1
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Wang Y, Zhang B, Zhao S, Wang Y, Chu X, Li XC. SpgC1qR interacts with WSSV VP28 exhibiting antiviral activity. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100052. [DOI: 10.1016/j.fsirep.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022] Open
|
3
|
Huang Y, Huang X, Zhou X, Wang J, Zhang R, Ma F, Wang K, Zhang Z, Dai X, Cao X, Zhang C, Han K, Ren Q. Immune activation by a multigene family of lectins with variable tandem repeats in oriental river prawn ( Macrobrachium nipponense). Open Biol 2020; 10:200141. [PMID: 32931720 PMCID: PMC7536079 DOI: 10.1098/rsob.200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Genomic regions with repeated sequences are unstable and prone to rapid DNA diversification. However, the role of tandem repeats within the coding region is not fully characterized. Here, we have identified a new hypervariable C-type lectin gene family with different numbers of tandem repeats (Rlecs; R means repeat) in oriental river prawn (Macrobrachium nipponense). Two types of repeat units (33 or 30 bp) are identified in the second exon, and the number of repeat units vary from 1 to 9. Rlecs can be classified into 15 types through phylogenetic analysis. The amino acid sequences in the same type of Rlec are highly conservative outside the repeat regions. The main differences among the Rlec types are evident in exon 5. A variable number of tandem repeats in Rlecs may be produced by slip mispairing during gene replication. Alternative splicing contributes to the multiplicity of forms in this lectin gene family, and different types of Rlecs vary in terms of tissue distribution, expression quantity and response to bacterial challenge. These variations suggest that Rlecs have functional diversity. The results of experiments on sugar binding, microbial inhibition and clearance, regulation of antimicrobial peptide gene expression and prophenoloxidase activation indicate that the function of Rlecs with the motif of YRSKDD in innate immunity is enhanced when the number of tandem repeats increases. Our results suggest that Rlecs undergo gene expansion through gene duplication and alternative splicing, which ultimately leads to functional diversity.
Collapse
Affiliation(s)
- Ying Huang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China.,College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, People's Republic of China
| | - Xin Huang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jialin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ruidong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Futong Ma
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Kaiqiang Wang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhuoxing Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaoling Dai
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xueying Cao
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Chao Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Keke Han
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, People's Republic of China
| |
Collapse
|
4
|
Huang Y, Shi Y, Hu S, Wu T, Zhao Z. Characterization and Functional Analysis of Two Transmembrane C-Type Lectins in Obscure Puffer ( Takifugu obscurus). Front Immunol 2020; 11:436. [PMID: 32226431 PMCID: PMC7080814 DOI: 10.3389/fimmu.2020.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
C-type lectins (CTLs) have received widespread attention in animal immune responses. In the present study, two CTLs (ToCTL1 and ToCTL2) were identified from obscure puffer Takifugu obscurus. The open reading frames of ToCTL1 and ToCTL2 were 687 and 1,380 bp, respectively. The predicted ToCTL1 and ToCTL2 proteins contained a single transmembrane region and one typical carbohydrate recognition domain (CRD). Quantitative real-time polymerase chain reaction detected ToCTL1 and ToCTL2 transcripts in all examined tissues, with high levels in the intestine and kidney, and their expression levels were remarkably altered upon Vibrio harveyi and Aeromonas hydrophila infection. The recombinant proteins ToCTL1-CRD and ToCTL2-CRD agglutinated the Gram-negative and Gram-positive bacteria in a Ca2+-dependent manner. rToCTL1-CRD and rToCTL2-CRD exhibited evident binding activities against seven kinds of bacteria and polysaccharides (lipopolysaccharide and peptidoglycan) in a Ca2+-independent manner. Moreover, rToCTL1-CRD and rToCTL2-CRD could inhibit the growth of four types of bacteria in vitro. These findings collectively demonstrated that ToCTL1 and ToCTL2 could be involved in host defense against bacterial infection in T. obscurus.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, Nanjing, China.,Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, Yangzhou, China
| | - Yan Shi
- College of Oceanography, Hohai University, Nanjing, China
| | - Sufei Hu
- College of Oceanography, Hohai University, Nanjing, China
| | - Ting Wu
- Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, Yangzhou, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, China.,Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|
5
|
Chen YL, Han K, Huang X, Zhang Z, Wan X, Ren Q. Caspase-3C gene from red swamp crayfish, Procambarus clarki: Characterization and expression in response to pathogenic infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:792-799. [PMID: 31585244 DOI: 10.1016/j.fsi.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The caspase is an essential module in the Drosophila immune deficiency (IMD) pathway, which plays a crucial role in countering pathogen infection. In this study, a gene named PcCaspase-3C was found in Procambarus clarkia with a full-length of 4684 bp, including a 1572 bp opening reading frame, which encoded a putative protein of 523 amino acids. PcCaspase-3C contained a CASc domain constituted of 237 amino acids. The PcCaspase-3C gene was primarily expressed in heart, stomach, and intestine, while less in gonad, hepatopancreas, gills, and hemocytes, with the least expression in muscle. Infection with Staphyloccocus aureus, Vibrio parahaemolyticus or white spot syndrome virus (WSSV) induced an up-regulated expression of PcCaspase-3C in intestine or stomach to varying degrees. When PcCaspase-3C was silenced by double-stranded RNA, the expression of some antimicrobial peptides such as ALF2, ALF5, ALF6, Cru3, Cru4, and Lys was significantly inhibited. In addition, silencing of PcCaspase-3C accelerated infection with WSSV in vivo. According to these results, we suggest that PcCaspase-3C might play a crucial role in the immune response of P. clarkia against pathogenic bacterial and viral infections.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Keke Han
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xin Huang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Zhuoxing Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Jiangsu, PR China.
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
6
|
Shen S, Che Z, Zhao X, Shao Y, Zhang W, Guo M, Li C. Characterization of a gC1qR homolog from sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:216-222. [PMID: 31336155 DOI: 10.1016/j.fsi.2019.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
gC1qR is a multifunctional and multiligand binding protein that plays important roles in inflammation and infection. In this study, a novel gC1qR homolog called AjgC1qR from the invertebrate sea cucumber Apostichopus japonicus was cloned and characterized. The open reading frame of AjgC1qR encoded 292 amino acid residues with a conserved mitochondrial targeting sequence and MAM33 domain. Multiple sequence alignment and phylogenetic analyses proved that AjgC1qR is a homolog of the gC1qR family. Spatial mRNA transcription in five tissues revealed the ubiquitous expression of AjgC1qR. The highest and lowest levels of expression were found in the tentacle and muscle, respectively, and AjgC1qR expression was remarkably up-regulated in coelomocytes after Vibrio splendidus challenge. Moreover, the recombinant rAjgC1qR protein exhibited high binding activity toward pathogen-associated molecules, such as lipopolysaccharides, peptidoglycan, and mannan. These findings demonstrate that AjgC1qR may play important roles in innate immunity and function as a pathogen recognition receptor.
Collapse
Affiliation(s)
- Sikou Shen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhongjie Che
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
7
|
Huang Y, Zhang G, Ren Q. Molecular Characterization of Two Toll Receptors in Hyriopsis cumingii and Their Potential Roles in Antibacterial Response. Front Physiol 2019; 10:952. [PMID: 31404151 PMCID: PMC6672746 DOI: 10.3389/fphys.2019.00952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tolls/Toll-like receptors (TLRs) play a key role in innate immunity by detecting the invading microbes and subsequently activating downstream signaling cascades. In this study, two new molluscan Toll members (designed as HcToll6 and HcToll7) were identified from triangle-shell pearl mussel (Hyriopsis cumingii). The obtained HcToll6 full-length cDNA was 3207 bp consisting of a 2223 bp open reading frame (ORF) that encoded a peptide of 740 amino acids. HcToll7 cDNA is a 3216 bp molecule that contains an ORF of 2139 bp encoding a protein of 712 amino acids. The deduced HcToll6 and HcToll7 proteins share two common structures: extracellular leucine-rich repeat (LRR) domains and intracellular Toll/interleukin-1 receptor (TIR) domain. Quantitative real-time PCR results showed that HcToll6 and HcToll7 were mainly expressed in the hepatopancreas and the gills, and they responded rapidly to bacterial stimulation. RNA interference by dsRNA results revealed that HcToll6 and HcToll7 RNAi strongly decreased the expression of lysozyme (HcLyso) and defensin (HcDef) in the gills of RNAi-treated mussels with Vibrio parahaemolyticus challenge. As a pattern recognition receptor, the prokaryotic expressed the recombinant LRR domains of HcToll6 and HcToll7 (rHcToll6-LRR and rHcToll7-LRR) could bind to Gram-positive and Gram-negative bacteria and had a strong tendency to recognize lipopolysaccharide (LPS) and peptidoglycan (PNG). rHcToll6-LRR and rHcToll7-LRR exhibited a significant in vitro bactericidal activity against V. parahaemolyticus and Staphylococcus aureus. These findings provide useful information to characterize Tolls in mussels.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, Nanjing, China.,School of Agriculture and Bioengineering, Heze University, Heze, China
| | - Guosong Zhang
- School of Agriculture and Bioengineering, Heze University, Heze, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China.,College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Sun S, Wu Y, Fu H, Ge X, You H, Wu X. Identification and Characterization of Four Autophagy-Related Genes That Are Expressed in Response to Hypoxia in the Brain of the Oriental River Prawn ( Macrobrachium nipponense). Int J Mol Sci 2019; 20:ijms20081856. [PMID: 30991659 PMCID: PMC6514668 DOI: 10.3390/ijms20081856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 01/02/2023] Open
Abstract
Autophagy is a cytoprotective mechanism triggered in response to adverse environmental conditions. Herein, we investigated the autophagy process in the oriental river prawn (Macrobrachium nipponense) following hypoxia. Full-length cDNAs encoding autophagy-related genes (ATGs) ATG3, ATG4B, ATG5, and ATG9A were cloned, and transcription following hypoxia was explored in different tissues and developmental stages. The ATG3, ATG4B, ATG5, and ATG9A cDNAs include open reading frames encoding proteins of 319, 264, 268, and 828 amino acids, respectively. The four M. nipponense proteins clustered separately from vertebrate homologs in phylogenetic analysis. All four mRNAs were expressed in various tissues, with highest levels in brain and hepatopancreas. Hypoxia up-regulated all four mRNAs in a time-dependent manner. Thus, these genes may contribute to autophagy-based responses against hypoxia in M. nipponense. Biochemical analysis revealed that hypoxia stimulated anaerobic metabolism in the brain tissue. Furthermore, in situ hybridization experiments revealed that ATG4B was mainly expressed in the secretory and astrocyte cells of the brain. Silencing of ATG4B down-regulated ATG8 and decreased cell viability in juvenile prawn brains following hypoxia. Thus, autophagy is an adaptive response protecting against hypoxia in M. nipponense and possibly other crustaceans. Recombinant MnATG4B could interact with recombinant MnATG8, but the GST protein could not bind to MnATG8. These findings provide us with a better understanding of the fundamental mechanisms of autophagy in prawns.
Collapse
Affiliation(s)
- Shengming Sun
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Ying Wu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Hongtuo Fu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Use, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xianping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Use, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hongzheng You
- Tianjin Fisheries Research Institute, Tianjin 300221, China.
| | - Xugan Wu
- Key Laboratory of Exploration and Use of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
9
|
Huang Y, Pan J, Li X, Ren Q, Zhao Z. Molecular cloning and functional characterization of a short peptidoglycan recognition protein from triangle-shell pearl mussel (Hyriopsis cumingii). FISH & SHELLFISH IMMUNOLOGY 2019; 86:571-580. [PMID: 30529463 DOI: 10.1016/j.fsi.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Peptidoglycan (PGN) is an important target of recognition in invertebrate innate immunity. PGN recognition proteins (PGRPs) are responsible for PGN recognition. In this study, we cloned and functionally analyzed a short PGRP (HcPGRP2) from the triangle-shell pearl mussel Hyriopsis cumingii. The full-length cDNA sequence of HcPGRP2 gene was 1185 bp containing an open reading frame of 882 bp encoding a 293 amino acid protein. HcPGRP2 was predicted to have two SH3b domains and a conserved C-terminal PGRP domain. Quantitative real-time RT-PCR showed that HcPGRP2 was expressed in all examined tissues and its expression was induced most significantly by Staphylococcus aureus and Vibrio parahaemolyticus in the hepatopancreas and gills. RNA interference by siRNA results revealed that HcPGRP2 was involved in the regulation of whey acidic protein, theromacin, and defensin expression. As a pattern-recognition receptor, recombinant HcPGRP2 (rHcPGRP2) protein can bind and agglutinate (Ca2+ dependent) all tested bacteria. rHcPGRP2 exhibited specific binding to PGN but not to lipopolysaccharide. Moreover, rHcPGRP2 inhibited the growth activities of S. aureus and V. parahaemolyticus in vitro and accelerated the clearance of V. parahaemolyticus in vivo. Overall, our results indicated that HcPGRP2 may play an important role in the antibacterial immune mechanisms of H. cumingii.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Jianlin Pan
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| | - Zhe Zhao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| |
Collapse
|
10
|
Zhang J, Liu Y, Li Y, Su N, Zhou Y, Xiang J, Sun Y. Biological function of a gC1qR homolog (EcgC1qR) of Exopalaemon carinicauda in defending bacteria challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 82:378-385. [PMID: 30144564 DOI: 10.1016/j.fsi.2018.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The gC1qR is a ubiquitously expressed cell protein that interacts with the globular heads of C1q (gC1q) and many other ligands. In this study, one gC1qR homolog gene was obtained from Exopalaemon carinicauda and named EcgC1qR. The complete nucleotide sequence of EcgC1qR contained a 774 bp open reading frame (ORF) encoding EcgC1qR precursor of 257 amino acids. The deduced amino acid sequence of EcgC1qR revealed a 55-amino-acid-long mitochondrial targeting sequence at the N-terminal and a mitochondrial acidic matrix protein of 33 kDa (MAM33) domain. The genomic organization of EcgC1qR gene showed that EcgC1qR gene contained five exons and four introns. EcgC1qR could express in all of the detected tissues and its expression was much higher in hepatopancreas and hemocytes. The expression of EcgC1qR in the hepatopancreas of prawns challenged with Vibrio parahaemolyticus and Aeromonas hydrophila changed in a time-dependent manner. The expression of EcgC1qR in prawns challenged with V. parahaemolyticus was up-regulated at 6 h (p < 0.05), and significantly up-regulated at 12 h and 24 h (p < 0.01), and then returned to the control levels at 48 h post-challenge (p > 0.05). At the same time, the expression in Aeromonas-challenged group was significantly up-regulated at 6, 12 and 24 h. The recombinant EcgC1qR could inhibit the growth of two tested bacteria. In addition, we successfully deleted EcgC1qR gene through CRISPR/Cas9 technology and it was the first time to obtain the mutant of gC1qR homolog gene in crustacean. It's a great progress to study the biological function of gC1qR in crustacean in future.
Collapse
Affiliation(s)
- Jiquan Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujie Liu
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yanyan Li
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Naike Su
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yaru Zhou
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jianhai Xiang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuying Sun
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
11
|
Zhong S, Mao Y, Wang J, Liu M, Zhang M, Su Y. Transcriptome analysis of Kuruma shrimp (Marsupenaeus japonicus) hepatopancreas in response to white spot syndrome virus (WSSV) under experimental infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:710-719. [PMID: 28943297 DOI: 10.1016/j.fsi.2017.09.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 05/07/2023]
Abstract
Kuruma shrimp (Marsupenaeus japonicus) is one of the most valuable crustacean species in capture fisheries and mariculture in the Indo-West Pacific. White spot syndrome virus (WSSV) is a highly virulent pathogen which has seriously threatened Kuruma shrimp aquaculture sector. However, little information is available in relation to underlying mechanisms of host-virus interaction in Kuruma shrimp. In this study, we performed a transcriptome analysis from the hepatopancreas of Kuruma shrimp challenged by WSSV, using Illumina-based RNA-Seq. A total of 39,084,942 pair end (PE) reads, including 19,566,190 reads from WSSV-infected group and 19,518,752 reads from non-infected (control) group, were obtained and assembled into 33,215 unigenes with an average length of 503.7 bp and N50 of 601 bp. Approximately 17,000 unigenes were predicted and classified based on homology search, gene ontology, clusters of orthologous groups of proteins, and biological pathway mapping. Differentially expressed genes (DEGs), including 2150 up-regulated and 1931 down-regulated, were found. Among those, 805 DEGs were identified and categorized into 14 groups based on their possible functions. Many genes associated with JAK-STAT signaling pathways, Integrin-mediated signal transduction, Ras signaling pathways, apoptosis and phagocytosis were positively modified after WSSV challenge. The proteolytic cascades including Complement-like activation and Hemolymph coagulations likely participated in antiviral immune response. The transcriptome data from hepatopancreas of Kuruma shrimp under WSSV challenge provided comprehensive information for identifying novel immune related genes in this valuable crustacean species despite the absence of the genome database of crustaceans.
Collapse
Affiliation(s)
- Shengping Zhong
- Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, 536000, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Min Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Man Zhang
- College of Animal Science and Technology, Guangxi University, 530005, China
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China.
| |
Collapse
|