1
|
Gong X, Hu F, Hu J, Bao Z, Wang M. The interactions between CpG oligodeoxynucleotides and Toll-like receptors in Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105157. [PMID: 38423492 DOI: 10.1016/j.dci.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
CpG oligodeoxynucleotides (ODNs), as a novel type of adjuvant with immunomodulatory effects, are recognized by Toll-like receptors (TLRs) in Litopenaeus vannamei. In the present study, eleven LvTLRs-pCMV recombinants (rLvTLRs) were constructed to investigate the relationships between various CpG ODNs and different LvTLRs in human embryonic kidney 293T (HEK293T) cells, which was further confirmed by bio-layer interferometry (BLI) technique. The results of dual luciferase reporter assay showed that every LvTLR could activate multiple downstream genes, mainly including NF-κB, CREB, ISRE, IL-6-promoter, TNF-α-promoter and Myc, thereby inducing main signaling pathways in shrimps. Most CpG ODNs possessed affinities to more than one LvTLR, while each LvTLR could recognize multiple CpG ODNs, and the widely recognized ligands within CpG ODNs are A-class and B-class. Moreover, BLI analysis showed that CpG 2216, Cpg 2006, CpG 2143 and CpG 21425 exhibited dose-dependent affinity to the expressed TLR protein, which were consistent with the results in HEK293T cells. It suggested that the interactions of CpG ODNs with LvTLRs were indispensable for the immune regulation triggered by CpG ODNs, and these findings would lay foundations for studying the activations of LvTLRs to immune signaling pathways and shedding lights on the immune functions and mechanisms of CpG ODNs.
Collapse
Affiliation(s)
- Xuerui Gong
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Feng Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou, 061101, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China.
| |
Collapse
|
2
|
Purbiantoro W, Huynh-Phuoc V, Castillo-Corea BRJ, Byadgi OV, Cheng TC. Effectiveness of dietary heat-killed Bacillus subtilis harboring plasmid containing 60 copies of CpG-ODN 1668 against Vibrio harveyi in Penaeus vannamei. Vet Res Commun 2024; 48:85-101. [PMID: 37530963 DOI: 10.1007/s11259-023-10182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The cost of the purification process hinders the extensive use of cytosine phosphate guanosine-oligodeoxynucleotides (CpG-ODNs) for shrimp culture. Therefore, this study used a shuttle vector plasmid to carry 60 copies of CpG-ODN 1668 (pAD43-25_60CpG), which can replicate in Escherichia coli and Bacillus subtilis strain RIK1285. The first experiment used a reverse gavage procedure to deliver a substance (PBS [CK], pAD43-25 [P0], and pAD43-25_60CpG [P60], respectively) directly into the anterior midgut of Penaeus vannamei and transcriptome sequence analysis with a reference genome was performed to examine the expression of well-known immune-related genes. The results showed that the expression levels of immune-related genes in P60 group were significantly increased, particularly those associated with AMPs. In addition, using RT‒qPCR, the expression levels of AMP genes (LvALF, LvPEN-2, and LvPEN-3) in the P60 group may vary depending on the tissue and time point. The second experiment used dietary supplementation with three kinds of heat-killed B. subtilis (HKBS, HKBS-P0, and HKBS-P60) in 28 days of feeding experiments. The results showed that dietary supplementation with HKBS-P60 did not significantly improve shrimp growth performance and survival. However, on days 14 and 28 of the feeding regimens, alkaline phosphatase (AKP) and acid phosphatase (ACP) activity were considerably higher than in other treatments. In addition, following infection with Vibrio harveyi, AKP and ACP activity in the HKBS-P60 group was significantly higher than in other treatments, particularly at the early stage of bacterial infection. Moreover, HKBS-P60 was found to be better protected against V. harveyi infection with lower cumulative mortality (60%) compared to HKBS (90%) and HKBS-P0 (100%) at 7 days after infection. Overall, these findings confirmed that P60 could increase immunological responses in the shrimp midgut, and HKBS-P60 could be used as an effective tool to enhance the immune response and disease resistance in shrimp.
Collapse
Affiliation(s)
- Wahyu Purbiantoro
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), Mataram, Nusa Tenggara Barat, Indonesia
| | - Vinh Huynh-Phuoc
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - B R J Castillo-Corea
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Omkar Vijay Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ta-Chih Cheng
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan.
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
3
|
Lv X, Li S, Yu Y, Jin S, Zhang X, Li F. LvCD14L Acts as a Novel Pattern Recognition Receptor and a Regulator of the Toll Signaling Pathway in Shrimp. Int J Mol Sci 2023; 24:ijms24097770. [PMID: 37175476 PMCID: PMC10178686 DOI: 10.3390/ijms24097770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Leucine-rich repeat (LRR) is a structural motif has important recognition function in immune receptors, such as Tolls and NOD-like receptors (NLRs). The immune-related LRR proteins can be divided into two categories, LRR-containing proteins and LRR-only proteins. The latter contain LRR motifs while they are without other functional domains. However, the functional mechanisms of the LRR-only proteins were still unclear in invertebrates. Here, we identified a gene encoding a secretory LRR-only protein, which possessed similarity with vertebrate CD14 and was designated as LvCD14L, from the Pacific whiteleg shrimp Litopenaeus vannamei. Its transcripts in shrimp hemocytes were apparently responsive to the infection of Vibrio parahaemolyticus. Knockdown of LvCD14L with dsRNA resulted in significant increase of the viable bacteria in the hepatopancreas of shrimp upon V. parahaemolyticus infection. Further functional studies revealed that LvCD14L could bind to microorganisms' PAMPs, showed interaction with LvToll1 and LvToll2, and regulated the expression of LvDorsal and LvALF2 in hemocytes. These results suggest that LvCD14L functions as a pattern recognition receptor and activates the NF-κB pathway through interaction with LvTolls. The present study reveals a shrimp LvCD14L-Tolls-NF-κB signaling pathway like the CD14/TLR4/NF-κB signaling pathway in mammalians, which enriches the functional mechanism of secretory LRR-only immune receptors during pathogens infection in invertebrates.
Collapse
Affiliation(s)
- Xinjia Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, Lin L, Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes reveals in-depth insights into the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108533. [PMID: 36639067 DOI: 10.1016/j.fsi.2023.108533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Macrobrachium rosenbergii as one of the common freshwater prawn species in Southeast Asia, which breeding industry is seriously threatened by vibriosis and causes high mortality. In this study, the RNA-seq was employed for assessing the M. rosenbergii hemocytes transcriptomes following Vibrio parahaemolyticus challenge. After challenge for 6 h (h), there were overall 1849 DEGs or differentially expressed genes, including 1542 up-regulated and 307 down-regulated genes, and there was a total of 1048 DEGs, including 510 up-regulated genes and 538 down-regulated genes, after challenge for 12 h. Mitogen-activated protein kinase (MAPK) immune-related pathways, Toll, immune deficiency (IMD), and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) were among the immune pathways where a lot of the DEGs were connected. The expression patterns of 18 chosen immune-related genes were examined utilizing qRT-PCR or quantitative real-time polymerase chain reaction, which revealed that the V. parahaemolyticus infection activated the M. rosenbergii's immune response. Permutational multivariate analysis of variance (PERMANOVA) showed that V. parahaemolyticus infection modulated immune regulation and apoptosis pathways. The gathered information provided new insight into M. rosenbergii's immunity and suggested a novel approach to fight against bacterial infection.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
5
|
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol 2019; 10:1785. [PMID: 31417561 PMCID: PMC6683665 DOI: 10.3389/fimmu.2019.01785] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The outbreak of diseases ordinarily results from the disruption of the balance and harmony between hosts and pathogens. Devoid of adaptive immunity, shrimp rely largely on the innate immune system to protect themselves from pathogenic infection. Two nuclear factor-κB (NF-κB) pathways, the Toll and immune deficiency (IMD) pathways, are generally regarded as the major regulators of the immune response in shrimp, which have been extensively studied over the years. Bacterial infection can be recognized by Toll and IMD pathways, which activate two NF-κB transcription factors, Dorsal and Relish, respectively, to eventually lead to boosting the expression of various antimicrobial peptides (AMPs). In response to white-spot-syndrome-virus (WSSV) infection, these two pathways appear to be subverted and hijacked to favor viral survival. In this review, the recent progress in elucidating microbial recognition, signal transduction, and effector regulation within both shrimp Toll and IMD pathways will be discussed. We will also highlight and discuss the similarities and differences between shrimps and their Drosophila or mammalian counterparts. Understanding the interplay between pathogens and shrimp NF-κB pathways may provide new opportunities for disease-prevention strategies in the future.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
7
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Li H, Yin B, Wang S, Fu Q, Xiao B, Lǚ K, He J, Li C. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. PLoS Pathog 2018; 14:e1007109. [PMID: 30256850 PMCID: PMC6175524 DOI: 10.1371/journal.ppat.1007109] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The function of Toll pathway defense against bacterial infection has been well established in shrimp, however how this pathway responds to viral infection is still largely unknown. In this study, we report the Toll4-Dorsal-AMPs cascade restricts the white spot syndrome virus (WSSV) infection of shrimp. A total of nine Tolls from Litopenaeus vannamei namely Toll1-9 are identified, and RNAi screening in vivo reveals the Toll4 is important for shrimp to oppose WSSV infection. Knockdown of Toll4 results in elevated viral loads and renders shrimp more susceptible to WSSV. Furthermore, Toll4 could be a one of upstream pattern recognition receptor (PRR) to detect WSSV, and thereby leading to nuclear translocation and phosphorylation of Dorsal, the known NF-κB transcription factor of the canonical Toll pathway. More importantly, silencing of Toll4 and Dorsal contributes to impaired expression of a specific set of antimicrobial peptides (AMPs) such as anti-LPS-factor (ALF) and lysozyme (LYZ) family, which exert potent anti-WSSV activity. Two AMPs of ALF1 and LYZ1 as representatives are demonstrated to have the ability to interact with several WSSV structural proteins to inhibit viral infection. Taken together, we therefore identify that the Toll4-Dorsal pathway mediates strong resistance to WSSV infection by inducing some specific AMPs. The TLR pathway mediated antiviral immune response is well identified in mammals, yet, Toll pathway governing this protection in invertebrates remains unknown. In the present study, we uncover that a shrimp Toll4 from a total of nine Tolls in L. vannamei confers resistance to WSSV thought inducing the NF-κB transcription factor Dorsal to inspire the production of some antimicrobial peptides (AMPs) with antiviral activity. The anti-LPS-factor (ALF) and lysozyme (LYZ) family are identified as the Toll4-Dorsal pathway targeted genes with the ability to interact with viral structural proteins in response to WSSV infection. These results suggest that the Toll receptor induces the expression of AMPs with antiviral activity could be a general antiviral mechanism in invertebrates and Toll pathway established antiviral defense could be conserved during evolution.
Collapse
Affiliation(s)
- Haoyang Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Qihui Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Kai Lǚ
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| | - Chaozheng Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| |
Collapse
|
9
|
Wang E, Wang X, Wang K, He J, Zhu L, He Y, Chen D, Ouyang P, Geng Y, Huang X, Lai W. Preparation, characterization and evaluation of the immune effect of alginate/chitosan composite microspheres encapsulating recombinant protein of Streptococcus iniae designed for fish oral vaccination. FISH & SHELLFISH IMMUNOLOGY 2018; 73:262-271. [PMID: 29275131 DOI: 10.1016/j.fsi.2017.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Streptococcus iniae has caused serious harm to the fish farming industry in recent years. Vaccination is a potential approach for preventing and controlling disease, being oral vaccination the most suitable vaccination route in fish. Alginate and chitosan microspheres have been widely used as controlled release systems for oral vaccination in fish. In this study, we prepared and characterized alginate/chitosan composite microspheres encapsulating the recombinant protein serine-rich repeat (rSrr) of S. iniae. We evaluated effect of these microspheres on the immune system of channel catfish. The microsphere preparation conditions were optimized by Response Surface Method and target microspheres were obtained under 1.68% alginate (w/v), the W/O ratio 3.6:7.4 (liquid paraffin with 4% Span 80, v/v) with stirring at 1000 rpm, 9.64% CaCl2 (w/v) and 0.95% chitosan (w/v) with an encapsulation efficiency of 92.38%. The stability and safety of rSrr-microspheres were evaluated in vitro and in vivo, respectively. Furthermore, compared with control group, oral vaccination with rSrr-microspheres induced higher serum antibody titers, higher lysozyme activity, higher total protein and higher expression of immune-related genes, and resulted in higher relative percent survival (RPS) with the value of 60% for channel catfish against S.iniae infection. Our results thus indicate that alginate/chitosan microspheres encapsulating rSrr can be used as oral vaccine for channel catfish, providing efficient immunoprotection against S. iniae infection.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xingli Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jie He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ling Zhu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
10
|
Liu Q, Xu D, Jiang S, Huang J, Zhou F, Yang Q, Jiang S, Yang L. Toll-receptor 9 gene in the black tiger shrimp (Penaeus monodon) induced the activation of the TLR-NF-κB signaling pathway. Gene 2017; 639:27-33. [PMID: 28982619 DOI: 10.1016/j.gene.2017.09.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Toll receptors are important pathogen recognition receptors (PRRs) in shrimps, which play a vital role in defending against virus and bacterial challenge. In this paper, the characterization and functional analysis of a Toll9 receptor gene from Penaeus monodon was performed in HEK293T cells. Data showed that PmToll9 can activate the NF-κB promoter activities of TLR pathway, while ISRE and IFN-β promoter cannot be activated obviously in HEK293T cells using dual-luciferase reporter system. The downstream immune factors of IL-8, IκB-α, and TRAF6 were activated by PmToll9 and IL-8 showed the most significant up-regulation in expression levels, indicating the activities of NF-κB can be mediated by PmToll9. Six LRRs-deletion mutants were constructed and results showed these mutants had obvious declines in luciferase activities, among which the mutant pCMV-DeLRR4 showed the most significant decline. qPCR data indicated LRRs-deletion mutants efficiently impaired the activities of the downstream immune factors IL-8, IκB-α, and TRAF6. It demonstrates that LRRs-deletion mutants could result in the weaken abilities of PmToll9 in signaling transduction. Overexpression of PmToll9-GFP fusion protein in Hela cells revealed the primary cellular localization of PmToll9 is in the cytoplasm.
Collapse
Affiliation(s)
- Qian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Dan Xu
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
11
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Wu YS, Liau SY, Huang CT, Nan FH. Beta 1,3/1,6-glucan and vitamin C immunostimulate the non-specific immune response of white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2016; 57:269-277. [PMID: 27561624 DOI: 10.1016/j.fsi.2016.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
This study mainly evaluated the effects of orally administered beta 1,3/1,6-glucan and vitamin C on the nonspecific immune responses of white shrimp (Litopenaeus vannamei). In this study, we found that the white shrimp oral administration with 1 g/kg of beta 1,3/1,6-glucan effectively enhanced O2(-) production and phenoloxidase and superoxide dismutase activity. Shrimp were oral administration with 0.2 g/kg of vitamin C presented beneficial nonspecific immune responses and enzyme activity and also observed in the beta 1,3/1,6-glucan treatment groups. Consequently, we compared the alterations in the immune activity between the beta 1,3/1,6-glucan and vitamin C groups and the evidence illustrated that combination of beta 1,3/1,6-glucan and vitamin C presented an additive effect on inducing the nonspecific immune responses of white shrimp.
Collapse
Affiliation(s)
- Yu-Sheng Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20248, Taiwan
| | - Shu-Yu Liau
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20248, Taiwan
| | - Cheng-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20248, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20248, Taiwan.
| |
Collapse
|
13
|
Li C, Li H, Chen Y, Chen Y, Wang S, Weng SP, Xu X, He J. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp. Sci Rep 2015; 5:15078. [PMID: 26459861 PMCID: PMC4602278 DOI: 10.1038/srep15078] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 12/27/2022] Open
Abstract
There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5'-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Yixiao Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Yonggui Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| |
Collapse
|
14
|
Wang PH, Weng SP, He JG. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:291-296. [PMID: 24685509 DOI: 10.1016/j.dci.2014.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.
Collapse
Affiliation(s)
- Pei-Hui Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, People's Republic of China.
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, People's Republic of China
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, People's Republic of China; School of Marine Sciences, Sun Yat-Sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
15
|
Chen T, Wong NK, Jiang X, Luo X, Zhang L, Yang D, Ren C, Hu C. Nitric oxide as an antimicrobial molecule against Vibrio harveyi infection in the hepatopancreas of Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 42:114-120. [PMID: 25449376 DOI: 10.1016/j.fsi.2014.10.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/22/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Nitric oxide (NO) is a key effector molecule produced in the innate immune systems of many species for antimicrobial defense. However, how NO production is regulated during bacterial infection in invertebrates, especially crustaceans, remains poorly understood. Vibrio harveyi, a Gram-negative marine pathogen, is among the most prevalent and serious threats to the world's shrimp culture industry. Its virulence typically manifests itself through shrimp hepatopancreas destruction. In the current study, we found that NO generated by an in vitro donor system (NOC-18) could rapidly and effectively kill V. harveyi. In addition, injection of heat-killed V. harveyi increased the concentration of NO/nitrite and the mRNA expression of nitric oxide synthase (NOS) in the hepatopancreas of Pacific white shrimp (Litopenaeus vannamei), the commercially most significant shrimp species. Live V. harveyi challenge also induced NO/nitrite production and NOS gene expression in primary L. vannamei hepatopancreatic cells in a time- and dose-dependent manner. Co-incubation of l-NAME, an inhibitor selective for mammalian constitutive NOSs, dose-dependently blocked V. harveyi-induced NO/nitrite production, without affecting V. harveyi-induced NOS mRNA expression. Furthermore, l-NAME treatment significantly increased the survival rate of infecting V. harveyi in cultured primary hepatopancreatic cells of L. vannamei. As a whole, we have demonstrated that endogenous NO produced by L. vannamei hepatopancreatic cells occurs in enzymatically regulated manners and is sufficient to act as a bactericidal molecule for V. harveyi clearance.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Nai-Kei Wong
- Department of Chemistry, University of Hong Kong, Hong Kong, China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xing Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Lvping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Dan Yang
- Department of Chemistry, University of Hong Kong, Hong Kong, China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
16
|
Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, Song L. The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops (Argopecten irradians irradians and A. i. concentricus). PLoS One 2014; 9:e102332. [PMID: 25028964 PMCID: PMC4100766 DOI: 10.1371/journal.pone.0102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background The heat shock protein 70 (HSP70) is one kind of molecular chaperones, which plays a key role in protein metabolism under normal and stress conditions. Methodology In the present study, the mRNA expressions of HSP70 under normal physiological condition and after acute heat stress were investigated in gills of two bay scallop populations (Argopecten irradians irradians and A. i. concentricus). The heat resistant scallops A. i. concentricus showed significantly lower basal level and higher induction of HSP70 compared with that of the heat sensitive scallops A. i. irradians. The promoter sequence of HSP70 gene from bay scallop (AiHSP70) was cloned and the polymorphisms within this region were investigated to analyze their association with heat tolerance. Totally 11 single nucleotide polymorphisms (SNPs) were identified, and four of them (−967, −480, −408 and −83) were associated with heat tolerance after HWE analysis and association analysis. Based on the result of linkage disequilibrium analysis, the in vitro transcriptional activities of AiHSP70 promoters with different genotype were further determined, and the results showed that promoter from A. i. concentricus exhibited higher transcriptional activity than that from A. i. irradians (P<0.05). Conclusions The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP70. Meanwhile, the −967 GG, −480 AA, −408 TT and −83 AG genotypes could be potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
17
|
Wang PH, Huang T, Zhang X, He JG. Antiviral defense in shrimp: from innate immunity to viral infection. Antiviral Res 2014; 108:129-41. [PMID: 24886688 DOI: 10.1016/j.antiviral.2014.05.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/11/2014] [Accepted: 05/22/2014] [Indexed: 12/01/2022]
Abstract
The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.
Collapse
Affiliation(s)
- Pei-Hui Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Tianzhi Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China; School of Marine Sciences, Sun Yat-Sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China.
| |
Collapse
|