1
|
Mátis G, Tráj P, Hanyecz V, Mackei M, Márton RA, Vörösházi J, Kemény Á, Neogrády Z, Sebők C. Immunomodulatory properties of chicken cathelicidin-2 investigated on an ileal explant culture. Vet Res Commun 2024; 48:2527-2535. [PMID: 38871866 PMCID: PMC11315780 DOI: 10.1007/s11259-024-10428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
As the threat posed by antimicrobial resistance grows more crucial, the development of compounds that can replace antibiotics becomes increasingly vital. Chicken cathelicidin-2 (Cath-2) belongs to the group of Host Defense Peptides (HDPs), which could provide a feasible solution for the treatment of gastrointestinal infections in poultry. It is a small peptide produced by the heterophil granulocytes of chickens as part of the innate immune response, and its immunomodulatory activity has already been demonstrated in several cell types. In this study, the effects of Cath-2 on the intestinal immune response were examined using ileal explant cultures isolated from chicken. Regarding our results, Cath-2 displayed a potent anti-inflammatory effect as it alleviated the LTA-caused elevation of interleukin (IL)-6 and IL-2 concentrations, and that of the IFN-γ/IL-10 ratio, furthermore, it increased the concentration of IL-10, alleviating the LTA-evoked decreased level of the anti-inflammatory cytokine. Moreover, when applied alone, it elevated the concentrations of IL-6, CXCLi2, and IL-2, providing evidence of its complex immunomodulatory mechanisms. In summary, Cath-2 was able to modulate the immune response of the intestinal wall not only by reducing pro-inflammatory cytokine release, but also through immune stimulation, demonstrating that it has the ability to improve innate immunity via a complex mechanism that may make it a suitable candidate for the control of intestinal infections.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Viktória Hanyecz
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary
- Department of Medical Biology, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary.
| |
Collapse
|
2
|
Thankappan B, Thomas A, Sakthivadivel A, Shanmuganathan N, Angayarkanni J. In vitro and in vivo antimicrobial activity of self-assembled melittin nanoparticles: A comparative study with melittin peptide. Colloids Surf B Biointerfaces 2023; 226:113331. [PMID: 37150105 DOI: 10.1016/j.colsurfb.2023.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The aim of the present study was to analyse the efficacy of self-assembled melittin nanoparticles (MelNP) and compare with native melittin peptide (Mel). Self-assembly formation of the melittin was promoted by heating at 90 °C for 50 min followed by cooling at room temperature. SEM micrographs revealed the formation of nanovesicles. MIC of MelNP against E. coli, S. aureus and P. aeruginosa was found to be 4, 2, and 2 μM, respectively while it was 8, 8 and 4 μM for Mel peptide. Markedly, MelNP showed 12.6 % hemolysis at 8 μM whereas with Mel it was about 71.63 %. The lytic activity of MelNP was also higher in the presence of trypsin/serum than Mel. Both MelNP and Mel exhibited membranolytic activity with cellular disintegration. Further, toxicity analysis studied up to 72 h showed that MelNP was non-toxic to zebrafish embryos up to 6 μM; however, with Mel exposed embryos showed up 30 dead embryos. Bacterial load was markedly reduced in MelNP and Mel exposed infected embryos than compared to the infected one. Moreover, the peptides were also responsible for reducing the infection and prolonging the survivability in infected embryos. Thus, MelNP could be considered an efficient and safer therapeutic molecule that Mel and wherein further experiments are warranted to affirm the broad spectrum efficiency.
Collapse
Affiliation(s)
- Bency Thankappan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Anto Thomas
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Aishwarya Sakthivadivel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Nivetha Shanmuganathan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
3
|
van Dijk A, Anten J, Bakker A, Evers N, Hoekstra AT, Chang JC, Scheenstra MR, Veldhuizen EJA, Netea MG, Berkers CR, Haagsman HP. Innate Immune Training of Human Macrophages by Cathelicidin Analogs. Front Immunol 2022; 13:777530. [PMID: 35958593 PMCID: PMC9360325 DOI: 10.3389/fimmu.2022.777530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Trained innate immunity can be induced in human macrophages by microbial ligands, but it is unknown if exposure to endogenous alarmins such as cathelicidins can have similar effects. Previously, we demonstrated sustained protection against infection by the chicken cathelicidin-2 analog DCATH-2. Thus, we assessed the capacity of cathelicidins to induce trained immunity. PMA-differentiated THP-1 (dTHP1) cells were trained with cathelicidin analogs for 24 hours and restimulated after a 3-day rest period. DCATH-2 training of dTHP-1 cells amplified their proinflammatory cytokine response when restimulated with TLR2/4 agonists. Trained cells displayed a biased cellular metabolism towards mTOR-dependent aerobic glycolysis and long-chain fatty acid accumulation and augmented microbicidal activity. DCATH-2-induced trained immunity was inhibited by histone acetylase inhibitors, suggesting epigenetic regulation, and depended on caveolae/lipid raft-mediated uptake, MAPK p38 and purinergic signaling. To our knowledge, this is the first report of trained immunity by host defense peptides.
Collapse
Affiliation(s)
- Albert van Dijk
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Albert van Dijk,
| | - Jennifer Anten
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Bakker
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Noah Evers
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anna T. Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jung-Chin Chang
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Maaike R. Scheenstra
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Edwin J. A. Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Celia R. Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henk P. Haagsman
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Balhuizen MD, Versluis CM, van Grondelle MO, Veldhuizen EJ, Haagsman HP. Modulation of outer membrane vesicle-based immune responses by cathelicidins. Vaccine 2022; 40:2399-2408. [DOI: 10.1016/j.vaccine.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/06/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
5
|
van Harten RM, Veldhuizen EJA, Haagsman HP, Scheenstra MR. The cathelicidin CATH-2 efficiently neutralizes LPS- and E. coli-induced activation of porcine bone marrow derived macrophages. Vet Immunol Immunopathol 2021; 244:110369. [PMID: 34954638 DOI: 10.1016/j.vetimm.2021.110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 01/13/2023]
Abstract
Infectious diseases in pigs cause monetary loss to farmers and pose a zoonotic risk. Therefore, it is important to obtain more porcine specific immunological knowledge as a measure to protect against infectious diseases, for example by exploring immunomodulators that are usable as vaccine adjuvants. Cathelicidins are a class of host defence peptides (HDPs) able to directly kill microbes as well as exert a diverse range of effects on the immune system. The peptides have shown promise as immunomodulatory peptides in many applications, including vaccines. However, it is currently unknown what the precise effect of these peptides is on porcine immune cells and whether peptides of other species might also have a strong immunomodulatory effect on porcine macrophages. Mononuclear bone marrow cells of pigs, aged 5-6 months, were cultured into M1 or M2 macrophages and stimulated with LPS or whole bacteria in the presence of host defence peptides (HDPs). CATH-2 and LL-37 strongly inhibited LPS-induced activation of M1 macrophages, the inhibition of LPS-induced activation of M2 macrophages by HDPs was milder, showing that the peptides have selective effects on different cell types. Upon stimulation with whole bacteria, only CATH-2 could effectively inhibit macrophage activation, showing the potent anti-inflammatory potential of this peptide. These results show that porcine peptides are not necessarily the most active in a porcine system, and that CATH-2 is effective in a porcine system as an anti-inflammatory immune modulator, which can be used, for example, in inactivated pathogen vaccines.
Collapse
Affiliation(s)
- Roel M van Harten
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Division of Immunology, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | - Henk P Haagsman
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
6
|
Kraaij MD, van Dijk A, Scheenstra MR, van Harten RM, Haagsman HP, Veldhuizen EJA. Chicken CATH-2 Increases Antigen Presentation Markers on Chicken Monocytes and Macrophages. Protein Pept Lett 2020; 27:60-66. [PMID: 31362652 PMCID: PMC6978643 DOI: 10.2174/0929866526666190730125525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/01/2022]
Abstract
Abstract: Background Cathelicidins are a family of Host Defense Peptides (HDPs), that play an important role in the innate immune response. They exert both broad-spectrum antimicrobial activity against pathogens, and strong immunomodulatory functions that affect the response of innate and adaptive immune cells. Objective The aim of this study was to investigate immunomodulation by the chicken cathelicidin CATH-2 and compare its activities to those of the human cathelicidin LL-37. Methods Chicken macrophages and chicken monocytes were incubated with cathelicidins. Activation of immune cells was determined by measuring surface markers Mannose Receptor C-type 1 (MRC1) and MHC-II. Cytokine production was measured by qPCR and nitric oxide production was determined using the Griess assay. Finally, the effect of cathelicidins on phagocytosis was measured using carboxylate-modified polystyrene latex beads. Results CATH-2 and its all-D enantiomer D-CATH-2 increased MRC1 and MHC-II expression, markers for antigen presentation, on primary chicken monocytes, whereas LL-37 did not. D-CATH-2 also increased the MRC1 and MHC-II expression if a chicken macrophage cell line (HD11 cells) was used. In addition, LPS-induced NO production by HD11 cells was inhibited by CATH-2 and D-CATH-2. Conclusion These results are a clear indication that CATH-2 (and D-CATH-2) affect the activation state of monocytes and macrophages, which leads to optimization of the innate immune response and enhancement of the adaptive immune response.
Collapse
Affiliation(s)
- Marina D Kraaij
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Roel M van Harten
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
van Dijk A, Hedegaard CJ, Haagsman HP, Heegaard PMH. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Vet Res 2018; 49:68. [PMID: 30060758 PMCID: PMC6066942 DOI: 10.1186/s13567-018-0558-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described.
Collapse
Affiliation(s)
- Albert van Dijk
- Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chris J. Hedegaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henk P. Haagsman
- Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter M. H. Heegaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Kraaij MD, van Dijk A, Haagsman HP. CATH-2 and LL-37 increase mannose receptor expression, antigen presentation and the endocytic capacity of chicken mononuclear phagocytes. Mol Immunol 2017; 90:118-125. [PMID: 28715682 DOI: 10.1016/j.molimm.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/18/2017] [Accepted: 07/01/2017] [Indexed: 01/21/2023]
Abstract
Cathelicidins display in vitro and in vivo immunomodulatory activities and are part of the innate immune system. Previously, we found that in ovo treatment with chicken cathelicidin CATH-2 partially protects young broilers against respiratory E. coli infection. To determine the cellular aspects of this protection, we investigated immunomodulatory effects of CATH-2 and the human cathelicidin LL-37 on primary chicken peripheral blood mononuclear cells (PBMCs). Treatment of chicken PBMCs with L-CATH-2, D-CATH-2 or LL-37 increased the percentage of mononuclear phagocytes, but decreased that of B cells. L-CATH-2, D-CATH-2 and LL-37 treatment of chicken PBMCs also enhanced the expression levels of mannose receptor MRC1 and antigen presentation markers MHCII, CD40 and CD86 on mononuclear phagocytes, indicating increased antigen presentation capacity. Concomitantly, L-CATH-2, D-CATH-2 and LL-37 neutralized LPS-induced cytokine production, while increasing the endocytic capacity. We conclude that L-CATH-2, D-CATH-2 and LL-37 can modulate the immune response of primary chicken immune cells by increasing mannose receptor expression, antigen presentation, endocytosis and neutralizing LPS-induced cytokine production and as a result augment activation of the adaptive immune system.
Collapse
Affiliation(s)
- Marina D Kraaij
- Division of Molecular Host Defence, Dept. of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Dept. of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Dept. of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Masud S, Torraca V, Meijer AH. Modeling Infectious Diseases in the Context of a Developing Immune System. Curr Top Dev Biol 2016; 124:277-329. [PMID: 28335862 DOI: 10.1016/bs.ctdb.2016.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish has been used for over a decade to study the mechanisms of a wide variety of inflammatory disorders and infections, with models ranging from bacterial, viral, to fungal pathogens. Zebrafish has been especially relevant to study the differentiation, specialization, and polarization of the two main innate immune cell types, the macrophages and the neutrophils. The optical accessibility and the early appearance of myeloid cells that can be tracked with fluorescent labels in zebrafish embryos and the ability to use genetics to selectively ablate or expand immune cell populations have permitted studying the interaction between infection, development, and metabolism. Additionally, zebrafish embryos are readily colonized by a commensal flora, which facilitated studies that emphasize the requirement for immune training by the natural microbiota to properly respond to pathogens. The remarkable conservation of core mechanisms required for the recognition of microbial and danger signals and for the activation of the immune defenses illustrates the high potential of the zebrafish model for biomedical research. This review will highlight recent insight that the developing zebrafish has contributed to our understanding of host responses to invading microbes and the involvement of the microbiome in several physiological processes. These studies are providing a mechanistic basis for developing novel therapeutic approaches to control infectious diseases.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
10
|
Cuperus T, van Dijk A, Matthijs MGR, Veldhuizen EJA, Haagsman HP. Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Sci Rep 2016; 6:26622. [PMID: 27229866 PMCID: PMC4882517 DOI: 10.1038/srep26622] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/04/2016] [Indexed: 12/30/2022] Open
Abstract
Increasing antibiotic resistance and ever stricter control on antibiotic use are a driving force to develop alternatives to antibiotics. One such strategy is the use of multifunctional Host Defense Peptides. Here we examined the protective effect of prophylactic treatment with the D analog of chicken cathelicidin-2 (D-CATH-2) against a respiratory E. coli infection. Chickens were treated with D-CATH-2 in ovo at day 18 of embryonic development or intramuscularly at days 1 and 4 after hatch. At 7 days of age, birds were challenged intratracheally with avian pathogenic E. coli. Protection was evaluated by recording mortality, morbidity (Mean Lesion Score) and bacterial swabs of air sacs at 7 days post-infection. In ovo D-CATH-2 treatment significantly reduced morbidity (63%) and respiratory bacterial load (>90%), while intramuscular treatment was less effective. D-CATH-2 increased the percentage of peripheral blood lymphocytes and heterophils by both administration routes. E. coli specific IgM levels were lower in in ovo treated animals compared to intramuscular D-CATH-2 treatment. In short, in ovo treatment with the Host Defense Peptide derived D-CATH-2 can partially protect chickens from E. coli infection, making this peptide an interesting starting point to develop alternatives to antibiotics for use in the poultry sector.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mieke G R Matthijs
- Division of Poultry Health, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|