1
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
2
|
Gomes MC, Brokatzky D, Bielecka MK, Wardle FC, Mostowy S. Shigella induces epigenetic reprogramming of zebrafish neutrophils. SCIENCE ADVANCES 2023; 9:eadf9706. [PMID: 37672585 PMCID: PMC10482349 DOI: 10.1126/sciadv.adf9706] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Trained immunity is a long-term memory of innate immune cells, generating an improved response upon reinfection. Shigella is an important human pathogen and inflammatory paradigm for which there is no effective vaccine. Using zebrafish larvae, we demonstrate that after Shigella training, neutrophils are more efficient at bacterial clearance. We observe that Shigella-induced protection is nonspecific and has differences with training by BCG and β-glucan. Analysis of histone ChIP-seq on trained neutrophils revealed that Shigella training deposits the active H3K4me3 mark on promoter regions of 1612 genes, dramatically changing the epigenetic landscape of neutrophils toward enhanced microbial recognition and mitochondrial ROS production. Last, we demonstrate that mitochondrial ROS plays a key role in enhanced antimicrobial activity of trained neutrophils. It is envisioned that signals and mechanisms we discover here can be used in other vertebrates, including humans, to suggest new therapeutic strategies involving neutrophils to control bacterial infection.
Collapse
Affiliation(s)
- Margarida C. Gomes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Magdalena K. Bielecka
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Kütter MT, Barcellos LJG, Boyle RT, Marins LF, Silveira T. Good practices in the rearing and maintenance of zebrafish (Danio rerio) in Brazilian laboratories. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-74134e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Abstract Good Laboratory Practice (GLP) is a management quality control system that encompasses the organizational process and conditions under which non-clinical health and environmental studies are carried out. According to the World Health Organization, GLP must contain five topics: resources, characterization, rules, results, and quality control. This work aims to address a review according to WHO standards of implementing Good Laboratory Practices in zebrafish (Danio rerio) vivariums. Considering that the promotion of one health (animal, human, and environmental) associated with an education plan, protocols, and records are fundamental to guarantee the safety and integrity of employees, animals, and the environment as well as reliability in the results generated. In a way, Brazil still needs improvements related to the well-being of aquatic organisms (national laws, international agreements, corporate programs, and others), especially concerning its use in research and technological development. In this way, the implementation of GLPs provides valuable guidance for improving animal welfare and worker safety, facilitating the standardization of research.
Collapse
|
4
|
Kütter MT, Barcellos LJG, Boyle RT, Marins LF, Silveira T. Boas práticas na criação e manutenção de zebrafish (Danio rerio) em laboratório no Brasil. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-74134p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Resumo As Boas Práticas de Laboratório (BPL) são um sistema de controle de qualidade gerencial que abrange o processo organizacional e as condições sob as quais os estudos não clínicos de saúde e meio ambiente são desenvolvidos. Conforme a Organização Mundial da Saúde (OMS) as BPL devem conter cinco tópicos: recursos, caracterização, regras, resultados e controle de qualidade. O objetivo deste trabalho foi apresentar uma revisão conforme o padrão da OMS para a implementação das BPL em biotério de zebrafish. Considerando que a promoção da saúde única (animal, humana e ambiental) associada a um plano de educação, protocolos e registros são fundamentais para garantir a segurança e a integridade dos trabalhadores/pesquisadores, animais e meio ambiente assim como confiabilidade nos resultados gerados. De certa forma o Brasil ainda necessita de melhorias relacionadas ao bem-estar de organismos aquáticos (leis nacionais, acordos internacionais, programas corporativos e outros); especialmente em relação à utilização deste na pesquisa e desenvolvimento tecnológico. Desta forma, a implementação de BPL fornece uma orientação valiosa para a melhoria do bem-estar animal, e segurança do trabalhador vindo a facilitar a padronização da pesquisa.
Collapse
|
5
|
A multiple T cell epitope comprising DNA vaccine boosts the protective efficacy of Bacillus Calmette-Guérin (BCG) against Mycobacterium tuberculosis. BMC Infect Dis 2020; 20:677. [PMID: 32942991 PMCID: PMC7495405 DOI: 10.1186/s12879-020-05372-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80% - 90% of individuals infected with latent Mycobacterium tuberculosis (Mtb) remain protected throughout their life-span. The release of unique, latent-phase antigens are known to have a protective role in the immune response against Mtb. Although the BCG vaccine has been administered for nine decades to provide immunity against Mtb, the number of TB cases continues to rise, thereby raising doubts on BCG vaccine efficacy. The shortcomings of BCG have been associated with inadequate processing and presentation of its antigens, an inability to optimally activate T cells against Mtb, and generation of regulatory T cells. Furthermore, BCG vaccination lacks the ability to eliminate latent Mtb infection. With these facts in mind, we selected six immunodominant CD4 and CD8 T cell epitopes of Mtb expressed during latent, acute, and chronic stages of infection and engineered a multi-epitope-based DNA vaccine (C6). Result BALB/c mice vaccinated with the C6 construct along with a BCG vaccine exhibited an expansion of both CD4 and CD8 T cell memory populations and augmented IFN-γ and TNF-α cytokine release. Furthermore, enhancement of dendritic cell and macrophage activation was noted. Consequently, illustrating the elicitation of immunity that helps in the protection against Mtb infection; which was evident by a significant reduction in the Mtb burden in the lungs and spleen of C6 + BCG administered animals. Conclusion Overall, the results suggest that a C6 + BCG vaccination approach may serve as an effective vaccination strategy in future attempts to control TB.
Collapse
|
6
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
7
|
Hodgkinson JW, Belosevic M, Elks PM, Barreda DR. Teleost contributions to the understanding of mycobacterial diseases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:111-125. [PMID: 30776420 DOI: 10.1016/j.dci.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Few pathogens have shaped human medicine as the mycobacteria. From understanding biological phenomena driving disease spread, to mechanisms of host-pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to challenge and offer insights into the basis of health and disease. Teleost fish models of mycobacterial infections have progressed significantly over the past three decades, now supplying a range of unique tools and new opportunities to define the strategies employed by these Gram-positive bacteria to overcome host defenses, as well as those host antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a comparative perspective and provide an update on the contributions of teleost models to our understanding of mycobacterial diseases.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom; Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Ravid-Peretz S, Colorni A, Sharon G, Ucko M. Vaccination of European sea bass Dicentrarchus labrax with avirulent Mycobacterium marinum (iipA::kan mutant). FISH & SHELLFISH IMMUNOLOGY 2019; 90:317-327. [PMID: 31039442 DOI: 10.1016/j.fsi.2019.04.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 05/19/2023]
Abstract
Mycobacteriosis is a chronic progressive disease affecting teleost fishes all over the world. No vaccine is commercially available against its main etiological agent, Mycobacterium marinum. The mycobacterial gene responsible for invasion and intracellular persistence, iipA, is known to modulate M. marinum pathology. The innate and adaptive immune responses in sea bass (Dicentrarchus labrax) vaccinated with M. marinum iipA::kan mutant with (and without) the use of adjuvant, with (and without) a booster vaccination were monitored. The adjuvanted vaccine induced enhanced immune responses. TNF-α transcription levels were extremely high in spleen of the fish vaccinated with the addition of adjuvant in both fish vaccinated once and twice, followed by an IgM response highly specific for M. marinum. Also, histologically, granulomas started appearing in spleen and head-kidney tissues (but with no visible bacteria) within a month after vaccination, mainly with the adjuvanted vaccine. This was followed by reduction in pathology, as demonstrated by the lower number of granulomas (with visible bacteria), indicating that even heat-killed bacteria were able to elicit granulomatous formations. Adhesion of the internal organs and moderate pigmentation were observed in the perivisceral adipose tissue of nearly all vaccinated fish. Although the adjuvanted heat-killed avirulent iipA::kan mutant clearly induced a strong humoral and adaptive immune response, the booster treatment did not seem to have produced a significantly higher degree of protection from the disease compared to fish that received a single vaccination.
Collapse
Affiliation(s)
- Shay Ravid-Peretz
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| | - Angelo Colorni
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| | - Galit Sharon
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| | - Michal Ucko
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel.
| |
Collapse
|
9
|
Chen B, Liu B, Zhao Z, Wang G. Evaluation of a DNA vaccine encoding Brucella BvrR in BALB/c mice. Mol Med Rep 2018; 19:1302-1308. [PMID: 30569140 DOI: 10.3892/mmr.2018.9735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/06/2018] [Indexed: 11/05/2022] Open
Abstract
Brucellosis is an important neglected zoonotic disease, and the pathogens responsible are Brucellae. In order to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella BvrR, the recombinant plasmid pCDNA‑BvrR was constructed by inserting the BvrR gene fragment into a pCDNA3.0 vector. The His6‑tagged BvrR was purified with His‑trap FF crude affinity chromatography and verified with an anti‑histidine monoclonal antibody by western blot analysis. The specific immunoglobulin antigens and their isotypes were detected by indirect ELISA. The recombinant His6‑BvrR protein was expressed and purified by affinity chromatography. The optical density 450 value of immunoglobulin G (IgG) in the pCDNA‑BvrR group was significantly increased compared with the pCDNA3.0 vector or PBS groups (P<0.05), and the pCDNA3.0 vector and PBS groups exhibited no significant difference (P>0.05). BvrR induced specific antibodies with a dominance of IgG2a over IgG1 and the T cell‑proliferative response, in addition to a typical T helper‑1 (Th1)‑dominated immune response in mice. The splenocytes from mice of the pCDNA‑BvrR group demonstrated significant proliferative activity compared with the pCDNA3.0 vector group. The present results indicated that immunization with BvrR induced a specific Th1‑type immune response in mice. Subsequent to challenging with B. abortus S19, it was identified that the DNA vaccine pCDNA‑BvrR induced a significant level of protection in BALB/c mice by evaluating systemic bacterial clearance. These results suggested that BvrR may be a good candidate for a DNA vaccine against brucellosis.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pathogenic Biology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Baoshan Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Zhina Zhao
- Department of Microbiology and Cell Biology, College of Life Science and Pharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Guizhen Wang
- Department of Pathogenic Biology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
10
|
Ziklo N, Colorni A, Gao LY, Du SJ, Ucko M. Humoral and Cellular Immune Response of European Seabass Dicentrarchus labrax Vaccinated with Heat-Killed Mycobacterium marinum (iipA::kan Mutant). JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:312-324. [PMID: 30120830 DOI: 10.1002/aah.10042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/12/2018] [Indexed: 05/19/2023]
Abstract
No vaccine is yet commercially available against Mycobacterium marinum, the etiological agent of fish mycobacteriosis (also known as "fish tuberculosis"). The mycobacterial gene responsible for invasion and intracellular persistence, iipA, is known to moderate M. marinum pathology in Zebrafish Danio rerio. Two doses of heat-killed, wild-type, virulent M. marinum and two doses of a heat-killed, avirulent M. marinum iipA::kan mutant strain were used in parallel to vaccinate European Seabass Dicentrarchus labrax. The fish were then challenged with live, virulent M. marinum, and the pathogenesis of the infection was monitored. High specific immunoglobulin M (IgM) response and an increase in cytokine tumor necrosis factor alpha (TNF-α) messenger RNA expression levels were observed in all vaccinated fish. At 1 month postchallenge, TNF-α expression levels increased in spleen tissues of fish vaccinated with the virulent type and in those of unvaccinated fish, whereas in the head kidney, expression was up-regulated only in unvaccinated fish. The expression then decreased, and at 2 months postchallenge, expression appeared similar in all vaccination types. The highest survival rate (75%) was recorded in the group of fish that were vaccinated with a high dose of avirulent iipA::kan mutant. The iipA::kan mutant induced a strong immune response accompanied by only modest tissue disruption. Coupled with an effective program of booster treatments, the iipA::kan mutant vaccine may be developed into a powerful preventive measure against fish mycobacteriosis.
Collapse
Affiliation(s)
- N Ziklo
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
- Eilat Campus, Marine Biology and Biotechnology Program, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - A Colorni
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| | - L-Y Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - S J Du
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, 21202, USA
| | - M Ucko
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| |
Collapse
|
11
|
López V, Risalde MA, Contreras M, Mateos-Hernández L, Vicente J, Gortázar C, de la Fuente J. Heat-inactivated Mycobacterium bovis protects zebrafish against mycobacteriosis. JOURNAL OF FISH DISEASES 2018; 41:1515-1528. [PMID: 29956837 DOI: 10.1111/jfd.12847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Control of mycobacterial infection constitutes a priority for human and animal health worldwide. However, effective vaccines are needed for the control of human and animal tuberculosis (TB). Adult zebrafish have become a useful model for studying the pathophysiology of mycobacterial infection and for the development of novel interventions for TB control and prevention. Recently, parenteral and oral immunization with the heat-inactivated Mycobacterium bovis vaccine (M. bovis IV) protected wild boar against TB. The objectives of this study were to provide additional support for the role of M. bovis IV in TB control using the zebrafish model and to conduct the first trial with this vaccine for the control of fish mycobacteriosis. The results showed that M. bovis IV protected zebrafish against mycobacteriosis caused by low and high infection doses of Mycobacterium marinum and provided evidence suggesting that the protective mechanism elicited by M. bovis IV in zebrafish as in other species is based on the activation of the innate immune response through the C3 pathway, with a role for the regulatory protein Akr2 in this process. These results encourage the use of M. bovis IV for TB control in different species.
Collapse
Affiliation(s)
- Vladimir López
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - María Angeles Risalde
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Marinela Contreras
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Joaquin Vicente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
12
|
Myllymäki H, Niskanen M, Luukinen H, Parikka M, Rämet M. Identification of protective postexposure mycobacterial vaccine antigens using an immunosuppression-based reactivation model in the zebrafish. Dis Model Mech 2018; 11:11/3/dmm033175. [PMID: 29590635 PMCID: PMC5897733 DOI: 10.1242/dmm.033175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/14/2018] [Indexed: 12/28/2022] Open
Abstract
Roughly one third of the human population carries a latent Mycobacterium tuberculosis infection, with a 5-10% lifetime risk of reactivation to active tuberculosis and further spreading the disease. The mechanisms leading to the reactivation of a latent Mycobacterium tuberculosis infection are insufficiently understood. Here, we used a natural fish pathogen, Mycobacterium marinum, to model the reactivation of a mycobacterial infection in the adult zebrafish (Danio rerio). A low-dose intraperitoneal injection (∼40 colony-forming units) led to a latent infection, with mycobacteria found in well-organized granulomas surrounded by a thick layer of fibrous tissue. A latent infection could be reactivated by oral dexamethasone treatment, which led to disruption of the granuloma structures and dissemination of bacteria. This was associated with the depletion of lymphocytes, especially CD4+ T cells. Using this model, we verified that ethambutol is effective against an active disease but not a latent infection. In addition, we screened 15 mycobacterial antigens as postexposure DNA vaccines, of which RpfB and MMAR_4207 reduced bacterial burdens upon reactivation, as did the Ag85-ESAT-6 combination. In conclusion, the adult zebrafish-M. marinum infection model provides a feasible tool for examining the mechanisms of reactivation in mycobacterial infections, and for screening vaccine and drug candidates.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland
| | - Mirja Niskanen
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland
| | - Hanna Luukinen
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland
| | - Mataleena Parikka
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland.,Oral and Maxillofacial Unit, Tampere University Hospital, Tampere FI-33521, Finland
| | - Mika Rämet
- BioMediTech Institute and Faculty of Medical and Life Sciences, University of Tampere, Tampere FI-33014, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere FI-33521, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90220, Finland.,PEDEGO Research Unit, and, Medical Research Center, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
13
|
Myllymäki H, Niskanen M, Oksanen KE, Sherwood E, Ahava M, Parikka M, Rämet M. Identification of novel antigen candidates for a tuberculosis vaccine in the adult zebrafish (Danio rerio). PLoS One 2017; 12:e0181942. [PMID: 28742838 PMCID: PMC5526617 DOI: 10.1371/journal.pone.0181942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a major global health challenge and the development of a better vaccine takes center stage in fighting the disease. For this purpose, animal models that are capable of replicating the course of the disease and are suitable for the early-stage screening of vaccine candidates are needed. A Mycobacterium marinum infection in adult zebrafish resembles human TB. Here, we present a pre-clinical screen for a DNA-based tuberculosis vaccine in the adult zebrafish using an M. marinum infection model. We tested 15 antigens representing different types of mycobacterial proteins, including the Resuscitation Promoting factors (Rpf), PE/PPE protein family members, other membrane proteins and metabolic enzymes. The antigens were expressed as GFP fusion proteins, facilitating the validation of their expression in vivo. The efficiency of the antigens was tested against a low-dose intraperitoneal M. marinum infection (≈ 40 colony forming units), which mimics a primary M. tuberculosis infection. While none of the antigens was able to completely prevent a mycobacterial infection, four of them, namely RpfE, PE5_1, PE31 and cdh, led to significantly reduced bacterial burdens at four weeks post infection. Immunization with RpfE also improved the survival of the fish against a high-dose intraperitoneal injection with M. marinum (≈ 10.000 colony forming units), resembling the disseminated form of the disease. This study shows that the M. marinum infection model in adult zebrafish is suitable for the pre-clinical screening of tuberculosis vaccines and presents RpfE as a potential antigen candidate for further studies.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- * E-mail:
| | - Mirja Niskanen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kaisa Ester Oksanen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Eleanor Sherwood
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Maarit Ahava
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mataleena Parikka
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Oral and Maxillofacial Unit, Tampere University Hospital, Tampere, Finland
| | - Mika Rämet
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
14
|
Ru H, Liu X, Lin C, Yang J, Chen F, Sun R, Zhang L, Liu J. The Impact of Genome Region of Difference 4 (RD4) on Mycobacterial Virulence and BCG Efficacy. Front Cell Infect Microbiol 2017. [PMID: 28642843 PMCID: PMC5462905 DOI: 10.3389/fcimb.2017.00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Comparative genome analyses have revealed a number of regions of difference (RD) among mycobacterial species. The functional consequences of most of these genome variations have not been studied. RD4, which encompasses Rv1506c-Rv1516c of Mycobacterium tuberculosis (M. tb) H37Rv, is absent in the closely related Mycobacterium bovis and M. bovis Bacille Calmette-Guérin (BCG). On the other hand, we previously found that Mycobacterium marinum has an extended RD4 which includes a number of genes involved in the biosynthesis of lipooligosaccharides (LOSs). As such, there appears to be a gradual decay of RD4 in mycobacterial genomes in the order of M. marinum, M. tb, and M. bovis (including BCG). To understand the potential effect of RD4 on mycobacterial virulence, in this study, we cloned the entire (Rv1501-1516c) and partial (Rv1501-1508c) RD4 into an integrating vector. These constructs were introduced to M. bovis BCG and M. marinum and the virulence of the RD4 knock-in strains were evaluated in the SCID mice and zebrafish infection models, respectively. BCG containing the entire RD4 exhibited similar levels of virulence to the parental strain but BCG containing partial RD4 (Rv1501-Rv1508c) was more attenuated. Similarly, zebrafish infection experiments showed that addition of partial RD4 also appeared to attenuate the virulence of M. marinum. However, M. marinum containing entire RD4 was more virulent than the wild type strain. Interestingly, BCG strains containing the entire or partial RD4 exhibited better protection of zebrafish against M. marinum challenge than the parental BCG. Taken together, our data suggest that RD4 plays a role in mycobacterial virulence and that RD4 knock-in BCG strains confer improved protection. Our study has provided new insights into the biological function of RD4 and evolution of mycobacterial genomes.
Collapse
Affiliation(s)
- Huanwei Ru
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Xiaojia Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Jingyan Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Fuzeng Chen
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Ruifeng Sun
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan UniversityShanghai, China.,Shanghai Engineering Research Center of Industrial MicroorganismsShanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China.,Department of Molecular Genetics, University of TorontoToronto, ON, Canada
| |
Collapse
|
15
|
Sullivan C, Matty MA, Jurczyszak D, Gabor KA, Millard PJ, Tobin DM, Kim CH. Infectious disease models in zebrafish. Methods Cell Biol 2016; 138:101-136. [PMID: 28129840 DOI: 10.1016/bs.mcb.2016.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, the zebrafish (Danio rerio) has developed as an important alternative to mammalian models for the study of hostpathogen interactions. Because they lack a functional adaptive immune response during the first 4-6weeks of development, zebrafish rely upon innate immune responses to protect against injuries and infections. During this early period of development, it is possible to isolate and study mechanisms of infection and inflammation arising from the innate immune response without the complications presented by the adaptive immune response. Zebrafish possess several inherent characteristics that make them an attractive option to study hostpathogen interactions, including extensive sequence and functional conservation with the human genome, optical clarity in larvae that facilitates the high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, robust forward and reverse genetic tools and techniques (e.g., CRISPR-Cas9 and TALENs), and amenability to chemical studies and screens. Here, we describe methods for studying hostpathogen interactions both through systemic infections and through localized infections that allow analysis of host cell response, migration patterns, and behavior. Each of the methods described can be modified for use in downstream applications that include ecotoxicant studies and chemical screens.
Collapse
Affiliation(s)
- C Sullivan
- University of Maine, Orono, ME, United States
| | - M A Matty
- Duke University School of Medicine, Durham, NC, United States
| | | | - K A Gabor
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - P J Millard
- University of Maine, Orono, ME, United States
| | - D M Tobin
- Duke University School of Medicine, Durham, NC, United States
| | - C H Kim
- University of Maine, Orono, ME, United States
| |
Collapse
|
16
|
Myllymäki H, Bäuerlein CA, Rämet M. The Zebrafish Breathes New Life into the Study of Tuberculosis. Front Immunol 2016; 7:196. [PMID: 27242801 PMCID: PMC4871865 DOI: 10.3389/fimmu.2016.00196] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) is a global health emergency. Up to one-third of the world’s population is infected with Mycobacterium tuberculosis, and the pathogen continues to kill 1.5 million people annually. Currently, the means for preventing, diagnosing, and treating TB are unsatisfactory. One of the main reasons for the poor progress in TB research has been a lack of good animal models to study the latency, dormancy, and reactivation of the disease. Although sophisticated in vitro and in silico methods suitable for TB research are constantly being developed, they cannot reproduce the complete vertebrate immune system and its interplay with pathogens and vaccines. However, the zebrafish has recently emerged as a useful alternative to more traditional models, such as mice, rabbits, guinea pigs, and non-human primates, for studying the complex pathophysiology of a mycobacterial infection. The model is based on the similarity between Mycobacterium marinum – a natural fish pathogen – and M. tuberculosis. In both zebrafish larvae and adult fish, an infection with M. marinum leads to the formation of macrophage aggregates and granulomas, which resemble the M. tuberculosis infections in humans. In this review, we will summarize the current status of the zebrafish model in TB research and highlight the advantages of using zebrafish to dissect mycobacterial virulence strategies as well as the host immune responses elicited against them. In addition, we will discuss the possibilities of using the adult zebrafish model for studying latency, dormancy, and reactivation in a mycobacterial infection.
Collapse
Affiliation(s)
| | | | - Mika Rämet
- BioMediTech, University of Tampere, Tampere, Finland; Department of Pediatrics, Tampere University Hospital, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|