, cell membrane blurring and breakage, and release of cellular contents. Dose-response curves indicated that NaF-specific inhibition rates on Sf9-cell activity increased along with increases in NaF concentration, with a half-inhibitory concentration (IC50) for NaF of 5.919 × 10-3 M at 72 h. Compared with controls, the percentages of early and late apoptotic and necrotic cells clearly increased based on observed increases in NaF concentrations. Two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to detect differentially expressed proteins in Sf9 cells treated with IC50 NaF, identifying 17 proteins, seven of which were upregulated and 10 downregulated. These results demonstrated that Sf9 cells showed signs of NaF-mediated toxicity through alterations in cell morphology, apoptosis rates, and protein expression.
Collapse
Affiliation(s)
- Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
15
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
16
|
Liu Z, Wang L, Lv Z, Zhou Z, Wang W, Li M, Yi Q, Qiu L, Song L. The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas. Front Immunol 2018. [PMID: 29535711 PMCID: PMC5834419 DOI: 10.3389/fimmu.2018.00284] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is becoming increasingly clear that neurotransmitters impose direct influence on regulation of the immune process. Recently, a simple but sophisticated neuroendocrine-immune (NEI) system was identified in oyster, which modulated neural immune response via a "nervous-hemocyte"-mediated neuroendocrine immunomodulatory axis (NIA)-like pathway. In the present study, the de novo synthesis of neurotransmitters and their immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to understand the autocrine/paracrine pathway independent of the nervous system. After hemocytes were exposed to lipopolysaccharide (LPS) stimulation, acetylcholine (ACh), and norepinephrine (NE) in the cell supernatants, both increased to a significantly higher level (2.71- and 2.40-fold, p < 0.05) comparing with that in the control group. The mRNA expression levels and protein activities of choline O-acetyltransferase and dopamine β-hydroxylase in hemocytes which were involved in the synthesis of ACh and NE were significantly elevated at 1 h after LPS stimulation, while the activities of acetylcholinesterase and monoamine oxidase, two enzymes essential in the metabolic inactivation of ACh and NE, were inhibited. These results demonstrated the existence of the sophisticated intracellular machinery for the generation, release and inactivation of ACh and NE in oyster hemocytes. Moreover, the hemocyte-derived neurotransmitters could in turn regulate the mRNA expressions of tumor necrosis factor (TNF) genes, the activities of superoxide dismutase, catalase and lysosome, and hemocyte phagocytosis. The phagocytic activities of hemocytes, the mRNA expressions of TNF and the activities of key immune-related enzymes were significantly changed after the block of ACh and NE receptors with different kinds of antagonists, suggesting that autocrine/paracrine self-regulation was mediated by transmembrane receptors on hemocyte. The present study proved that oyster hemocyte could de novo synthesize and release cholinergic and adrenergic neurotransmitters, and the hemocyte-derived ACh/NE could then execute a negative regulation on hemocyte phagocytosis and synthesis of immune effectors with similar autocrine/paracrine signaling pathway identified in vertebrate macrophages. Findings in the present study demonstrated that the immune and neuroendocrine system evolved from a common origin and enriched our knowledge on the evolution of NEI system.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Liu Z, Zhou Z, Jiang Q, Wang L, Yi Q, Qiu L, Song L. The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas. Open Biol 2017; 7:rsob.160289. [PMID: 28077596 PMCID: PMC5303279 DOI: 10.1098/rsob.160289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas. Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca2+. This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the ‘nervous-haemocyte’ NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Qilin Yi
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Linsheng Song
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| |
Collapse
|
18
|
Ehsan M, Gao W, Gadahi JA, Lu M, Liu X, Wang Y, Yan R, Xu L, Song X, Li X. Arginine kinase from Haemonchus contortus decreased the proliferation and increased the apoptosis of goat PBMCs in vitro. Parasit Vectors 2017. [PMID: 28651566 PMCID: PMC5485575 DOI: 10.1186/s13071-017-2244-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arginine kinase (AK), an important member of phosphagen kinase family has been extensively studied in various vertebrates and invertebrates. Immunologically, AKs are important constituents of different body parts, involved in various biological and cellular functions, and considered as immune-modulator and effector for pro-inflammatory cytokines. However, immunoregulatory changes of host cells triggered by AK protein of Haemonchus contortus, a parasitic nematode of ruminants, are still unknown. The current study was focused on cloning and characterisation of Hc-AK, and its regulatory effects on cytokines level, cell migration, cell proliferation, nitric oxide production and apoptosis of goat peripheral blood mononuclear cells (PBMCs) were observed. METHODS The full-length sequence of the Hc-AK gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sub-cloned into the prokaryotic expression vector pET-32a. The biochemical characteristics of recombinant protein Hc-AK, which was purified by affinity chromatography, were performed based on the enzymatic assay. Binding of rHc-AK with PBMCs was confirmed by immunofluorescence assay (IFA). Immunohistochemical analysis was used to detect localisation of Hc-AK within adult worms sections. The immunoregulatory effects of rHc-AK on cytokine secretions, cell proliferation, cell migration, nitric oxide production and apoptosis were determined by co-incubation of rHc-AK with goat PBMCs. RESULTS The full-length ORF (1080 bp) of the Hc-AK gene was successfully cloned, and His-tagged AK protein was expressed in the Escherichia coli strain BL21. The recombinant protein of Hc-AK (rHc-AK) was about 58.5 kDa together with the fused vector protein of 18 kDa. The biochemical assay showed that the protein encoded by the Hc-ak exhibited enzymatic activity. Western blot analysis confirmed that the rHc-AK was recognised by the sera from rat (rat-antiHc-AK). The IFA results showed that rHc-AK could bind on the surface of goat PBMCs. Immunohistochemically, Hc-AK was localised at the inner and outer membrane as well as in the gut region of adult worms. The binding of rHc-AK to host cells increased the levels of IL-4, IL-10, IL-17, IFN-γ, nitric oxide (NO) production and cell apoptosis of goat PBMCs, whereas, TGF-β1 levels, cell proliferation and PBMCs migration were significantly decreased in a dose dependent manner. CONCLUSIONS Our findings suggested that rHc-AK is an important excretory and secretory (ES) protein involved in host immune responses and exhibit distinct immunomodulatory properties during interaction with goat PBMCs.
Collapse
Affiliation(s)
- Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - WenXiang Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XinChao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
19
|
He LX, Tong X, Zeng J, Tu Y, Wu S, Li M, Deng H, Zhu M, Li X, Nie H, Yang L, Huang F. Paeonol Suppresses Neuroinflammatory Responses in LPS-Activated Microglia Cells. Inflammation 2017; 39:1904-1917. [PMID: 27624059 DOI: 10.1007/s10753-016-0426-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, we assessed the anti-inflammatory effects of paeonol (PAE) in LPS-activated N9 microglia cells, as well as its underlying molecular mechanisms. PAE had no adverse effect on the viability of murine microglia N9 cell line within a broad range (0.12∼75 μM). When N9 cell line was activated by LPS, PAE (0.6, 3, 15 μM) significantly suppressed the release of proinflammatory products, such as nitric oxide (NO), interleukin-1β (IL-1β), and prostaglandin E2 (PGE2), demonstrated by the ELISA assay. Moreover, the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were significantly reduced in PAE-treated N9 microglia cells. We also examined some proteins involved in immune signaling pathways and found that PAE treatment significantly decreased the expression of TLR4, MyD88, IRAK4, TNFR-associated factor 6 (TRAF6), p-IkB-α, and NF-kB p65, as well as the mitogen-activated protein kinase (MAPK) pathway molecules p-P38, p-JNK, and p-ERK, indicating that PAE might act on these signaling pathways to inhibit inflammatory responses. Overall, we found that PAE had anti-inflammatory effect on LPS-activated N9 microglia cells, possibly via inhibiting the TLR4 signaling pathway, and it could be a potential drug therapy for inflammation-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Xia He
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Jing Zeng
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Yuanqing Tu
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Saicun Wu
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Manping Li
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Huaming Deng
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Miaomiao Zhu
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Xiucun Li
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Hong Nie
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Li Yang
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China.
| | - Feng Huang
- Department of Molecular Pharmacology, School of Traditional Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua St., Kunming, 650500, China.
| |
Collapse
|
20
|
Alvarado-Delgado A, Perales Ortiz G, Tello-López ÁT, Encarnación S, Conde R, Martínez-Batallar ÁG, Moran-Francia K, Lanz-Mendoza H. Infection with Plasmodium berghei ookinetes alters protein expression in the brain of Anopheles albimanus mosquitoes. Parasit Vectors 2016; 9:542. [PMID: 27724938 PMCID: PMC5057407 DOI: 10.1186/s13071-016-1830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/02/2016] [Indexed: 12/15/2022] Open
Abstract
Background The behaviour of Anopheles spp. mosquitoes, vectors for Plasmodium parasites, plays a crucial role in the propagation of malaria to humans. Consequently, it is important to understand how the behaviour of these mosquitoes is influenced by the interaction between the brain and immunological status. The nervous system is intimately linked to the immune and endocrine systems. There is evidence that the malaria parasite alters the function of these systems upon infecting the mosquito. Although there is a complex molecular interplay between the Plasmodium parasite and Anopheles mosquito, little is known about the neuronal alteration triggered by the parasite invasion. The aim of this study was to analyse the modification of the proteomic profile in the An. albimanus brain during the early phase of the Plasmodium berghei invasion. Results At 24 hours of the P. berghei invasion, the mosquito brain showed an increase in the concentration of proteins involved in the cellular metabolic pathway, such as ATP synthase complex alpha and beta, malate dehydrogenase, alanine transaminase, enolase and vacuolar ATP synthase. There was also a rise in the levels of proteins with neuronal function, such as calreticulin, mitofilin and creatine kinase. Concomitantly, the parasite invasion repressed the expression of synapse-associated proteins, including enolyl CoA hydratase, HSP70 and ribosomal S60 proteins. Conclusions Identification of upregulated and downregulated protein expression in the mosquito brain 24 hours after Plasmodium invaded the insect midgut paves the way to better understanding the regulation of the neuro-endocrine-immune system in an insect model during parasite infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1830-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Guillermo Perales Ortiz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Ángel T Tello-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | | | - Ken Moran-Francia
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Humberto Lanz-Mendoza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
21
|
Jiang S, Jia Z, Chen H, Wang L, Song L. The modulation of haemolymph arginine kinase on the extracellular ATP induced bactericidal immune responses in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 54:282-293. [PMID: 27033465 DOI: 10.1016/j.fsi.2016.03.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Arginine kinase is an important phosphagen kinase (PK) which plays an essential role in ATP buffering systems in invertebrates. In the present study, an arginine kinase (designated CgAK) was isolated by the lipopolysaccharide (LPS) affinity chromatography from the haemolymph of Crassostrea gigas. CgAK could directly bind to LPS in a concentration-dependent manner with the dissociation constant (Kd) of 2.46 × 10(-6) M. The interaction with LPS significantly decreased the ATP hydrolytic activity of CgAK, which in turn lead to the accumulation of ATP in vitro. The extracellular ATP stimulation could induce Ca(2+) influx, reactive oxygen species (ROS) production, and the release of lysosomal enzyme in the cellular immune response. In addition, ATP stimulation provoked the bactericidal activity towards Escherichia coli, and the scavenging ROS with N-acetyl-l-cysteine (NAC) abrogated the bactericidal activity, indicating that ATP stimulation could induce ROS-dependent antimicrobial activity in haemocytes. Collectively, the results demonstrated that the haemolymph CgAK could serve as an important purinergic regulator to modulate extracellular ATP, which might further have an important effect on the purinergic signaling-activated innate immune response of oyster.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
22
|
Miao G, Qi H, Li L, Que H, Zhang G. Characterization and functional analysis of two inhibitor of apoptosis genes in Zhikong scallop Chlamys farreri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:1-11. [PMID: 26875631 DOI: 10.1016/j.dci.2016.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/07/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
The proteins of inhibitor of apoptosis (IAP) family play important roles in regulation of apoptosis, immunological response and cell proliferation. Here we reported two IAP genes (named CfIAP1 and CfIAP2) in Zhikong scallop Chlamys farreri. The full-length CfIAP1 cDNA contained 1552 nucleotides, encoding a predicted protein of 251 amino acids with two BIR domains. The full-length CfIAP2 cDNA contained 1243 nt, encoding a 356-aa protein with one BIR domain and one RING domain. The two genes are ubiquitously expressed in six types of tissue of C. farreri. The expression levels of CfIAP1 and CfIAP2 were significantly up-regulated after challenged with acute viral necrobiotic disease virus, lipopolysaccharide and exposure to air. Subcellular localization assay showed that CfIAP1 was mainly distributed in cytoplasm and CfIAP2 was in cytoplasm and nucleus. As assessed using a kit designed to test Caspase3 function in mammalian cells, the activity of CfCaspase3 was enhanced as a result of the down-regulation of CfIAP2 expression by dsRNA-mediated gene silencing. Our study indicated that CfIAP1 and CfIAP2 may participate in the innate immunity and stress responses and that CfIAP2 might block apoptosis via inhibiting CfCaspase3 indirectly through an unexplored mechanism in C. farreri.
Collapse
Affiliation(s)
- Guoying Miao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haigang Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huayong Que
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
23
|
Lopez-Zavala AA, Sotelo-Mundo RR, Hernandez-Flores JM, Lugo-Sanchez ME, Sugich-Miranda R, Garcia-Orozco KD. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate. J Bioenerg Biomembr 2016; 48:301-8. [PMID: 27072556 DOI: 10.1007/s10863-016-9660-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Rogerio R Sotelo-Mundo
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Jose M Hernandez-Flores
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Maria E Lugo-Sanchez
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Rocio Sugich-Miranda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Karina D Garcia-Orozco
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
24
|
Xia CG, Zhang D, Ma C, Zhou J, He S, Su XR. Characterization and comparison of proteomes of albino sea cucumber Apostichopus japonicus (Selenka) by iTRAQ analysis. FISH & SHELLFISH IMMUNOLOGY 2016; 51:229-239. [PMID: 26707782 DOI: 10.1016/j.fsi.2015.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Sea cucumber is a commercially important marine organism in China. Of the different colored varieties sold in China, albino sea cucumber has the greatest appeal among consumers. Identification of factors contributing to albinism in sea cucumber is therefore likely to provide a scientific basis for improving the cultivability of these strains. In this study, two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification labeling was used for the first time to quantitatively define the proteome of sea cucumbers and reveal proteomic characteristics unique to albino sea cucumbers. A total of 549 proteins were identified and quantified in albino sea cucumber and the functional annotations of 485 proteins have been exhibited based on COG database. Compared with green sea cucumber, 12 proteins were identified as differentially expressed in the intestine and 16 proteins in the body wall of albino sea cucumber. Among them, 5 proteins were up-regulated in the intestine and 8 proteins were down-regulated in body wall. Gene ontology annotations of these differentially expressed proteins consisted mostly of 'biological process'. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying albinism in sea cucumber.
Collapse
Affiliation(s)
- Chang-Ge Xia
- School of Marine Sciences, Ningbo University, Zhejiang Province 315211, PR China; Xinlicheng Reservoir Management Bureau in Changchun, Jilin Province 130119, PR China
| | - Dijun Zhang
- School of Marine Sciences, Ningbo University, Zhejiang Province 315211, PR China
| | - Chengnv Ma
- School of Marine Sciences, Ningbo University, Zhejiang Province 315211, PR China
| | - Jun Zhou
- School of Marine Sciences, Ningbo University, Zhejiang Province 315211, PR China
| | - Shan He
- School of Marine Sciences, Ningbo University, Zhejiang Province 315211, PR China
| | - Xiu-Rong Su
- School of Marine Sciences, Ningbo University, Zhejiang Province 315211, PR China.
| |
Collapse
|
25
|
Nikapitiya C, McDowell IC, Villamil L, Muñoz P, Sohn S, Gomez-Chiarri M. Identification of potential general markers of disease resistance in American oysters, Crassostrea virginica through gene expression studies. FISH & SHELLFISH IMMUNOLOGY 2014; 41:27-36. [PMID: 24973516 DOI: 10.1016/j.fsi.2014.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Several diseases have a significant impact on American oyster populations in the Atlantic coasts of North America. Knowledge about the responses of oysters to pathogenic challenge could help in identifying potential markers of disease resistance and biomarkers of the health status of an oyster population. A previous analysis of the transcriptome of resistant and susceptible American oysters in response to challenge with the bacterial pathogen Roseovarius crassostreae, as well as sequencing of suppression subtractive hybridization libraries from oysters challenged with the protozoan parasite Perkinsus marinus, provided a list of genes potentially involved in disease resistance or susceptibility. We investigated the patterns of inducible gene expression of several of these genes in response to experimental challenge with the oyster pathogens R. crassostreae, Vibrio tubiashii, and P. marinus. Oysters showing differential susceptibility to R. crassostreae demonstrated differential patterns of expression of genes coding for immune (serine protease inhibitor-1, SPI1) and stress-related (heat shock protein 70, HSP70; arginine kinase) proteins 30 days after challenge with this bacterial pathogen. Differential patterns of expression of immune (spi1, galectin and a matrix metalloproteinase) and stress-related (hsp70, histone H4, and arginine kinase) genes was observed in hemocytes from adult oysters challenged with P. marinus, but not with V. tubiashii. While levels of spi1 expression in hemocytes collected 8 and 21 days after P. marinus challenge were negatively correlated with parasite load in oysters tissues at the end of the challenge (62 days), levels of expression of hsp70 in hemocytes collected 1-day after challenge were positively correlated with oyster parasite load at 62 days. Our results confirm previous research on the role of serine protease inhibitor-1 in immunity and disease resistance in oysters. They also suggest that HSP70 and histone H4 could be used as a markers of health status or disease susceptibility in oysters.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Ian C McDowell
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Luisa Villamil
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Pilar Muñoz
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - SaeBom Sohn
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA.
| |
Collapse
|
26
|
Jiang Q, Zhou Z, Wang L, Wang L, Yue F, Wang J, Song L. A scallop nitric oxide synthase (NOS) with structure similar to neuronal NOS and its involvement in the immune defense. PLoS One 2013; 8:e69158. [PMID: 23922688 PMCID: PMC3724850 DOI: 10.1371/journal.pone.0069158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/05/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. METHODOLOGY In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot(-1), and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot(-1), respectively, P < 0.01). CONCLUSIONS These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α.
Collapse
Affiliation(s)
- Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
27
|
Crystal structure of shrimp arginine kinase in binary complex with arginine—a molecular view of the phosphagen precursor binding to the enzyme. J Bioenerg Biomembr 2013; 45:511-8. [DOI: 10.1007/s10863-013-9521-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
|
28
|
Transcriptome sequencing of Zhikong scallop (Chlamys farreri) and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLoS One 2013; 8:e63927. [PMID: 23667690 PMCID: PMC3646770 DOI: 10.1371/journal.pone.0063927] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/10/2013] [Indexed: 01/30/2023] Open
Abstract
Background Bivalves play an important role in the ecosystems they inhabit and represent an important food source all over the world. So far limited genetic research has focused on this group of animals largely due to the lack of sufficient genetic or genomic resources. Here, we performed de novo transcriptome sequencing to produce the most comprehensive expressed sequence tag resource for Zhikong scallop (Chlamys farreri), and conducted the first transcriptome comparison for scallops. Results In a single 454 sequencing run, 1,033,636 reads were produced and then assembled into 26,165 contigs. These contigs were then clustered into 24,437 isotigs and further grouped into 20,056 isogroups. About 47% of the isogroups showed significant matches to known proteins based on sequence similarity. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified through Gene ontology (GO) and KEGG pathway analyses. Transcriptome comparison with Yesso scallop (Patinopecten yessoensis) revealed similar patterns of GO representation. Moreover, 38 putative fast-evolving genes were identified through analyzing the orthologous gene pairs between the two scallop species. More than 46,000 single nucleotide polymorphisms (SNPs) and 350 simple sequence repeats (SSRs) were also detected. Conclusion Our study provides the most comprehensive transcriptomic resource currently available for C. farreri. Based on this resource, we performed the first large-scale transcriptome comparison between the two scallop species, C. farreri and P. yessoensis, and identified a number of putative fast-evolving genes, which may play an important role in scallop speciation and/or local adaptation. A large set of single nucleotide polymorphisms and simple sequence repeats were identified, which are ready for downstream marker development. This transcriptomic resource should lay an important foundation for future genetic or genomic studies on C. farreri.
Collapse
|