1
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
2
|
Irvine A, Huws SA, Atkinson LE, Mousley A. Exploring the antimicrobial peptidome of nematodes through phylum-spanning in silico analyses highlights novel opportunities for pathogen control. PLoS Negl Trop Dis 2023; 17:e0011618. [PMID: 37672536 PMCID: PMC10506718 DOI: 10.1371/journal.pntd.0011618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/18/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Antimicrobial Peptides (AMPs) are key constituents of the invertebrate innate immune system and provide critical protection against microbial threat. Nematodes display diverse life strategies where they are exposed to heterogenous, microbe rich, environments highlighting their need for an innate immune system. Within the Ecdysozoa, arthropod AMPs have been well characterised, however nematode-derived AMP knowledge is limited. In this study the distribution and abundance of putative AMP-encoding genes was examined in 134 nematode genomes providing the most comprehensive profile of AMP candidates within phylum Nematoda. Through genome and transcriptome analyses we reveal that phylum Nematoda is a rich source of putative AMP diversity and demonstrate (i) putative AMP group profiles that are influenced by nematode lifestyle where free-living nematodes appear to display enriched putative AMP profiles relative to parasitic species; (ii) major differences in the putative AMP profiles between nematode clades where Clade 9/V and 10/IV species possess expanded putative AMP repertoires; (iii) AMP groups with highly restricted profiles (e.g. Cecropins and Diapausins) and others [e.g. Nemapores and Glycine Rich Secreted Peptides (GRSPs)] which are more widely distributed; (iv) complexity in the distribution and abundance of CSαβ subgroup members; and (v) that putative AMPs are expressed in host-facing life stages and biofluids of key nematode parasites. These data indicate that phylum Nematoda displays diversity in putative AMPs and underscores the need for functional characterisation to reveal their role and importance to nematode biology and host-nematode-microbiome interactions.
Collapse
Affiliation(s)
- Allister Irvine
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sharon A. Huws
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Zhang LM, Yang M, Zhou SW, Zhang H, Feng Y, Shi L, Li DS, Lu QM, Zhang ZH, Zhao M. Blapstin, a Diapause-Specific Peptide-Like Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera, Has Antifungal Function. Microbiol Spectr 2023; 11:e0308922. [PMID: 37140456 PMCID: PMC10269622 DOI: 10.1128/spectrum.03089-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Drug resistance against bacteria and fungi has become common in recent years, and it is urgent to discover novel antimicrobial peptides to manage this problem. Many antimicrobial peptides from insects have been reported to have antifungal activity and are candidate molecules in the treatment of human diseases. In the present study, we characterized an antifungal peptide named blapstin that was isolated from the Chinese medicinal beetle Blaps rhynchopetera used in folk medicine. The complete coding sequence was cloned from the cDNA library prepared from the midgut of B. rhynchopetera. It is a 41-amino-acid diapause-specific peptide (DSP)-like peptide stabilized by three disulfide bridges and shows antifungal activity against Candida albicans and Trichophyton rubrum with MICs of 7 μM and 5.3 μM, respectively. The C. albicans and T. rubrum treated with blapstin showed irregular and shrunken cell membranes. In addition, blapstin inhibited the activity of C. albicans biofilm and showed little hemolytic or toxic activity on human cells and it is highly expressed in the fat body, followed by the hemolymph, midgut, muscle, and defensive glands. These results indicate that blapstin may help insects fight against fungi and showed a potential application in the development of antifungal reagents. IMPORTANCE Candida albicans is one of the conditional pathogenic fungi causing severe nosocomial infections. Trichophyton rubrum and other skin fungi are the main pathogens of superficial cutaneous fungal diseases, especially in children and the elderly. At present, antibiotics such as amphotericin B, ketoconazole, and fluconazole are the main drugs for the clinical treatment of C. albicans and T. rubrum infections. However, these drugs have certain acute toxicity. Long-term use can increase kidney damage and other side effects. Therefore, obtaining broad-spectrum antifungal drugs with high efficiency and low toxicity for the treatment of C. albicans and T. rubrum infections is a top priority. Blapstin is an antifungal peptide which shows activity against C. albicans and T. rubrum. The discovery of blapstin provides a novel clue for our understanding of the innate immunity of Blaps rhynchopetera and provides a template for designing antifungal drugs.
Collapse
Affiliation(s)
- La-Mei Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Wen Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Feng
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Lei Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Dong-Sheng Li
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Qiu-Min Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Zhong-He Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Zhao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| |
Collapse
|
4
|
Pradhan G, Engsontia P. Diversity of the Antimicrobial Peptide Genes in Collembola. INSECTS 2023; 14:215. [PMID: 36975900 PMCID: PMC10051947 DOI: 10.3390/insects14030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Multidrug-resistant bacteria are a current health crisis threatening the world's population, and scientists are looking for new drugs to combat them. Antimicrobial peptides (AMPs), which are part of the organism's innate immune system, are a promising new drug class as they can disrupt bacterial cell membranes. This study explored antimicrobial peptide genes in collembola, a non-insect hexapod lineage that has survived in microbe-rich habitats for millions of years, and their antimicrobial peptides have not been thoroughly investigated. We used in silico analysis (homology-based gene identification, physicochemical and antimicrobial property prediction) to identify AMP genes from the genomes and transcriptomes of five collembola representing three main suborders: Entomobryomorpha (Orchesella cincta, Sinella curviseta), Poduromorpha (Holacanthella duospinosa, Anurida maritima), and Symphypleona (Sminthurus viridis). We identified 45 genes belonging to five AMP families, including (a) cysteine-rich peptides: diapausin, defensin, and Alo; (b) linear α-helical peptide without cysteine: cecropin; (c) glycine-rich peptide: diptericin. Frequent gene gains and losses were observed in their evolution. Based on the functions of their orthologs in insects, these AMPs potentially have broad activity against bacteria, fungi, and viruses. This study provides candidate collembolan AMPs for further functional analysis that could lead to medicinal use.
Collapse
Affiliation(s)
- Goma Pradhan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Patamarerk Engsontia
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Zhu H, Xu C, Chen Y, Liang Y. His-Ala-Phe-Lys peptide from Burkholderia arboris possesses antifungal activity. Front Microbiol 2022; 13:1071530. [PMID: 36560956 PMCID: PMC9763614 DOI: 10.3389/fmicb.2022.1071530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Burkholderia arboris, which belongs to the Burkholderia cepacia complex, has been shown to possess antifungal activity against several plant fungal pathogens; however, the antifungal compounds are yet to be identified. Here, we identified the antifungal compounds produced by B. arboris using genetic and metabolomic approaches. We generated a Tn5 transposon mutation library of 3,000 B. arboris mutants and isolated three mutants with reduced antifungal activity against the plant fungal pathogen Fusarium oxysporum. Among the mutants, the M464 mutant exhibited the weakest antifungal activity. In the M464 genome, the transposon was inserted into the cobA gene, encoding uroporphyrin-III methyltransferase. Deletion of the cobA gene also resulted in reduced antifungal activity, indicating that the cobA gene contributed to the antifungal activity of B. arboris. Furthermore, a comparison of the differential metabolites between wild type B. arboris and the ∆cobA mutant showed a significantly decreased level of tetrapeptide His-Ala-Phe-Lys (Hafk) in the ∆cobA mutant. Therefore, a Hafk peptide with D-amino acid residues was synthesized and its antifungal activity was evaluated. Notably, the Hafk peptide displayed significant antifungal activity against F. oxysporum and Botrytis cinerea, two plant pathogens that cause destructive fungal diseases. Overall, a novel antifungal compound (Hafk) that can be used for the biocontrol of fungal diseases in plants was identified in B. arboris.
Collapse
Affiliation(s)
- Huajie Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Cuihong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China,*Correspondence: Yan Liang, ; Yicun Chen,
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China,*Correspondence: Yan Liang, ; Yicun Chen,
| |
Collapse
|
6
|
Topical Fungal Infection Induces Shifts in the Gut Microbiota Structure of Brown Planthopper, Nilaparvata lugens (Homoptera: Delphacidae). INSECTS 2022; 13:insects13060528. [PMID: 35735865 PMCID: PMC9225076 DOI: 10.3390/insects13060528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Fungal entomopathogens are important natural enemies of insect pests and widely applied for biocontrol. Gut microbiota play important roles in mediating insect physiology and behavior. There is growing evidence that alteration of gut microbial communities due to pathological and environmental exposure can have detrimental impacts on host health and pathogen resistance. Here, we investigated the effects of topical infection with Metarhizium anisopliae fungus on the gut microbial community structure of the brown planthopper (Nilaparvata lugens, BPH), a destructive insect pest of rice. Our results demonstrated dramatic changes of gut bacterial community structure after topical fungal infection in BPH, as indicated by a significant increase in bacterial load, a significant decrease in bacterial community evenness and significant shifts in dominant bacterial abundance at the taxonomic level below the class. The dysbiosis of the gut bacteria might partly be due to the suppression of gut immunity caused by topical fungal infection. Our results highlighted the importance of the gut microbial community in fungal pathogenesis in insects. Abstract The brown planthopper (Nilaparvata lugens, BPH) is a destructive insect pest posing a serious threat to rice production. The fungal entomopathogen Metarhizium anisopliae is a promising alternative that can be used for BPH biocontrol. Recent studies have highlighted the significant involvement of gut microbiota in the insect–fungus interactions. In the presented study, we investigated the effects of topical fungal infection on the gut microbial community structure in BPH. Our results revealed that topical infection with M. anisopliae increased the bacterial load and altered the bacterial community structure in the gut of BPH. The relative abundances of the dominant gut bacteria at the order, family and genus level were significantly different between fungus-infected and uninfected groups. At the genus level, the uninfected BPH harbored high proportions of Pantoea and Enterobacter in the gut, whereas the fungus-infected BPH gut was absolutely dominated by Acinetobacter. Moreover, topical fungal infection significantly inhibited the expressions of immune-related genes encoding anti-microbial protein and dual oxidase that were involved in the maintenance of gut microbiota homeostasis, indicating that gut bacteria imbalance might be attributed in part to the suppression of gut immunity caused by fungal pathogen. Our results highlighted the importance of the gut microbial community during interactions between fungal pathogens and insect hosts.
Collapse
|
7
|
Inhibition of Zoonotic Pathogens Naturally Found in Pig Manure by Black Soldier Fly Larvae and Their Intestine Bacteria. INSECTS 2022; 13:insects13010066. [PMID: 35055911 PMCID: PMC8779730 DOI: 10.3390/insects13010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary With the rapid development of the economy and the improvement of people’s living standards, people need to rear a lot of livestock to meet demand for proteins. This also involves an increase in the production of livestock manure. The expanding rate of livestock manure has become a thorny issue, owing to characteristics such as plentiful nitrogen and abundant zoonotic pathogens. The saprophagous larvae of the black soldier fly (BSF) are often associated with animal manure and can significantly reduce the populations of different zoonotic pathogens in livestock manure. However, reports about the mechanisms of this phenomenon are scarce. In this study, we investigated the potential mechanisms of BSF larvae in reducing the zoonotic pathogens naturally found in pig manure. The results clearly showed that zoonotic pathogens in pig manure were significantly decreased after being treated with BSF larvae, and also suggested that the antimicrobial peptides produced by the BSF larvae and gut-associated bacteria are able to antagonize the zoonotic pathogens. This study will contribute to reveal the potential antagonistic mechanisms of BSF larvae against zoonotic pathogens and improve the safety of organic waste conversion by BSF larvae. Abstract Black soldier fly (BSF) larvae are often exposed to organic waste which harbors abundant zoonotic pathogens. We investigated the ability of BSF larvae to inhibit the zoonotic pathogens naturally found in pig manure. The zoonotic pathogens populations were detected by using selective medium during the conversion. Results showed that the viability of the zoonotic pathogens in pig manure was significantly affected. After eight days of conversion, the Coliform populations were undetected, and Staphylococcus aureus and Salmonella spp. decreased significantly on the eighth day. Antimicrobial assays of the purified recombinant defensin-like peptide 4 (DLP4) showed that this peptide exhibits inhibitory activity against S. aureus, Salmonella enterica serovar typhimurium, and Escherichia coli in vitro. Bacteria BSF-CL and BSF-F were isolated from the larvae gut, and both inhibited the growth of S. aureus and E. coli, but Salmonella spp. was sensitive to the BSF-CL strain (but not to the BSF-F strain). The results from our experiments indicate that BSF larvae are capable of functionally inhibiting potential zoonotic pathogens in pig manure through a variety of mechanisms including antimicrobial peptides expression and the gut associate microorganisms. This study provides a theoretical basis for further study on the combined mechanism of BSF larvae immunity and its gut microbes against the zoonotic pathogens in pig manure.
Collapse
|
8
|
Structural and functional characterizations and heterogenous expression of the antimicrobial peptides, Hidefensins, from black soldier fly, Hermetia illucens (L.). Protein Expr Purif 2021; 192:106032. [PMID: 34922007 DOI: 10.1016/j.pep.2021.106032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022]
Abstract
Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and β-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.
Collapse
|
9
|
Wang Z, Feng K, Tang F, Xu M. Activation of the Host Immune Response in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae) Induced by Serratia marcescens Bizio. INSECTS 2021; 12:insects12110983. [PMID: 34821784 PMCID: PMC8617612 DOI: 10.3390/insects12110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary Hyphantria cunea (Drury) is a quarantine pest, due to its extensive host, leading to serious economic losses in the agricultural and forestry industries. To control this pest, it is increasingly important to use microbial pesticides because they are biologically active and ecologically safe. Serratia marcescens Bizio (SM1) is a potential biocontrol bacterium. Although SM1 has a pathogenic role in H. cunea, H. cunea self-defense reduces the pathogenic effect of SM1. In this study, immune-related differentially expressed genes (DEGs) in H. cunea were first identified after SM1 infection, and the immune regulation mode of H. cunea in response to SM1, including antimicrobial peptide synthesis pathways, melanization and cellular immunity, was revealed. According to the analysis, the immune system of H. cunea was induced by SM1. In summary, our study demonstrates how the immune systems of the H. cunea work to resist the infection of SM1, which provides the theoretical basis for researching more efficient microbial pesticides for H. cunea. Abstract Host–pathogen interactions are essential to our understanding of biological pesticides. Hyphantria cunea (Drury) is an important forest pest worldwide. The immune mechanism of the interaction between H. cunea and Serratia marcescens Bizio (SM1) is unclear. First, transcriptome sequencing and quantitative real-time PCR (qRT-PCR) analysis described the H. cunea immune response to SM1. A total of 234 immune-related differentially expressed genes (DEGs) were found. Many immune regulatory genes in three classical pathways were found. Antimicrobial peptides, including attacin B, cecropin A, gloverin, lebocin and diapausin, are involved in defending against SM1 challenge, and are mainly produced by Toll and immune deficiency (IMD) pathways. Some melanization genes were changed in H. cunea, which suggested that H. cunea melanization was activated by SM1. Furthermore, phagocytosis, autophagolysosome and apoptosis pathways in cellular immunity were activated in H. cunea against SM1. Finally, the expression patterns of 10 immune genes were analyzed systematically by qRT-PCR, and most of the genes were upregulated compared to the control. Our studies provide useful information about the immune response of H. cunea under the stress of SM1, which is important to understand how SM1 affects the immune system of H. cunea and provides new ideas to control H. cunea by using SM1.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-13813966269
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Lyons N, Softley I, Balfour A, Williamson C, O'Brien HE, Shetty AC, Bruno VM, Diezmann S. Tobacco Hornworm ( Manduca sexta) caterpillars as a novel host model for the study of fungal virulence and drug efficacy. Virulence 2021; 11:1075-1089. [PMID: 32842847 PMCID: PMC7549948 DOI: 10.1080/21505594.2020.1806665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The two leading yeast pathogens of humans, Candida albicans and Cryptococcus neoformans, cause systemic infections in >1.4 million patients worldwide with mortality rates approaching 75%. It is thus imperative to study fungal virulence mechanisms, efficacy of antifungal drugs, and host response pathways. While this is commonly done in mammalian models, which are afflicted by ethical and practical concerns, invertebrate models, such as wax moth larvae and nematodes have been introduced over the last two decades. To complement existing invertebrate host models, we developed fifth instar caterpillars of the Tobacco Hornworm moth Manduca sexta as a novel host model. These caterpillars can be maintained at 37°C, are suitable for injections with defined amounts of yeast cells, and are susceptible to the most threatening yeast pathogens, including C. albicans, C. neoformans, C. auris, and C. glabrata. Importantly, fungal burden can be assessed daily throughout the course of infection in a single caterpillar’s feces and hemolymph. Infected caterpillars can be rescued by treatment with antifungal drugs. Notably, these animals are large enough for weight to provide a reliable and reproducible measure of fungal disease and to facilitate host tissue-specific expression analyses. M. sexta caterpillars combine a suite of parameters that make them suitable for the study of fungal virulence.
Collapse
Affiliation(s)
- Naomi Lyons
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University , Tel Aviv, Israel.,Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Isabel Softley
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Andrew Balfour
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | | | - Heath E O'Brien
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University , Cardiff, UK
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Stephanie Diezmann
- Department of Biology & Biochemistry, University of Bath , Bath, UK.,School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| |
Collapse
|
11
|
Ajingi YS, Rukying N, Aroonsri A, Jongruja N. Recombinant active Peptides and their Therapeutic functions. Curr Pharm Biotechnol 2021; 23:645-663. [PMID: 34225618 DOI: 10.2174/1389201022666210702123934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/22/2022]
Abstract
Recombinant active peptides are utilized as diagnostic and biotherapeutics in various maladies and as bacterial growth inhibitors in the food industry. This consequently stimulated the need for recombinant peptides' production, which resulted in about 19 approved biotech peptides of 1-100 amino acids commercially available. While most peptides have been produced by chemical synthesis, the production of lengthy and complicated peptides comprising natural amino acids has been problematic with low quantity. Recombinant peptide production has become very vital, cost-effective, simple, environmentally friendly with satisfactory yields. Several reviews have focused on discussing expression systems, advantages, disadvantages, and alternatives strategies. Additionally, the information on the antimicrobial activities and other functions of multiple recombinant peptides is challenging to access and is scattered in literature apart from the food and drug administration (FDA) approved ones. From the reports that come to our knowledge, there is no existing review that offers substantial information on recombinant active peptides developed by researchers and their functions. This review provides an overview of some successfully produced recombinant active peptides of ≤100 amino acids by focusing on their antibacterial, antifungal, antiviral, anticancer, antioxidant, antimalarial, and immune-modulatory functions. It also elucidates their modes of expression that could be adopted and applied in future investigations. We expect that the knowledge available in this review would help researchers involved in recombinant active peptide development for therapeutic uses and other applications.
Collapse
Affiliation(s)
- Ya'u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok. Thailand
| | - Neeranuch Rukying
- Department of Biology, Faculty of Science, Kano University of Science and Technology (KUST), Wudil. Nigeria
| | - Aiyada Aroonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani. Thailand
| | - Nujarin Jongruja
- Department of Biology, Faculty of Science, Kano University of Science and Technology (KUST), Wudil. Nigeria
| |
Collapse
|
12
|
Identification of Novel Toxin Genes from the Stinging Nettle Caterpillar Parasa lepida (Cramer, 1799): Insights into the Evolution of Lepidoptera Toxins. INSECTS 2021; 12:insects12050396. [PMID: 33946702 PMCID: PMC8145965 DOI: 10.3390/insects12050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Many caterpillar species can produce toxins that cause harmful reactions to humans, varying from mild irritation to death. Currently, there is very limited knowledge about caterpillar toxin diversity, because only a few species have been investigated. We used the transcriptome technique to identify candidate toxin genes from the nettle caterpillar Parasa lepida (Cramer, 1799). It is a common pest of oil palm, coconut, and mango in South and South-East Asia, which can cause severe pain and allergic responses to those in contact with them. We reported 168 candidate toxin genes. Most of them are members of the toxin genes families commonly recruited in animal venoms such as serine protease and serine protease inhibitors. However, we identified 21 novel genes encoding knottin-like peptides expressed at a high level in the transcriptome. Their predicted 3D structures are similar to neurotoxins in scorpion and tarantula. Our study suggests that P. lepida venom contains diverse toxin proteins that potentially cause allergic reactions and pain. This study sheds light on the hidden diversity of toxin proteins in caterpillar lineage, which could be future fruitful new drug sources. Abstract Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures and functions. Several caterpillar species possess venoms that cause varying effects on humans both locally and systemically. However, toxins from only a few species have been investigated, limiting the full understanding of the Lepidoptera toxin diversity and evolution. We used the RNA-seq technique to identify toxin genes from the stinging nettle caterpillar, Parasa lepida (Cramer, 1799). We constructed a transcriptome from caterpillar urticating hairs and reported 34,968 unique transcripts. Using our toxin gene annotation pipeline, we identified 168 candidate toxin genes, including protease inhibitors, proteolytic enzymes, and allergens. The 21 P. lepida novel Knottin-like peptides, which do not show sequence similarity to any known peptide, have predicted 3D structures similar to tarantula, scorpion, and cone snail neurotoxins. We highlighted the importance of convergent evolution in the Lepidoptera toxin evolution and the possible mechanisms. This study opens a new path to understanding the hidden diversity of Lepidoptera toxins, which could be a fruitful source for developing new drugs.
Collapse
|
13
|
Ramos LFC, Rangel JHDO, Andrade GC, Lixa C, de Castilho LVA, Nogueira FCS, Pinheiro AS, Gomes FM, AnoBom CD, Almeida RV, de Oliveira DMP. Identification and recombinant expression of an antimicrobial peptide (cecropin B-like) from soybean pest Anticarsia gemmatalis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200127. [PMID: 33796137 PMCID: PMC7970720 DOI: 10.1590/1678-9199-jvatitd-2020-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT BACKGROUND Insects can be found in numerous diverse environments, being exposed to pathogenic organisms like fungi and bacteria. Once these pathogens cross insect physical barriers, the innate immune system operates through cellular and humoral responses. Antimicrobial peptides are small molecules produced by immune signaling cascades that develop an important and generalist role in insect defenses against a variety of microorganisms. In the present work, a cecropin B-like peptide (AgCecropB) sequence was identified in the velvetbean caterpillar Anticarsia gemmatalis and cloned in a bacterial plasmid vector for further heterologous expression and antimicrobial tests. METHODS AgCecropB sequence (without the signal peptide) was cloned in the plasmid vector pET-M30-MBP and expressed in the Escherichia coli BL21(DE3) expression host. Expression was induced with IPTG and a recombinant peptide was purified using two affinity chromatography steps with Histrap column. The purified peptide was submitted to high-resolution mass spectrometry (HRMS) and structural analyses. Antimicrobial tests were performed using gram-positive (Bacillus thuringiensis) and gram-negative (Burkholderia kururiensis and E. coli) bacteria. RESULTS AgCecropB was expressed in E. coli BL21 (DE3) at 28°C with IPTG 0.5 mM. The recombinant peptide was purified and enriched after purification steps. HRMS confirmed AgCrecropB molecular mass (4.6 kDa) and circular dichroism assay showed α-helix structure in the presence of SDS. AgCrecropB inhibited almost 50% of gram-positive B. thuringiensis bacteria growth. CONCLUSIONS The first cecropin B-like peptide was described in A. gemmatalis and a recombinant peptide was expressed using a bacterial platform. Data confirmed tertiary structure as predicted for the cecropin peptide family. AgCecropB was capable to inhibit B. thuringiensis growth in vitro.
Collapse
Affiliation(s)
- Luís Felipe Costa Ramos
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - João Henrique de Oliveira Rangel
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Guilherme Caldas Andrade
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Livia Vieira Araujo de Castilho
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Alberto Luiz Coimbra Institute of Graduate Studies and Research (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fábio César Sousa Nogueira
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fabio Mendonça Gomes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Cristiane Dinis AnoBom
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Rodrigo Volcan Almeida
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Danielle Maria Perpétua de Oliveira
- Department of Biochemistry, Institute of Chemistry, Center of Mathematical and Natural Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Chowdhury T, Mandal SM, Dutta S, Ghosh AK. Identification of a novel proline-rich antimicrobial protein from the hemolymph of Antheraea mylitta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21771. [PMID: 33644898 DOI: 10.1002/arch.21771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Antimicrobial proteins (AMPs) are small, cationic proteins that exhibit activity against bacteria, viruses, parasites, fungi as well as boost host-specific innate immune responses. Insects produce these AMPs in the fat body and hemocytes, and release them into the hemolymph upon microbial infection. Hemolymph was collected from the bacterially immunized fifth instar larvae of tasar silkworm, Antheraea mylitta, and an AMP was purified by organic solvent extraction followed by size exclusion and reverse-phase high-pressure liquid chromatography. The purity of AMP was confirmed by thin-layer chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The molecular mass was determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry as 14 kDa, and hence designated as AmAMP14. Peptide mass fingerprinting of trypsin-digested AmAMP14 followed by de novo sequencing of one peptide fragment by tandem mass spectrometry analysis revealed the amino acid sequences as CTSPKQCLPPCK. No homology was found in the database search and indicates it as a novel AMP. The minimum inhibitory concentration of the purified AmAMP14 was determined against Escherichia coli, Staphylococcus aureus, and Candida albicans as 30, 60, and 30 µg/ml, respectively. Electron microscopic examination of the AmAMP14-treated cells revealed membrane damage and release of cytoplasmic contents. All these results suggest the production of a novel 14 kDa AMP in the hemolymph of A. mylitta to provide defense against microbial infection.
Collapse
Affiliation(s)
- Trinath Chowdhury
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Soumita Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
15
|
Integrative multiomics analysis of Premolis semirufa caterpillar venom in the search for molecules leading to a joint disease. Sci Rep 2021; 11:1995. [PMID: 33479267 PMCID: PMC7820220 DOI: 10.1038/s41598-020-79769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
The joint disease called pararamosis is an occupational disease caused by accidental contact with bristles of the caterpillar Premolis semirufa. The chronic inflammatory process narrows the joint space and causes alterations in bone structure and cartilage degeneration, leading to joint stiffness. Aiming to determine the bristle components that could be responsible for this peculiar envenomation, in this work we have examined the toxin composition of the caterpillar bristles extract and compared it with the differentially expressed genes (DEGs) in synovial biopsies of patients affected with rheumatoid arthritis (RA) and osteoarthritis (OA). Among the proteins identified, 129 presented an average of 63% homology with human proteins and shared important conserved domains. Among the human homologous proteins, we identified seven DEGs upregulated in synovial biopsies from RA or OA patients using meta-analysis. This approach allowed us to suggest possible toxins from the pararama bristles that could be responsible for starting the joint disease observed in pararamosis. Moreover, the study of pararamosis, in turn, may lead to the discovery of specific pharmacological targets related to the early stages of articular diseases.
Collapse
|
16
|
Chowdhury T, Mandal SM, Kumari R, Ghosh AK. Purification and characterization of a novel antimicrobial peptide (QAK) from the hemolymph of Antheraea mylitta. Biochem Biophys Res Commun 2020; 527:411-417. [DOI: 10.1016/j.bbrc.2020.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
|
17
|
Demain AL, Gómez-Ortiz B, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S. Recent findings of molecules with anti-infective activity: screening of non-conventional sources. Curr Opin Pharmacol 2019; 48:40-47. [DOI: 10.1016/j.coph.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
|
18
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
19
|
Yang S. Development and Pharmacokinetics Study of Antifungal Peptide Nanoliposomes by Liquid Chromatography-tandem Mass Spectrometry. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180307155328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The therapeutic ability and application of antifungal peptide (APs) are limited
by their physico-chemical and biological properties, the nano-liposomal encapsulation would improve
the in vivo circulation and stability.
</P><P>
Objective: To develop a long-circulating liposomal delivery systems encapsulated APs-CGA-N12 with
PEGylated lipids and cholesterol, and investigated through in vivo pharmacokinetics.
Methods:
The liposomes were prepared and characterized, a rapid and simple liquid chromatographytandem
mass spectrometry (LC-MS/MS) assay was developed for the determination of antifungal peptide
in vivo, the pharmacokinetic characteristics of APs liposomes were evaluated in rats.
Results:
Liposomes had a large, unilamellar structure, particle size and Zeta potential ranged from 160
to 185 nm and -0.55 to 1.1 mV, respectively. The results indicated that the plasma concentration of
peptides in reference solutions rapidly declined after intravenous administration, whereas the
liposomeencapsulated ones showed slower elimination. The AUC(0-∞) was increased by 3.0-fold in
liposomes in comparison with standard solution (20 mg·kg-1), the half-life (T1/2) was 1.6- and 1.5-fold
higher compared to the reference groups of 20 and 40 mg·kg-1, respectively.
Conclusion:
Therefore, it could be concluded that liposomal encapsulation effectively improved the
bioavailability and pharmacokinetic property of antifungal peptides.
Collapse
Affiliation(s)
- Shuoye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
20
|
Sackton TB. Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:106-113. [PMID: 31109663 DOI: 10.1016/j.cois.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Classical evolutionary studies of protein-coding genes have established that genes in the canonical immune system are often among the most rapidly evolving within and between species. As more genomes and transcriptomes across insects are sequenced, it is becoming clear that duplications and losses of immune genes are also a likely consequence of host-pathogen interactions. Furthermore, particular species respond to diverse pathogenic challenges with a wide range of challenge-specific responses that are still poorly understood. Transcriptional studies, using RNA-seq to characterize the infection-regulated transcriptome of diverse insects, are crucial for additional progress in understanding the ecology and evolution of the full complexity of the host response.
Collapse
Affiliation(s)
- Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
21
|
Duplouy A, Minard G, Lähteenaro M, Rytteri S, Saastamoinen M. Silk properties and overwinter survival in gregarious butterfly larvae. Ecol Evol 2018; 8:12443-12455. [PMID: 30619557 PMCID: PMC6309129 DOI: 10.1002/ece3.4595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
All organisms are challenged by encounters with parasites, which strongly select for efficient escape strategies in the host. The threat is especially high for gregarious species entering immobile periods, such as diapause. Larvae of the Glanville fritillary butterfly, Melitaea cinxia, spend the winter in diapause in groups of conspecifics each sheltered in a silk nest. Despite intensive monitoring of the population, we have little understanding of the ecological factors influencing larval survival over the winter in the field. We tested whether qualitative and quantitative properties of the silk nest contribute to larval survival over diapause. We used comparative proteomics, metabarcoding analyses, microscopic imaging, and in vitro experiments to compare protein composition of the silk, community composition of the silk-associated microbiota, and silk density from both wild-collected and laboratory-reared families, which survived or died in the field. Although most traits assessed varied across families, only silk density was correlated with overwinter survival in the field. The silk nest spun by gregarious larvae before the winter acts as an efficient breathable physical shield that positively affects larval survival during diapause. Such benefit may explain how this costly trait is conserved across populations of this butterfly species and potentially across other silk-spinning insect species.
Collapse
Affiliation(s)
- Anne Duplouy
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| | - Guillaume Minard
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
- Laboratory of Microbial EcologyUniversity of Lyon, University Claude Bernard Lyon 1UMR CNRS 5557, UMR INRA 1418VetAgro SupVilleurbanneFrance
| | - Meri Lähteenaro
- Finnish Museum of Natural HistoryZoology UnitUniversity of HelsinkiHelsinkiFinland
| | - Susu Rytteri
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
22
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
23
|
Maistrou S, Paris V, Jensen AB, Rolff J, Meyling NV, Zanchi C. A constitutively expressed antifungal peptide protects Tenebrio molitor during a natural infection by the entomopathogenic fungus Beauveria bassiana. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:26-33. [PMID: 29698631 DOI: 10.1016/j.dci.2018.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides have been well studied in the context of bacterial infections. Antifungal peptides have received comparatively less attention. Fungal pathogens of insects and their hosts represent a unique opportunity to study host-pathogen interactions due to the million of years of co-evolution they share. In this study, we investigated role of a constitutively expressed thaumatin-like peptide with antifungal activity expressed by the mealworm beetle Tenebrio molitor, named Tenecin 3, during a natural infection with the entomopathogenic fungus Beauveria bassiana. We monitored the effect of the expression of Tenecin 3 on the survival of infected hosts as well as on the progression of the fungal infection inside the host. Finally, we tested the activity of Tenecin 3 against B. bassiana. These findings could help improving biocontrol strategies and help understanding the evolution of antifungal peptides as a defense mechanism.
Collapse
Affiliation(s)
- Sevasti Maistrou
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - Véronique Paris
- Freie Universität Berlin, Evolutionary Biology, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Annette B Jensen
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Nicolai V Meyling
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark.
| | - Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| |
Collapse
|
24
|
Cao X, Jiang H. An analysis of 67 RNA-seq datasets from various tissues at different stages of a model insect, Manduca sexta. BMC Genomics 2017; 18:796. [PMID: 29041902 PMCID: PMC5645894 DOI: 10.1186/s12864-017-4147-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022] Open
Abstract
Background Manduca sexta is a large lepidopteran insect widely used as a model to study biochemistry of insect physiological processes. As a part of its genome project, over 50 cDNA libraries have been analyzed to profile gene expression in different tissues and life stages. While the RNA-seq data were used to study genes related to cuticle structure, chitin metabolism and immunity, a vast amount of the information has not yet been mined for understanding the basic molecular biology of this model insect. In fact, the basic features of these data, such as composition of the RNA-seq reads and lists of library-correlated genes, are unclear. From an extended view of all insects, clear-cut tempospatial expression data are rarely seen in the largest group of animals including Drosophila and mosquitoes, mainly due to their small sizes. Results We obtained the transcriptome data, analyzed the raw reads in relation to the assembled genome, and generated heatmaps for clustered genes. Library characteristics (tissues, stages), number of mapped bases, and sequencing methods affected the observed percentages of genome transcription. While up to 40% of the reads were not mapped to the genome in the initial Cufflinks gene modeling, we identified the causes for the mapping failure and reduced the number of non-mappable reads to <8%. Similarities between libraries, measured based on library-correlated genes, clearly identified differences among tissues or life stages. We calculated gene expression levels, analyzed the most abundantly expressed genes in the libraries. Furthermore, we analyzed tissue-specific gene expression and identified 18 groups of genes with distinct expression patterns. Conclusion We performed a thorough analysis of the 67 RNA-seq datasets to characterize new genomic features of M. sexta. Integrated knowledge of gene functions and expression features will facilitate future functional studies in this biochemical model insect. Electronic supplementary material The online version of this article doi: (10.1186/s12864-017-4147-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
25
|
Bolouri Moghaddam MR, Vilcinskas A, Rahnamaeian M. The insect-derived antimicrobial peptide metchnikowin targets Fusarium graminearum β(1,3)glucanosyltransferase Gel1, which is required for the maintenance of cell wall integrity. Biol Chem 2017; 398:491-498. [PMID: 27811341 DOI: 10.1515/hsz-2016-0295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are essential components of the insect innate immune system. Their diversity provides protection against a broad spectrum of microbes and they have several distinct modes of action. Insect-derived AMPs are currently being developed for both medical and agricultural applications, and their expression in transgenic crops confers resistance against numerous plant pathogens. The antifungal peptide metchnikowin (Mtk), which was originally discovered in the fruit fly Drosophila melanogaster, is of particular interest because it has potent activity against economically important phytopathogenic fungi of the phylum Ascomycota, such as Fusarium graminearum, but it does not harm beneficial fungi such as the mycorrhizal basidiomycete Piriformospora indica. To investigate the specificity of Mtk, we used the peptide to screen a F. graminearum yeast two-hybrid library. This revealed that Mtk interacts with the fungal enzyme β(1,3)-glucanosyltransferase Gel1 (FgBGT), which is one of the enzymes responsible for fungal cell wall synthesis. The interaction was independently confirmed in a second interaction screen using mammalian cells. FgBGT is required for the viability of filamentous fungi by maintaining cell wall integrity. Our study therefore paves the way for further applications of Mtk in formulation of bio fungicides or as a supplement in food preservation.
Collapse
|
26
|
Characterization of a Gloverin-Like Antimicrobial Peptide Isolated from Muga Silkworm, Antheraea assamensis. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Transcription Factor Forkhead Regulates Expression of Antimicrobial Peptides in the Tobacco Hornworm, Manduca sexta. Sci Rep 2017; 7:2688. [PMID: 28578399 PMCID: PMC5457402 DOI: 10.1038/s41598-017-02830-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) play an important role in defense against microbial infections in insects. Expression of AMPs is regulated mainly by NF-κB factors Dorsal, Dif and Relish. Our previous study showed that both NF-κB and GATA-1 factors are required for activation of moricin promoter in the tobacco hornworm, Manduca sexta, and a 140-bp region in the moricin promoter contains binding sites for additional transcription factors. In this study, we identified three forkhead (Fkh)-binding sites in the 140-bp region of the moricin promoter and several Fkh-binding sites in the lysozyme promoter, and demonstrated that Fkh-binding sites are required for activation of both moricin and lysozyme promoters by Fkh factors. In addition, we found that Fkh mRNA was undetectable in Drosophila S2 cells, and M. sexta Fkh (MsFkh) interacted with Relish-Rel-homology domain (RHD) but not with Dorsal-RHD. Dual luciferase assays with moricin mutant promoters showed that co-expression of MsFkh with Relish-RHD did not have an additive effect on the activity of moricin promoter, suggesting that MsFkh and Relish regulate moricin activation independently. Our results suggest that insect AMPs can be activated by Fkh factors under non-infectious conditions, which may be important for protection of insects from microbial infection during molting and metamorphosis.
Collapse
|
28
|
Luna-Ramirez K, Tonk M, Rahnamaeian M, Vilcinskas A. Bioactivity of Natural and Engineered Antimicrobial Peptides from Venom of the Scorpions Urodacus yaschenkoi and U. manicatus. Toxins (Basel) 2017; 9:toxins9010022. [PMID: 28067810 PMCID: PMC5308254 DOI: 10.3390/toxins9010022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/26/2016] [Accepted: 12/29/2016] [Indexed: 12/30/2022] Open
Abstract
The spread of multidrug-resistant human pathogens has drawn attention towards antimicrobial peptides (AMPs), which are major players in the innate immune systems of many organisms, including vertebrates, invertebrates, plants and microbes. Scorpion venom is an abundant source of novel and potent AMPs. Here, we investigated natural and engineered AMPs from the scorpions Urodacus yaschenkoi and U. manicatus to determine their antimicrobial spectra as well as their hemolytic/cytotoxic activity. None of the AMPs were active against fungi, but many of them were active at low concentrations (0.25–30 µM) against seven different bacteria. Hemolytic and cytotoxic activities were determined using pig erythrocytes and baby hamster kidney cells, respectively. The amino acid substitutions in the engineered AMPs did not inhibit cytotoxicity, but reduced hemolysis and therefore increased the therapeutic indices. The phylogenetic analysis of scorpion AMPs revealed they are closely related and the GXK motif is highly conserved. The engineered scorpion AMPs offer a promising alternative for the treatment of multidrug-resistant bacterial infections and could be modified further to reduce their hemolytic/cytotoxic activity.
Collapse
Affiliation(s)
- Karen Luna-Ramirez
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| | - Miray Tonk
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| | - Mohammad Rahnamaeian
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| |
Collapse
|
29
|
Bolouri Moghaddam MR, Tonk M, Schreiber C, Salzig D, Czermak P, Vilcinskas A, Rahnamaeian M. The potential of the Galleria mellonella innate immune system is maximized by the co-presentation of diverse antimicrobial peptides. Biol Chem 2016; 397:939-45. [DOI: 10.1515/hsz-2016-0157] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
Abstract
Antimicrobial peptides (AMPs) are ubiquitous components of the insect innate immune system. The model insect Galleria mellonella has at least 18 AMPs, some of which are still uncharacterized in terms of antimicrobial activity. To determine why G. mellonella secretes a repertoire of distinct AMPs following an immune challenge, we selected three different AMPs: cecropin A (CecA), gallerimycin and cobatoxin. We found that cobatoxin was active against Micrococcus luteus at a minimum inhibitory concentration (MIC) of 120 μm, but at 60 μm when co-presented with 4 μm CecA. In contrast, the MIC of gallerimycin presented alone was 60 μm and the co-presentation of CecA did not affect this value. Cobatoxin and gallerimycin were both inactive against Escherichia coli at physiological concentrations, however gallerimycin could potentiate the sublethal dose of CecA (0.25 μm) at a concentration of 30 μm resulting in 100% lethality. The ability of gallerimycin to potentiate the CecA was investigated by flow cytometry, revealing that 30 μm gallerimycin sensitized E. coli cells by inducing membrane depolarization, which intensified the otherwise negligible effects of 0.25 μm CecA. We therefore conclude that G. mellonella maximizes the potential of its innate immune response by the co-presentation of different AMPs that become more effective at lower concentrations when presented simultaneously.
Collapse
|