1
|
Huo C, Liu Y, Yang W, Jin Q, Liu C, Jiang Y, Zhang J, Han Y, Wang X. Identification of a dual specificity protein phosphatase and its function in regulating innate immune signaling in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110360. [PMID: 40268072 DOI: 10.1016/j.fsi.2025.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/22/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
The Pacific oyster Crassostrea gigas is one of the most important cultured bivalves in the world with high economic value. However, the healthy cultivation of oysters has been restricted by disease problems for a long time. Explore the characteristics and functions of oyster innate immune regulators help to better understand the mechanism of oyster disease resistance. Dual-specificity protein phosphatases (DUSPs) play critical roles in regulating cellular signaling during several biological processes. In this study, we identified a novel phosphatase, CgDUSP4, and investigated its regulatory role in innate immune signaling in C. gigas. Sequence analysis revealed that CgDUSP4 belongs to the MAPK phosphatase (MKP) subfamily, with a conversed kinase interaction motif at the N-terminal and a phosphatase catalytic domain at the C-terminal of the protein. CgDUSP4 was highly expressed in hemocytes and significantly upregulated in response to different pathogen-associated molecular patterns (PAMPs) stimulation. Subcellular localization analysis revealed that the protein localized in both cytoplasm and nucleus. Knock-down of CgDUSP4 affected the expression of several pro-inflammatory cytokine. CgDUSP4 protein directly interacts with CgERK, CgJNK, and Cgp38 MAPK. Furthermore, CgDUSP4 inhibits LPS induced phosphorylation of ERK MAPK. Taken together, our study reports a novel oyster innate immune regulator that responds to PAMPs stimulation and affects the expression of downstream pro-inflammatory cytokines. Moreover, it may participate in oyster innate immune regulation by inhibiting ERK signaling pathway.
Collapse
Affiliation(s)
- Chuncao Huo
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, 264025, China.
| | - Wenhao Yang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Qianqian Jin
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Chen Liu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yulu Jiang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jinhai Zhang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Tao W, Xu W, Li X, Zhang X, Li C, Guo M. Characterization of c-Jun N-terminal kinase (JNK) gene reveals involvement of immune defense against Vibrio splendidus infection in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109804. [PMID: 39102970 DOI: 10.1016/j.fsi.2024.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The c-Jun N-terminal kinase (JNK) constitutes an evolutionarily conserved family of serine/threonine protein kinases, pivotal in regulating various physiological processes in vertebrates, encompassing apoptosis and antibacterial immunity. Nevertheless, the involvement of JNK in the innate immune response remains largely unexplored in pathogen-induced echinoderms. We isolated and characterized the JNK gene from Apostichopus japonicus (AjJNK) in our investigation. The full-length cDNA sequences of AjJNK spanned 1806 bp, comprising a 1299 bp open reading frame (ORF) encoding 432 amino acids, a 274 bp 5'-untranslated region (UTR), and a 233 bp 3'-UTR. Structural analysis revealed the presence of a classical S_TKc domain (37-335 amino acids) within AjJNK and contains several putative immune-related transcription factor-binding sites, including Elk-1, NF-κB, AP-1, and STAT5. Spatial expression analysis indicated ubiquitous expression of AjJNK across all examined tissues, with the highest expression noted in coelomocytes. The mRNA, protein, and phosphorylation levels of AjJNK were obviously induced in coelomocytes upon V. splendidus challenge and lipopolysaccharide stimulation. Immunofluorescence analysis demonstrated predominant cytoplasmic localization of AjJNK in coelomocytes with subsequent nuclear translocation following the V. splendidus challenge in vivo. Moreover, siRNA-mediated knockdown of AjJNK led to a significant increase in intracellular bacterial load, as well as elevated levels of Ajcaspase 3 and coelomocyte apoptosis post V. splendidus infection. Furthermore, the phosphorylation levels of AjJNK inhibited by its specific inhibitor SP600125 and also significantly suppressed the expression of Ajcaspase 3 and coelomocyte apoptosis during pathogen infection. Collectively, these data underscored the pivotal role of AjJNK in immune defense, specifically in the regulation of coelomocyte apoptosis in V. splendidus-challenged A. japonicus.
Collapse
Affiliation(s)
- Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weijia Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xiumei Zhang
- Yantai Marine Economic Research Institute, Yantai, 265503, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Yu K, Song X, Zhang J, Chen R, Liu G, Xu X, Lu X, Ning J, Liu B, Zhang X, Wang F, Wang Y, Wang C. Transcriptomic profiling of the thermal tolerance in two subspecies of the bay scallop Argopecten irradians. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101246. [PMID: 38781887 DOI: 10.1016/j.cbd.2024.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The bay scallop is a eurythermal species with high economic value and now represents the most cultured bivalve species in China. Two subspecies of the bay scallop, the northern subspecies Argopecten irradians irradians Korean population (KK) and the southern subspecies Argopecten irradians concentricus (MM), exhibited distinct adaptations to heat stress. However, the molecular mechanism of heat resistance of the two subspecies remains unclear. In this study, we compared the transcriptomic responses of the two subspecies to heat stress and identified the involved differentially expressed genes (DEGs) and pathways. More DEGs were found in the KK than in the MM when exposed to high temperatures, indicating elevated sensitivity to thermal stress in the KK. Enrichment analysis suggests that KK scallops may respond to heat stress more swiftly by regulating GTPase activity. Meanwhile, MM scallops exhibited higher resistance to heat stress mainly by effective activation of their antioxidant system. Chaperone proteins may play different roles in responses to heat stress in the two subspecies. In both subspecies, the expression levels of antioxidants such as GST were significantly increased; the glycolysis process regulated by PC and PCK1 was greatly intensified; and both apoptotic and anti-apoptotic systems were significantly activated. The pathways related to protein translation and hydrolysis, oxidoreductase activity, organic acid metabolism, and cell apoptosis may also play pivotal roles in the responses to heat stress. The results of this study may provide a theoretical basis for marker-assisted breeding of heat-resistant strains.
Collapse
Affiliation(s)
- Kai Yu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinyu Song
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Jianbai Zhang
- Yantai Marine Economic Research Institute, Yantai 265503, China
| | - Rongjie Chen
- Laizhou Marine Development and Fishery Service Center, Laizhou, Shandong 261400, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed Co., Ltd., Yantai, Shandong 265503, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed Co., Ltd., Yantai, Shandong 265503, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaotong Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fukai Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yinchu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; National Basic Science Data Center, Beijing 100190, China.
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| |
Collapse
|
4
|
Zheng J, Zhao Y, Feng Y, Qian W, Zhang Y, Dong B, Liang Q. c-Jun N-terminal kinase activation contributes to improving low temperature tolerance via regulating apoptosis in the Pacific white shrimp Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108912. [PMID: 37353063 DOI: 10.1016/j.fsi.2023.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Temperature is an essential environmental factor for the survival of aquatic animals. Low temperature stress can induce mitochondria to produce excessive ROS and free radicals, and destroy homeostasis. c-Jun N-terminal kinase (JNK) is involved in regulating various physiological processes, including inflammatory responses, cell cycle, reproduction, and apoptosis. Here, we investigated the mechanism of ROS/JNK pathway under low temperature stress both in vitro and in vivo. In this study, transcriptome analysis revealed that apoptosis, autophagy, calcium channel, and antioxidant were involved in the mediation of low temperature tolerance in Pacific white shrimp (penaeus vannamei). PvJNK was activated in response to low temperature stress. Treatments with different temperature caused oxidative stress as demonstrated by increased intensity of the ROS indicator H2DCF-DA, and induced apoptosis as confirmed by indicator FITC. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated low temperature induced apoptosis, and inhibited the expression of PvJNK. In addition, we demonstrate that mediator PvJNK translocated to nuclear through interacting with PvRheb. By using flow cytometry, inhibiting PvJNK can increase the expression of apoptosis related genes, accelerate tissue damage, and induce ROS and cell apoptosis. The ultimate inhibition of PvJNK accelerates the mortality of shrimp under low temperature stress. Overall, these findings suggest that during low temperature stress, PvJNK was activated by ROS to regulates apoptosis via interacting with PvRheb to promote PvJNK into the nucleus and to improve low temperature tolerance of shrimp.
Collapse
Affiliation(s)
- JieRen Zheng
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Ying Zhao
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - YuXin Feng
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - WeiGuo Qian
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yu Zhang
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - BeiBei Dong
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| | - QingJian Liang
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
5
|
Tian H, Yuning W, Yang W, Liu F, Yu Y, Ren S, Wang A, Zhang D. c-Jun N-terminal kinase (JNK) in Procambarus clarkii: Molecular characterization and involvement in oxidative stress-induced apoptosis during molting cycle. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110676. [PMID: 34648929 DOI: 10.1016/j.cbpb.2021.110676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/18/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
The present study was conducted to characterize the full-length cDNA of c-Jun N-terminal kinase (JNK) in Procambarus clarkii (Pcjnk) and evaluate its potential function under different molt cycle. The full-length cDNA of Pcjnk covered 2937 bp with an open reading frame of 1320 bp, encoding 439 amino acids. A typical conserved TPY motif (118Thr-Pro-120Tyr) was found in Pcjnk. Quantitative real-time PCR (qRT-PCR) analysis revealed a constitutive expression of Pcjnk in the tested tissue, with the highest expression occurring in the hepatopancreas. Additionally, the present study initially revealed that relative mRNA expression of Pcjnk and apoptosis level were significantly higher in the premolt stage (D1/D2 and D3/D4 stage) as compared to other molt stages. In contrast to the levels of superoxide dismutase (SOD) and malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPX) level decreased significantly from the intermolt stage (C stage) to the premolt stage (D1/D2 and D3/D4 stage), then increased from the premolt stage to the postmolt stage (A and B stage). The results obtained in the present study indicated that molt could cause apoptosis induced by oxidative stress through the activation of JNK in Procambarus clarkii.
Collapse
Affiliation(s)
- Hongyan Tian
- Department of Marine Science and Technology, School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Wang Yuning
- Department of Marine Science and Technology, School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wenping Yang
- Department of Marine Science and Technology, School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Fei Liu
- Department of Marine Science and Technology, School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yebing Yu
- Department of Marine Science and Technology, School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Shengjie Ren
- Department of Marine Science and Technology, School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Aimin Wang
- Department of Marine Science and Technology, School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
6
|
The Roles of c-Jun N-Terminal Kinase (JNK) in Infectious Diseases. Int J Mol Sci 2021; 22:ijms22179640. [PMID: 34502556 PMCID: PMC8431791 DOI: 10.3390/ijms22179640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/12/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are among the most crucial mitogen-activated protein kinases (MAPKs) and regulate various cellular processes, including cell proliferation, apoptosis, autophagy, and inflammation. Microbes heavily rely on cellular signaling pathways for their effective replication; hence, JNKs may play important roles in infectious diseases. In this review, we describe the basic signaling properties of MAPKs and JNKs in apoptosis, autophagy, and inflammasome activation. Furthermore, we discuss the roles of JNKs in various infectious diseases induced by viruses, bacteria, fungi, and parasites, as well as their potential to serve as targets for the development of therapeutic agents for infectious diseases. We expect this review to expand our understanding of the JNK signaling pathway’s role in infectious diseases and provide important clues for the prevention and treatment of infectious diseases.
Collapse
|
7
|
Huang Y, Nie XM, Zhu ZJ, Zhang X, Li BZ, Ge JC, Ren Q. A novel JNK induces innate immune response by activating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. Mol Immunol 2021; 138:76-86. [PMID: 34364075 DOI: 10.1016/j.molimm.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
c-Jun NH2-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) that participates in the regulation of various physiological and pathological processes. In this study, we identified a novel JNK (EsJNK) and determined the cDNA sequence of its isoform (EsJNK-a) from the Chinese mitten crab Eriocheir sinensis. The open reading frame (ORF) of EsJNK was predicted to encode 421 peptides with a serine/threonine protein kinase, a catalytic (S_TKc) domain, and a low complexity region. The ORF of EsJNK-a was 1380 bp encoding a protein with 459 amino acids, which was 38 amino acids more than that of EsJNK. The predicted tertiary structure of EsJNK was conserved and contained 15 α-helices and 10 β-sheets. Phylogenetic tree analysis revealed that EsJNK was clustered with the JNK homologs of other crustaceans. Quantitative real-time PCR assays showed that EsJNK was expressed in all the tissues examined, but it was relatively higher in hemocytes, muscles, and intestines. The expression of EsJNK mRNA in the hemocytes was upregulated by lipopolysaccharides and peptidoglycans, as well as by Staphylococcus aureus or Vibrio parahaemolyticus challenge. Functionally, after silencing EsJNK by siRNA in crabs, the expression levels of two antimicrobial peptides (AMPs), namely, anti-lipopolysaccharide factor and crustin, were significantly inhibited. The purified recombinant EsJNK protein with His-tag accelerated the elimination of the aforementioned bacteria in vivo. However, knockdown of EsJNK had an opposite effect. These findings suggested that EsJNK might be involved in the antibacterial immune defense of crabs by regulating the transcription of AMPs.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Xi-Mei Nie
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zheng-Jie Zhu
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Bing-Zhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jia-Chun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
8
|
Qu F, Xu W, Deng Z, Xie Y, Tang J, Chen Z, Luo W, Xiong D, Zhao D, Fang J, Zhou Z, Liu Z. Fish c-Jun N-Terminal Kinase (JNK) Pathway Is Involved in Bacterial MDP-Induced Intestinal Inflammation. Front Immunol 2020; 11:459. [PMID: 32292404 PMCID: PMC7134542 DOI: 10.3389/fimmu.2020.00459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun NH2-terminal kinases (JNKs) are an evolutionarily conserved family of serine/threonine protein kinases that play critical roles in the pathological process in species ranging from insects to mammals. However, the function of JNKs in bacteria-induced intestinal inflammation is still poorly understood. In this study, a fish JNK (CiJNK) pathway was identified, and its potential roles in bacterial muramyl dipeptide (MDP)-induced intestinal inflammation were investigated in Ctenopharyngodon idella. The present CiJNK was found to possess a conserved dual phosphorylation motif (TPY) in a serine/threonine protein kinase (S_TKc) domain and to contain several potential immune-related transcription factor binding sites, including nuclear factor kappa B (NF-κB), activating protein 1 (AP-1), and signal transducer and activator of downstream transcription 3 (STAT3), in its 5′ flanking regions. Quantitative real-time PCR results revealed that the mRNA levels of the JNK pathway genes in the intestine were significantly upregulated after challenge with a bacterial pathogen (Aeromonas hydrophila) and MDP in a time-dependent manner. Additionally, the JNK pathway was found to be involved in regulating the MDP-induced expression levels of inflammatory cytokines (IL-6, IL-8, and TNF-α) in the intestine of grass carp. Moreover, the nutritional dipeptide carnosine and Ala–Gln could effectively alleviate MDP-induced intestinal inflammation by regulating the intestinal expression of JNK pathway genes and inflammatory cytokines in grass carp. Finally, fluorescence microscopy and dual-reporter assays indicated that CiJNK could associate with CiMKK4 and CiMKK7 involved in the regulation of the AP-1 signaling pathway. Overall, these results provide the first experimental demonstration that the JNK signaling pathway is involved in the intestinal immune response to MDP challenge in C. idella, which may provide new insight into the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhangren Deng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yifang Xie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhiguo Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenjie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jiamei Fang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China.,Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Wei P, He P, Zhang X, Li W, Zhang L, Guan J, Chen X, Lin Y, Zhuo X, Li Q, Peng J. Identification and characterization of microRNAs in the gonads of Crassostrea hongkongensis using high-throughput sequencing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100606. [PMID: 31325756 DOI: 10.1016/j.cbd.2019.100606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Crassostrea hongkongensis is one of the three most-commonly cultivated oyster species in China. Although microRNAs (miRNAs) expression in the gonads have been widely investigated, few studies of miRNAs in mollusk gonads are available, particularly in oyster. In the present study, we analyzed the miRNAs expressed in the ovaries and testes of C. hongkongensis. We obtained 14,166,409 and 15,133,900 raw reads from the ovaries and testes, respectively, yielding 13,634,997 (ovarian) and 14,494,149 (testicular) 18-35-nt sequences. We mapped these sequences to the C. hongkongensis genome reference sequence, and identified 8,771,717 (ovarian) and 9,926,014 (testicular) sequences corresponding to miRNAs in the Rfam database. After blasting the miRNA sequences against the miRBase database, we identified 50 known mature miRNAs and 53 novel miRNAs. Of these, 27 miRNAs were significantly upregulated in ovaries as compared to the testes, and 43 miRNAs were significantly upregulated in the testes as compared to the ovaries. To validate the differential expression results generated by Illumina sequencing, we used RT-real-time quantitative PCR (RT-qPCR) to characterize the expression patterns of the six most differently expressed miRNAs (lgi-miR-1990, lgi-miR-1986, lgi-miR-263b, lgi-miR-279, lgi-miR-1992, and novel_98) as well as two miRNAs associated with gonad development (lgi-miR-29 and lgi-miR-8). Most of the RT-qPCR miRNA expression patterns were similar to those recovered by high-throughput sequencing with the exceptions of novel_98 and lgi-miR-1992. Gene Ontology (GO) annotations indicated that the multi-organism cellular process GO category was enriched with the target genes of the differentially expressed miRNAs. Additionally, the target genes were enriched in several KEGG pathways, including the ECM-receptor interaction, galactose metabolism, phagosome, and notch signaling pathway. These pathways are involved in gonadal differentiation and the maintenance of gonad function. This identification and characterization of the miRNAs differentially expressed between the ovaries and testes of C. hongkongensis will increase our understanding of the role of miRNAs in gonad differentiation in the oyster.
Collapse
Affiliation(s)
- Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Wei Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Xiaofei Zhuo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Qiongzhen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China.
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fisheries Sciences, Nanning, Guangxi 530021, China.
| |
Collapse
|
10
|
Qu F, Tang J, Peng X, Zhang H, Shi L, Huang Z, Xu W, Chen H, Shen Y, Yan J, Li J, Lu S, Liu Z. Two novel MKKs (MKK4 and MKK7) from Ctenopharyngodon idella are involved in the intestinal immune response to bacterial muramyl dipeptide challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:103-114. [PMID: 30633955 DOI: 10.1016/j.dci.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Mitogen-activated protein kinase kinases (MKKs) are a class of evolutionarily conserved signalling intermediates of the MAPK signalling pathway that can be activated by a diverse range of pathogenic stimuli and are crucial for the regulation of host immune defence. In this study, two fish MKK genes (CiMKK4 and CiMKK7) were first identified and characterized from grass carp (Ctenopharyngodon idella). Similar to other reported MKKs, the present CiMKK4 and CiMKK7 contained a conserved serine/threonine protein kinase (S_TKc) domain and a canonical dual phosphorylation motif. Quantitative real-time PCR results showed that CiMKK4 and CiMKK7 were broadly transcribed in all selected tissues and developmental stages of grass carp. The mRNA expression levels of CiMKK4 and CiMKK7 in the intestine were significantly induced by bacterial muramyl dipeptide (MDP) challenge in a time-dependent manner (P < 0.01). Additionally, the stimulatory effects of bacterial MDP on CiMKK4 and CiMKK7 expression in the intestine were inhibited by the bioactive dipeptide β-alanyl-l-histidine (carnosine) and alanyl-glutamine (Ala-Gln) (P < 0.05). Moreover, overexpression analysis revealed that CiMKK4 and CiMKK7 were localized throughout the entire cell and could significantly enhance AP-1 reporter gene activation in HEK293T cells. Taken together, these results provide the first experimental demonstration that CiMKK4 and CiMKK7 are involved in the intestinal immune response to MDP challenge in C. idella, which may provide new insight into the bacterial-induced intestinal inflammation of bony fishes.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xiangyu Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Hui Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Liping Shi
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhenzhen Huang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Huiqing Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Ying Shen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Shuangqing Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
11
|
Mariom, Take S, Igarashi Y, Yoshitake K, Asakawa S, Maeyama K, Nagai K, Watabe S, Kinoshita S. Gene expression profiles at different stages for formation of pearl sac and pearl in the pearl oyster Pinctada fucata. BMC Genomics 2019; 20:240. [PMID: 30909870 PMCID: PMC6434816 DOI: 10.1186/s12864-019-5579-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background The most critical step in the pearl formation during aquaculture is issued to the proliferation and differentiation of outer epithelial cells of mantle graft into pearl sac. This pearl sac secretes various matrix proteins to produce pearls by a complex physiological process which has not been well-understood yet. Here, we aimed to unravel the genes involved in the development of pearl sac and pearl, and the sequential expression patterns of different shell matrix proteins secreted from the pearl sac during pearl formation by pearl oyster Pinctada fucata using high-throughput transcriptome profiling. Results Principal component analysis (PCA) showed clearly different gene expression profiles between earlier (before 1 week) and later stages (1 week to 3 months) of grafting. Immune-related genes were highly expressed between 0 h – 24 h (donor dependent) and 48 h – 1 w (host dependent), and in the course of wound healing process pearl sac was developed by two weeks of graft transplantation. Moreover, for the first time, we identified some stem cell marker genes including ABCG2, SOX2, MEF2A, HES1, MET, NRP1, ESR1, STAT6, PAX2, FZD1 and PROM1 that were expressed differentially during the formation of pearl sac. The expression profiling of 192 biomineralization-related genes demonstrated that most of the shell matrix proteins (SMPs) involved in prismatic layer formation were first up-regulated and then gradually down-regulated indicating their involvement in the development of pearl sac and the onset of pearl mineralization. Most of the nacreous layer forming SMPs were up-regulated at 2 weeks after the maturation of pearl sac. Nacrein, MSI7 and shematrin involved in both layer formation were highly expressed during 0 h – 24 h, down-regulated up to 1 week and then up-regulated again after accomplishment of pearl sac formation. Conclusions Using an RNA-seq approach we unraveled the expression pattern of the key genes involved in the development of pearl sac and pearl as a result of host immune response after grafting. These findings provide valuable information in understanding the molecular mechanism of pearl formation and immune response in P. fucata. Electronic supplementary material The online version of this article (10.1186/s12864-019-5579-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariom
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Saori Take
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoji Igarashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD, Kurose 1425, Ise, Mie, 516-8581, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD, Osaki Hazako 923, Hamajima, Shima, Mie, 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa, 252-0313, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
12
|
Qu F, Tang J, Liao J, Chen B, Song P, Luo W, Xiong D, Liu T, Gao Q, Lu S, Liu Z. Mitogen-activated protein kinase kinase 6 is involved in the immune response to bacterial di-/tripeptide challenge in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 84:795-801. [PMID: 30393177 DOI: 10.1016/j.fsi.2018.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinase kinase 6 (MKK6) is an essential component of the p38MAPK signaling pathway, which is involved in the modulation of inflammation, cell apoptosis and survival responses in mammals. However, the function of MKK6s in teleosts is still unclear. In this study, a fish MKK6 homolog (CiMKK6) was first identified from the grass carp (Ctenopharyngodon idella), a freshwater fish. CiMKK6 cDNA encodes a putative protein of 357 amino acids that contains conserved structural characteristics of the MKK6 family, including the S_TKc domain, SVAKT motif and DVD site. The deduced CiMKK6 protein exhibits high sequence homology with other reported fish MKK6s and shares the closest relationship with MKK6 from Danio rerio. Quantitative real-time PCR (qRT-PCR) analysis revealed that CiMKK6 mRNA was widely expressed in all tested tissues and stages of embryonic development. Additionally, the transcript levels of CiMKK6 in the intestine were significantly upregulated in response to bacterial muramyl dipeptide (MDP) and L-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) stimulation. Moreover, subcellular localization analysis indicated that CiMKK6 was distributed in both the cytoplasm and the nucleus of HEK293T cells. Finally, overexpression of CiMKK6 significantly enhanced the transcriptional activity of the AP-1 reporter gene in HEK293T cells. Overall, these findings may help better clarify the immune function of teleost MKK6s and provide new insight into the immune defense mechanisms of grass carp.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jinting Liao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Bei Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Peng Song
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Wenjie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Tianting Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qianting Gao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Shuangqing Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
13
|
Huang D, Bai Z, Shen J, Zhao L, Li J. Identification of tumor necrosis factor receptor-associated factor 6 in the pearl mussel Hyriopsis cumingii and its involvement in innate immunity and pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2018; 80:335-347. [PMID: 29920382 DOI: 10.1016/j.fsi.2018.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) acts as a central intracellular signal adapter molecule that mediates the tumor necrosis factor receptor superfamily and the interleukin-1 receptor/Toll-like receptor family in vertebrates and invertebrates. In the present study, HcTRAF6, a molluscan homologue of TRAF6 from Hyriopsis cumingii, has been cloned and identified. The entire open reading frame of HcTRAF6 was found to comprise a 1965-bp region that encodes a predicted protein of 654 amino acids, which contains conserved characteristic domains including a RING domain, two TRAF-type zinc finger domains, a typical coiled coil and the MATH domain. Phylogenetic analysis revealed that HcTRAF6 was aggregated closely with CsTRAF6 from Cyclina sinensis in the invertebrate cluster of mollusks. Further, qRT-PCR analysis showed that HcTRAF6 mRNA was extensively distributed in mussel tissues with a high expression in gills. After immune stimulation with Aeromonas hydrophila and lipopolysaccharides, the transcription of HcTRAF6 was obviously induced in the gills and hemocytes. In addition, significant fluctuation in HcTRAF6 expression was observed in the pearl sac, gills and hemocytes after mantle implantation. These findings confirmed its role in the alloimmune response. Dual-luciferase reporter assay showed that over-expression of HcTRAF6 could enhance the activity of the NF-κB reporter in a dose-dependent manner. Further, the RNA interference showed that the up-regulation of antimicrobial peptides in anti-bacterial infection was strongly suppressed in HcTRAF6-silenced mussels and that depletion of HcTRAF inhibited the elimination of A. hydrophila. All these findings together prove that HcTRAF6 functions as an efficient regulator in innate immune mechanisms against invading pathogens and the alloimmune mechanism after mantle implantation in H. cumingii.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Jiexuan Shen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
| |
Collapse
|
14
|
Qi P, He Y, Liao Z, Dong W, Xia H. Molecular cloning and functional analysis of tumor necrosis factor receptor-associated factor 6 (TRAF6) in thick shell mussel, Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2018; 80:631-640. [PMID: 29859313 DOI: 10.1016/j.fsi.2018.05.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the key adapter molecules in Toll-like receptor signal transduction that triggers downstream cascades involved in innate immunity. Despite of the well study in vertebrates, there is few data ascribe to this TRAF member in invertebrates, especially in bivalves. In the present study, a novel TRAF6 homologue termed McTRAF6 was firstly characterized in Mytilus coruscus. Like its counterparts in mammals, McTRAF6 shared the domain topology containing one RING domain, two zinc finger domains, one coiled-coil region and a MATH domain. McTRAF6 transcripts predominantly expressed in gills, digestive glands and hemocytes in M. coruscus, and were significantly up-regulated in hemocytes after challenge with lipopolysaccharide (LPS) and polyinosine-polycytidylic acid (poly I:C). Further, the subcellular localization in cytoplasm and the activation of Nk-κB or ISRE luciferase reporter by overexpressed McTRAF6 were identified in HEK293T cells. These results collectively indicate that McTRAF6 is a member of TRAF6 subfamily and plays a potential role in immune defense system against pathogenic agents invasions in thick shell mussel. To our knowledge, this is the first report on component of TLR signaling pathway in thick shell mussel, providing further evidence for the existence of TLR pathway in M. coruscus and contribute to clarify the innate immune system of thick shell mussel.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Yuehua He
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Wenqiang Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Hu Xia
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science, Hunan Changde, 415000, China
| |
Collapse
|
15
|
Sun J, Li Y, Li M, Liu Y, Qu C, Wang L, Song L. A novel JNK is involved in immune response by regulating IL expression in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 79:93-101. [PMID: 29751034 DOI: 10.1016/j.fsi.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The c-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPK) highly conserved from yeast to mammals and participates in regulating many physiological and pathological processes. In the present study, a novel JNK was identified from oyster Crassostrea gigas (designated as CgJNK) and its biological functions were investigated in response against lipopolysaccharide (LPS) stimulation. The CgJNK consists of 415 amino acids, which includes a serine/threonine protein kinase (S_TKc) domain with a conserved Thr-Pro-Tyr (TPY) motif. Phylogenetic analysis revealed that CgJNK shared high similarity with other members of the JNK subfamily. CgJNK mRNA was detected in all the tested tissues and CgJNK mRNA expression levels in hemocytes were significantly up-regulated from 6 to 72 h after LPS stimulation and reached the highest level (16.1-fold, p < 0.01) at 24 h. The phosphorylation level of CgJNK in C. gigas hemocytes was increased at 2 h after LPS stimulation. The subcellular localization of CgJNK phosphorylation in hemocytes was analyzed after LPS stimulation, and CgJNK phosphorylation could be detected in both cytoplasm and nucleus of oyster hemocytes at 2 h post LPS stimulation. Additionally, the interleukins (CgILs) were detected in hemocytes of CgJNK-knockdown oysters. CgIL17-1, CgIL17-2, CgIL17-4 and CgIL17-6 transcripts were decreased significantly in CgJNK-knockdown oysters at 24 h post LPS stimulation. In summary, these results suggested that CgJNK played an important role in the immune response of oysters by regulating IL expression.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
16
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|