1
|
Saha B, McNinch CM, Lu S, Ho MCW, De Carvalho SS, Barillas-Mury C. In-depth transcriptomic analysis of Anopheles gambiae hemocytes uncovers novel genes and the oenocytoid developmental lineage. BMC Genomics 2024; 25:80. [PMID: 38243165 PMCID: PMC10799387 DOI: 10.1186/s12864-024-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.
Collapse
Affiliation(s)
- Banhisikha Saha
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Colton M McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret C W Ho
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephanie Serafim De Carvalho
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA.
| |
Collapse
|
2
|
Zhang J, Jie W, Cheng G, Gu Z, Liu X. Transcriptome analysis of response mechanism to Microcystin-LR and microplastics stress in Asian clam (Corbicula fluminea). FISH & SHELLFISH IMMUNOLOGY 2023:108875. [PMID: 37285876 DOI: 10.1016/j.fsi.2023.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
In this study, we analyzed the hepatopancreas tissues of Asian Clam (Corbicula fluminea) exposed to three different adverse environmental conditions from the same batch using RNA-seq. The four treatment groups included the Asian Clam group treated with Microcystin-LR (MC), the Microplastics-treated group (MP), the Microcystin-LR and Microplastics-treated group (MP-MC), and the Control group. Our Gene Ontology analysis revealed 19,173 enriched genes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified 345 related pathways. The KEGG pathway analysis demonstrated that the MC vs control group and the MP vs control group were significantly enriched in immune and catabolic pathways such as Antigen processing and presentation, Rheumatoid arthritis, Lysosome pathway, Phagosome pathway, and Autophagy pathway. We also evaluated the effects of Microplastics and Microcystin-LR on the activities of eight antioxidant enzymes and immune enzymes in Asian clams. Our study enriched the genetic resources of Asian clams and provided valuable information for understanding the response mechanism of Asian clams to microplastics and microcystin in the environment, through the identification of differentially expressed genes and related pathway analyses from the large number of transcriptome sequences obtained.
Collapse
Affiliation(s)
- Jiahua Zhang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China; Key Laboratory of Aguaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wang Jie
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China; Key Laboratory of Aguaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China; Key Laboratory of Aguaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zhaojun Gu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China; Key Laboratory of Aguaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China; Key Laboratory of Aguaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
3
|
Jaree P, Boonchuen P, Thawonsuwan J, Kondo H, Hirono I, Somboonwiwat K. Transcriptome profiling reveals the novel immunometabolism-related genes against WSSV infection from Fenneropenaeus merguiensis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:31-44. [PMID: 34758397 DOI: 10.1016/j.fsi.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The white spot syndrome virus (WSSV) has been considered a serious threat to shrimp aquaculture. Besides, the activation of cell metabolism as an immune reaction to the virus is now recognized as a piece of the pivotal puzzle of the antiviral responses. Hence, this study explores the relationship between metabolic gene expression and antiviral responses in shrimp using transcriptome analysis. The RNA-seq libraries of Fenneropenaeus merguensis hemocytes after WSSV challenge at early (6 hpi) and late (24 hpi) stages of infection were analyzed to identify differentially expressed genes (DEGs) that the WSSV subverted the expression. One-hundred-thirty-three DEGs that were expressed in response to WSSV infection at both stages were identified. Based on the GO annotation, they were related to innate immunity and metabolic pathway. The expression correlation between "full term" (NGS) and qRT-PCR of 16 representative DEGs is shown. Noticeably, the expression profiles of all the selected metabolic genes involved in glucose metabolism, lipid metabolism, amino acid metabolism, and nucleotide metabolism showed a specific correlation between NGS and qRT-PCR upon WSSV infection. Of these, we further characterized the function related to the WSSV response of glutamine: fructose-6-phosphate aminotransferase (FmGFAT), the rate-limiting enzyme of the hexosamine biosynthesis pathway, which was found to be up-regulated at the late stage of WSSV infection. Suppression of FmGFAT by RNA interference resulted in postponing the death of WSSV-infected shrimp and reduction of viral copy number. These results suggested that the FmGFAT is linked between metabolic change and WSSV responses in shrimp, where the virus-induced metabolic rewiring hijack biological compounds and/or energy sources to benefit the viral replication process.
Collapse
Affiliation(s)
- Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jumroensri Thawonsuwan
- Songkhla Aquatic Animal Health Research Center, Department of Fisheries, Songkhla, Thailand
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Guo H, Liang Z, Zheng P, Li L, Xian J, Zhu X. Effects of nonylphenol exposure on histological changes, apoptosis and time-course transcriptome in gills of white shrimp Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146731. [PMID: 33794460 DOI: 10.1016/j.scitotenv.2021.146731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is considered as one of the persistent organic pollutants (POPs) in the environment. Pacific white shrimp Litopenaeus vannamei is the predominant species in China, which is frequently affected by environmental pollutants. However, potential toxicity mechanism of NP in shrimp has not been comprehensively studied. To explore the physiological changes and molecular mechanism involved in NP exposure of shrimp, we analyzed histological alterations, apoptosis and transcriptional responses of L.vannamei subjected to NP. Results indicated that significant changes in the histoarchitecture of the gills were observed after NP exposure for 3, 12 and 48 h. Apoptosis was also detected in a time-dependent manner. Numerous differentially expressed genes (DEGs) were obtained at 3 h, 12 h and 48 h after exposure. On the basis of the expression patterns over the time course, these DEGs were classified into 12 clusters. GO and KEGG enrichment analysis of these DEGs was carried out and a dynamic and global view was obtained in shrimp after NP exposure on a transcriptome level. In addition, 15 DEGs involved in immune response, apoptosis, DNA repair, osmoregulation etc. were selected for qRT-PCR validation. The expression patterns of these DEGs kept a well consistent with the high-throughput data at different timepoints, which confirmed the accuracy and reliability of the transcriptome data. All the results demonstrated that NP exposure might lead to impairments of biological functions in gills, alter immune and antioxidant response, compromise DNA repair and anti-apoptosis abilities of shrimp, cause severe histopathological changes and eventually trigger apoptosis. The present study enriched the information on the toxicity mechanism of crustaceans in response to NP exposure.
Collapse
Affiliation(s)
- Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Peihua Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ling Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Jian'an Xian
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaowen Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China.
| |
Collapse
|
5
|
Havanapan PO, Taengchaiyaphum S, Paemanee A, Phungthanom N, Roytrakul S, Sritunyalucksana K, Krittanai C. Caspase-3, a shrimp phosphorylated hemocytic protein is necessary to control YHV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 114:36-48. [PMID: 33864947 DOI: 10.1016/j.fsi.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
By using immunohistochemistry detection, yellow head virus (YHV) was found to replicate in granule-containing hemocytes including semi-granular hemocytes (SGC) and granular hemocytes (GC) during the early phase (24 h post injection) of YHV-infected shrimp. Higher signal of YHV infection was found in GC more than in SGC. Comparative phosphoproteomic profiles between YHV-infected and non-infected GC reveal a number of phosphoproteins with different expression levels. The phosphoprotein spot with later on identified as caspase-3 in YHV-infected GC is most interesting. Blocking caspase-3 function using a specific inhibitor (Ac-DEVD-CMK) demonstrated high replication of YHV and consequently, high shrimp mortality. The immunohistochemistry results confirmed the high viral load in shrimp that caspase-3 activity was blocked. Caspase-3 is regulated through a variety of posttranslational modifications, including phosphorylation. Analysis of phosphorylation sites of shrimp caspase-3 revealed phosphorylation sites at serine residue. Taken together, caspase-3 is a hemocytic protein isolated from shrimp granular hemocytes with a role in anti-YHV response and regulated through the phosphorylation process.
Collapse
Affiliation(s)
- Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nuanwan Phungthanom
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chartchai Krittanai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
6
|
Duan Y, Xiong D, Wang Y, Li H, Dong H, Zhang J. Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141867. [PMID: 32898779 DOI: 10.1016/j.scitotenv.2020.141867] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Ammonia and thermal stress frequently have harmful effects on aquatic animals. The intestine is an important barrier allowing the body to defend against stress. In this study, we investigated the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei subjected to individual and combined ammonia and thermal stress. The results showed that obvious variation in the intestinal microbiota was observed after stress exposure, with increased levels of Firmicutes and decreased levels of Bacteroidetes and Planctomycetes. Several genera of putatively beneficial bacteria (Demequina, Weissella and Bacteroides) were abundant, while Formosa, Kriegella, Ruegeria, Rhodopirellula and Lutimonas were decreased; pathogenic bacteria of the genus Vibrio were increased under individual stress but decreased under combined stress. The intestinal transcriptome revealed several immune-related differentially expressed genes associated with the peritrophic membrane and antimicrobial processes in contrasting accessions. Haemolymph metabolomic analysis showed that stress exposure disturbed the metabolic processes of the shrimp, especially amino acid metabolism. This study provides insight into the underlying mechanisms associated with the intestinal microbiota, immunity and metabolism of L.vannamei in response to ammonia and thermal stress; ten stress-related metabolite markers were identified, including L-lactic acid, gulonic acid, docosahexaenoic acid, l-lysine, gamma-aminobutyric acid, methylmalonic acid, trans-cinnamate, N-acetylserotonin, adenine, and dihydrouracil.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Dalin Xiong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
7
|
Boonchuen P, Maralit BA, Jaree P, Tassanakajon A, Somboonwiwat K. MicroRNA and mRNA interactions coordinate the immune response in non-lethal heat stressed Litopenaeus vannamei against AHPND-causing Vibrio parahaemolyticus. Sci Rep 2020; 10:787. [PMID: 31964916 PMCID: PMC6972907 DOI: 10.1038/s41598-019-57409-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 11/09/2022] Open
Abstract
While Vibrio parahaemolyticus (VPAHPND) has been identified as the cause of early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) in shrimp, mechanisms of host response remain unknown. Understanding these processes is important to improve farming practices because this understanding will help to develop methods to enhance shrimp immunity. Pre-treatment of shrimp with 5-minute chronic non-lethal heat stress (NLHS) for 7 days was found to significantly increase Litopenaeus vannamei survival against VPAHPND infection. To elucidate the mechanism involved, mRNA and miRNA expression profiles from the hemocyte of L. vannamei challenged with VPAHPND after NLHS with corresponding control conditions were determined by RNA-Seq. A total of 2,664 mRNAs and 41 miRNAs were differentially expressed after the NLHS treatment and VPAHPND challenge. A miRNA-mRNA regulatory network of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) was subsequently constructed and the interactions of DEMs in regulating the NLHS-induced immune-related pathways were identified. Transcriptomic data revealed that miRNA and mRNA interactions contribute to the modulation of NLHS-induced immune responses, such as the prophenoloxidase-activating system, hemocyte homeostasis, and antimicrobial peptide production, and these responses enhance VPAHPND resistance in L. vannamei.
Collapse
Affiliation(s)
- Pakpoom Boonchuen
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Benedict A Maralit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Philippines.,National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. .,Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Janewanthanakul S, Supungul P, Tang S, Tassanakajon A. Heat shock protein 70 from Litopenaeus vannamei (LvHSP70) is involved in the innate immune response against white spot syndrome virus (WSSV) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103476. [PMID: 31445053 DOI: 10.1016/j.dci.2019.103476] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
White spot syndrome (WSS) caused by white spot syndrome virus (WSSV) is a severe infectious disease in shrimp aquaculture. To find effective therapeutics to control WSSV, it is indispensable to understand the innate immune responses of shrimp to WSSV infection. Previous report demonstrated that the Litopenaeus vannamei heat shock protein 70 (LvHSP70) could induce shrimp innate immunity against bacterial infection. Herein, we further investigate the role of LvHSP70 in anti-WSSV infection. The temporal expression of LvHSP70 was significantly upregulated 2.5- and 1.5-fold at 6 and 24 h post systemic WSSV infection suggesting that the LvHSP70 was a WSSV responsive gene. The recombinant protein of LvHSP70 (rLvHSP70) was produced in an Escherichia coli system and its effect in protection against WSSV infection was investigated. Intramuscularly injection of juvenile shrimp with 1 nmol of rLvHSP70 could significantly prolong 50% mortality of WSSV-infected shrimp from 3 days to 5 days as compared to the control group injected with bovine serum albumin (BSA). Consistently, the injection of rLvHSP70 resulted in 24-fold, 20-fold and 100-fold decrease in the viral copy number after 6, 12 and 24 h post injection, respectively, compared to the control shrimp injected with BSA. Interestingly, it was found that the rLvHSP70 enhanced the expression of the key gene in the prophenoloxidase (proPO) activating system, LvproPO, but reduced the expression of Lvcaspase2 and LvIAP in WSSV-infected shrimp. These results suggested that the LvHSP70 is an important molecule involved in antiviral defense in shrimp presumably via modulating the proPO system and apoptosis.
Collapse
Affiliation(s)
- Suphamon Janewanthanakul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong Luang, Pathum Thani, 12120, Thailand.
| | - Sureerat Tang
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Jaree P, Kawai T, Lo CF, Tassanakajon A, Somboonwiwat K. Genome organization and definition of the Penaeus monodon viral responsive protein 15 (PmVRP15) promoter. FISH & SHELLFISH IMMUNOLOGY 2019; 93:997-1006. [PMID: 31412281 DOI: 10.1016/j.fsi.2019.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The viral responsive protein 15 from the black tiger shrimp Penaeus monodon (PmVRP15) is a highly responsive gene upon white spot syndrome virus (WSSV) challenge. It is identified from hemocyte and important for WSSV trafficking and assembly. However, the knowledge of PmVRP15 gene regulation is limited. In the present study, the genome organization and 5'upstream promoter sequences of PmVRP15 gene were investigated. The PmVRP15 gene was found to contain 4 exons interrupted by 3 introns and the start codon was located in the exon 2. The transcription start site and TATA box were also determined from the 5' upstream sequence. By using the narrow down experiment, the 5' upstream promoter active region was determined to be at the nucleotide positions -525 to +612. Mutagenesis of the putative transcription factor (TF) binding sites revealed that the binding site of interferon regulatory factor (IRF) (-495/-479) was a repressor-binding site whereas those of the octamer transcription factor 1 (Oct-1) (-275/-268) and the nuclear factor of activated T-cells transcription factor (NFAT) (-228/-223) were activator-binding sites. This is the first report on the transcription factors that might play essential roles in modulating the PmVRP15 gene expression. Nevertheless, the underlying regulation mechanism of PmVRP15 gene expression needs further investigation.
Collapse
Affiliation(s)
- Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand.
| |
Collapse
|
10
|
Liu S, Wang L, Li Y, Cui Y, Wang Y, Liu C. Long non-coding RNA CHRF promotes proliferation and mesenchymal transition (EMT) in prostate cancer cell line PC3 requiring up-regulating microRNA-10b. Biol Chem 2019; 400:1035-1045. [PMID: 30844757 DOI: 10.1515/hsz-2018-0380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/20/2019] [Indexed: 01/17/2023]
Abstract
Despite the advance of diagnosis and treatment for prostate cancer, the prognosis of metastatic prostate cancer is poor. We aimed to explore the functional role of long non-coding RNA cardiac hypertrophy-related factor (lncRNA CHRF) in prostate cancer cells (PC3) as well as the molecular mechanisms. LncRNA CHRF silence repressed cell number (%), down-regulated expression of cyclinD1, CDK4 and CDK6, and promoted apoptosis along with activation of the casapse-3 and caspase-9. LncRNA CHRF promoted mesenchymal transition (EMT), showing down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin and ZEB1. Afterwards, we found miR-10b expression was positively correlated with lncRNA CHRF expression, and miR-10b inhibition could reverse the effects of lncRNA CHRF on PC3 and LNCaP cell proliferation and EMT. Finally, lncRNA CHRF was found to activate the GSK3β/AKT and NF-κB pathways via up-regulation of miR-10b. LncRNA CHRF silence repressed proliferation and EMT while promoted apoptosis in PC3 cells via positive regulation of miR-10b. The GSK3β/AKT and NF-κB pathways were activated by lncRNA CHRF, possibly through up-regulation of miR-10b.
Collapse
Affiliation(s)
- Shuang Liu
- School of Rehabilitation Medicine, Binzhou Medical University, No. 346 Guanhai Road, Yantai 264003, China.,Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Lin Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongwei Li
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yuanshan Cui
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongqiang Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Chu Liu
- Department of Urology, Yantai Yuhuangding Hospital, No. 20 Yudong Road, Yantai 264000, China
| |
Collapse
|
11
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
12
|
Visetnan S, Donpudsa S, Tassanakajon A, Rimphanitchayakit V. Silencing of a Kazal-type serine proteinase inhibitor SPIPm2 from Penaeus monodon affects YHV susceptibility and hemocyte homeostasis. FISH & SHELLFISH IMMUNOLOGY 2018; 79:18-27. [PMID: 29729960 DOI: 10.1016/j.fsi.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In shrimp, the Kazal-type serine proteinase inhibitors (KPIs) are involved in host innate immune defense system against pathogenic microorganisms. A five-Kazal-domain SPIPm2 is the most abundant KPIs in the black tiger shrimp Penaeus monodon and up-regulated in response to yellow head virus (YHV) infection. In this study, the role of SPIPm2 in YHV infection was investigated. The expression of SPIPm2 in hemocytes, gill and heart from 48-h YHV-infected shrimp was increased. The expression of SPIPm2 in hemocytes was significantly increased after 12 h of infection and gradually increased higher afterwards. Silencing of SPIPm2 by dsRNA interference resulted in the increased expression of different apoptosis-related genes, the increased expression of transcriptional factors of antimicrobial synthesis pathways, the reduction of circulating hemocytes in the shrimp hemolymph, and the increased susceptibility of the silenced shrimp to YHV infection. The activities of caspase-3 and caspase-7 in the hemocytes of SPIPm2-silenced shrimp was also increased by 5.32-fold as compared with those of the control shrimp. The results suggested that the SPIPm2 was involved in the hemocyte homeostasis.
Collapse
Affiliation(s)
- Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suchao Donpudsa
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Apitanyasai K, Amparyup P, Charoensapsri W, Sangsuriya P, Tassanakajon A. Shrimp hemocyte homeostasis-associated protein (PmHHAP) interacts with WSSV134 to control apoptosis in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:174-182. [PMID: 29501484 DOI: 10.1016/j.fsi.2018.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Hemocyte homeostasis-associated protein (PmHHAP) was first identified as a viral-responsive gene, due to a high upregulation in transcription following white spot syndrome virus (WSSV) infection. Functional studies using RNA interference have suggested that PmHHAP is involved in hemocyte homeostasis by controlling apoptosis during WSSV infection. In this study, the role of PmHHAP in host-viral interactions was further investigated. Yeast two-hybrid assay and co-immunoprecipitation revealed that PmHHAP binds to an anti-apoptosis protein, WSSV134. The viral protein WSSV134 is a late protein of WSSV, expressed 24 h post infection (hpi). Gene silencing of WSSV134 in WSSV-infected shrimp resulted in a reduction of the expression level of the viral replication marker genes VP28, wsv477, and ie-1, which suggests that WSSV134 is likely involved in viral propagation. However, co-silencing of PmHHAP and WSSV134 counteracted the effects on WSSV infection, which implies the importance of the host-pathogen interaction between PmHHAP and WSSV134 in WSSV infection. In addition, caspase 3/7 activity was noticeably induced in the PmHHAP and WSSV134 co-silenced shrimp upon WSSV infection. Moreover, PmHHAP and WSSV134 inhibited caspase-induced activation of PmCasp in vitro in a non-competitive manner. Taken together, these results suggest that PmHHAP and WSSV134 play a role in the host-pathogen interaction and work concordantly to control apoptosis in WSSV infection.
Collapse
Affiliation(s)
- Kantamas Apitanyasai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Cerenius L, Söderhäll K. Crayfish immunity - Recent findings. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:94-98. [PMID: 28502650 DOI: 10.1016/j.dci.2017.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Freshwater crayfish is an important commodity as well as a successful model for studies on crustacean immunity. Due to the ease with which they are kept and the available methods for hemocyte separation and culture they have proven to be very useful. Here, recent progress regarding pattern recognition, immune effector production and antiviral mechanisms are discussed. Several cases of functional resemblance between vertebrate complement and the crayfish immune reactions are highlighted.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
15
|
Tummamunkong P, Jaree P, Tassanakajon A, Somboonwiwat K. WSSV-responsive gene expression under the influence of PmVRP15 suppression. FISH & SHELLFISH IMMUNOLOGY 2018; 72:86-94. [PMID: 29017938 DOI: 10.1016/j.fsi.2017.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The viral responsive protein 15 from black tiger shrimp Penaeus monodon (PmVRP15), is highly up-regulated and produced in the hemocytes of shrimp with white spot syndrome virus (WSSV) infection. To investigate the differential expression of genes from P. monodon hemocytes that are involved in WSSV infection under the influence of PmVRP15 expression, suppression subtractive hybridization (SSH) of PmVRP15-silenced shrimp infected with WSSV was performed. The 189 cDNA clones of the forward library were generated by subtracting the cDNAs from WSSV-infected and PmVRP15 knockdown shrimp with cDNAs from WSSV-infected and GFP knockdown shrimp. For the opposite subtraction, the 176 cDNA clones in the reverse library was an alternative set of genes in WSSV-infected shrimp hemocytes in the presence of PmVRP15 expression. The abundant genes in forward SSH library had a defense/homeostasis of 26%, energy/metabolism of 23% and in the reverse SSH library a hypothetical protein with unknown function was found (30%). The differential expressed immune-related genes from each library were selected for expression analysis using qRT-PCR. All selected genes from the forward library showed high up-regulation in the WSSV-challenged PmVRP15 knockdown group as expected. Interestingly, PmHHAP, a hemocyte homeostasis associated protein, and granulin-like protein, a conserved growth factor, are extremely up-regulated in the absence of PmVRP15 expression in WSSV-infected shrimp. Only transcript level of transglutaminase II, that functions in regulating hematopoietic tissue differentiation and inhibits mature hemocyte production in shrimp, was obviously down-regulated as observed from SSH results. Taken together, our results suggest that PmVRP15 might have a function relevant to hemocyte homeostasis during WSSV infection.
Collapse
Affiliation(s)
- Phawida Tummamunkong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Apitanyasai K, Noonin C, Tassanakajon A, Söderhäll I, Söderhäll K. Characterization of a hemocyte homeostasis-associated-like protein (HHAP) in the freshwater crayfish Pacifastacus leniusculus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:429-435. [PMID: 27663854 DOI: 10.1016/j.fsi.2016.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Hemocyte homeostasis-associated-like protein (HHAP) in the freshwater crayfish Pacifastacus leniusculus has a distinct role from that of its homolog PmHHAP in the shrimp Penaeus monodon. Knockdown of PlHHAP in vitro using double-stranded RNA (dsRNA) had no effect on the cell morphology of hematopoietic tissue (HPT) cells. The total hemocyte number and caspase activity were unchanged after PlHHAP knockdown in vivo, in contrast to the results found in shrimp. Moreover, suppression of PlHHAP both in vitro and in vivo did not change the mRNA levels of some genes involved in hematopoiesis and hemocyte homeostasis. Interestingly, bacterial count and scanning electron microscope revealed that depletion of PlHHAP in intestine by RNAi resulted in higher number of bacteria in the crayfish intestine. Together, these results suggest that PlHHAP is not involved in hemocyte homeostasis in the crayfish P. leniusculus but appears to affect the bacterial number in the intestine through an unknown mechanism. Since PlHHAP has different functions from PmHHAP, we therefore named it HHAP-like protein.
Collapse
Affiliation(s)
- Kantamas Apitanyasai
- Department of Comparative of Physiology, Uppsala University, Uppsala, Sweden; Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Chadanat Noonin
- Department of Comparative of Physiology, Uppsala University, Uppsala, Sweden
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Irene Söderhäll
- Department of Comparative of Physiology, Uppsala University, Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative of Physiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Thansa K, Yocawibun P, Suksodsai H. The cellular death pattern of primary haemocytes isolated from the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2016; 57:243-251. [PMID: 27561625 DOI: 10.1016/j.fsi.2016.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
A key to successfully generate the penaeid shrimp cell line is to find out how primary cells died. The most suitable period to culture Penaeus monodon haemocytes was in the first 48 h of culture because cells had normal morphology, high percent of viable cells (65.29 ± 5.43%), low percent of early (11.75 ± 1.30%) and late apoptotic cells (15.47 ± 11.71%) determined by Annexin V and TUNEL including constant IAP (0.06 ± 0.01-0.07 ± 0.01) and caspase-3 expression (0.30 ± 0.06-0.39 ± 0.10) by real-time PCR throughout the experiment. Moreover, adding 50 and 250 μM of the cell permeable pan caspase inhibitor Z-VAD-FMK produced some melanised cells since the 48(th) hour, while percent of viable cells was decreased since the 24(th) hour with no difference in percent of early and late apoptotic cells compared to control at each time point. No difference of IAP and caspase-3 expression level in both Z-VAD-FMK groups was found compared to control and vehicle groups at each time point, excluding caspase-3 in 250 μM Z-VAD-FMK at the 24(th) hour was higher than control and vehicle. Supplementing sodium fluoride (NaF) induced cell membrane damage and cellular shrinkage of primary haemocytes within 2 h. Even percent of viable cells was reduced down to zero and percent of late apoptotic cells was increased by 2 h of incubation in 25 and 50 mM NaF, IAP and caspase-3 in all NaF groups was not different from control. These results indicate that a number of primary haemocytes derived in this study die through the apoptotic process.
Collapse
Affiliation(s)
- Kwanta Thansa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| | - Patchari Yocawibun
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Hathaitip Suksodsai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
18
|
Söderhäll I. Crustacean hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:129-141. [PMID: 26721583 DOI: 10.1016/j.dci.2015.12.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 06/05/2023]
Abstract
Crustacean hemocytes are important mediators of immune reactions, and the regulation of hemocyte homeostasis is of utmost importance for the health of these animals. This review discusses the current knowledge on the lineages, synthesis and differentiation of hemocytes in crustaceans. Hematopoietic tissues, their origins, and the regulation of hematopoiesis during molting, seasonal variation and infection are discussed. Furthermore, studies concerning the molecular regulation of hemocyte formation in crustaceans are also described, and the different lineages and their molecular markers are discussed and compared with several insect species. Signaling pathways and the regulation of hematopoiesis by transcription factors are typically conserved among these arthropods, whereas cytokines and growth factors are more variable and species specific. However, considering the great diversity among the crustaceans, one should be cautious in drawing general conclusions from studies of only a few species.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, 752 36 Uppsala, Sweden.
| |
Collapse
|