1
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Wang W, Huang J, Fang W, Zhang H, Chen Z, Lu J. Transcriptome analysis uncovers the expression of genes associated with growth in the gills and muscles of white shrimp (Litopenaeus vannamei) with different growth rates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101347. [PMID: 39486211 DOI: 10.1016/j.cbd.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Litopenaeus vannamei is a crucial species in aquaculture. The gene expression patterns associated with distinct growth rates are not well understood. To investigate this, we used RNA-seq to study the underlying growth mechanism of L. vannamei with varying growth rates. Individuals of higher growth performance (HG), middle growth performance (MG), and lower growth performance (LG) were examined. A total of 8422 and 4560 differentially expressed genes (DEGs) were identified in gill and muscle samples, respectively. Genes related to growth were significantly up-regulated in HG gills, such as cuticle protein, chitin synthase, pupal cuticle protein, titin myosin G heavy chain, and myosin heavy chain 10. The GO enrichment analysis revealed that the DEGs of HG gills were significantly enriched in "structural constituent of cuticle", "primary metabolic process" and "chitin binding". The growth-related genes were highly expressed in HG muscle, such as myosin heavy chain, myosin heavy chain type A and myosin 3. The GO enrichment analysis revealed that the DEGs of HG muscle were significantly enriched in "myosin filament", "myosin complex" and "myofibril". These findings provide insights into mechanisms underlying the growth performance of superior L. vannamei, and identify candidate genes for genetic improvement programs aimed at enhancing this trait.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.
| | - Hongyun Zhang
- Guangdong Haiwei Aquaculture Co. LTD, Zhanjiang, China
| | - Zhiqiang Chen
- Guangdong Haiwei Aquaculture Co. LTD, Zhanjiang, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China.
| |
Collapse
|
3
|
Alaman OAP, Pedrosa-Gerasmio IR, Koiwai K, Nozaki R, Kondo H, Hirono I. Molecular characterization of a short-chained pentraxin gene from kuruma shrimp Marsupenaeus japonicus hemocytes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109548. [PMID: 38588870 DOI: 10.1016/j.fsi.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Pentraxins (PTXs) are a family of pattern recognition proteins (PRPs) that play a role in pathogen recognition during infection via pathogen-associated molecular patterns (PAMPs). Here, we characterized a short-chained pentraxin isolated from kuruma shrimp (Marsupenaeus japonicus) hemocytes (MjPTX). MjPTX contains the pentraxin signature HxCxS/TWxS (where x can be any amino acid), although the second conserved residue of this signature differed slightly (L instead of C). In the phylogenetic analysis, MjPTX clustered closely with predicted sequences from crustaceans (shrimp, lobster, and crayfish) displaying high sequence identities exceeding 52.67 %. In contrast, MjPTX showed minimal sequence identity when compared to functionally similar proteins in other animals, with sequence identities ranging from 20.42 % (mouse) to 28.14 % (horseshoe crab). MjPTX mRNA transcript levels increased significantly after artificial infection with Vibrio parahaemolyticus (48 h), White Spot Syndrome Virus (72 h) and Yellow Head Virus (24 and 48 h). Assays done in vitro revealed that recombinant MjPTX (rMjPTX) has an ability to agglutinate Gram-negative and Gram-positive bacteria and to bind microbial polysaccharides and bacterial suspensions in the presence of Ca2+. Taken together, our results suggest that MjPTX functions as a classical pattern recognition protein in the presence of calcium ions, that is capable of binding to specific moieties present on the surface of microorganisms and facilitating their clearance.
Collapse
Affiliation(s)
- Omar Adrianne P Alaman
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan; Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines.
| | - Ivane R Pedrosa-Gerasmio
- Department of Marine Science, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Keichiro Koiwai
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Miao M, Li S, Yu Y, Liu Y, Li F. Comparative transcriptome analysis of hepatopancreas reveals the potential mechanism of shrimp resistant to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109282. [PMID: 38081442 DOI: 10.1016/j.fsi.2023.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Vibrio parahaemolyticus carrying a pathogenic plasmid (VPAHPND) is one of the main causative agents of acute hepatopancreatic necrosis disease (AHPND) in shrimp aquaculture. Knowledge about the mechanism of shrimp resistant to VPAHPND is very helpful for developing efficient strategy for breeding AHPND resistant shrimp. In order to learn the mechanism of shrimp resistant to AHPND, comparative transcriptome was applied to analyze the different expressions of genes in the hepatopancreas of shrimp from different families with different resistance to VPAHPND. Through comparative analysis on the hepatopancreas of shrimp from VPAHPND resistant family and susceptible family, we found that differentially expressed genes (DEGs) were mainly involved in immune and metabolic processes. Most of the immune-related genes among DEGs were highly expressed in the hepatopancreas of shrimp from resistant family, involved in recognition of pathogen-associated molecular patterns, phagocytosis and elimination of pathogens, maintenance of reactive oxygen species homeostasis and other immune processes etc. However, most metabolic-related genes were highly expressed in the hepatopancreas of shrimp from susceptible family, involved in metabolism of lipid, vitamin, cofactors, glucose, carbohydrate and serine. Interestingly, when we analyzed the expression of above DEGs in the shrimp after VPAHPND infection, we found that the most of identified immune-related genes remained at high expression levels in the hepatopancreas of shrimp from the VPAHPND resistant family, and most of the identified metabolic-related genes were still at high expression levels in the hepatopancreas of shrimp from the VPAHPND susceptible family. The data suggested that the differential expression of these immune-related and metabolic-related genes in hepatopancreas might contribute to the resistance variations of shrimp to VPAHPND. These results provided valuable information for understanding the resistant mechanism of shrimp to VPAHPND.
Collapse
Affiliation(s)
- Miao Miao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuan Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Sahoo S, Badhe MR, Paul A, Sahoo PK, Suryawanshi AR, Panda D, Pillai BR, Patnaik BB, Mohanty J. Characterization of a Lipopolysaccharide- and Beta-1,3-Glucan Binding Protein (LGBP) from the Hepatopancreas of Freshwater Prawn, Macrobrachium rosenbergii, Possessing Lectin-Like Activity. Probiotics Antimicrob Proteins 2023; 15:1596-1607. [PMID: 36593373 DOI: 10.1007/s12602-022-10021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/04/2023]
Abstract
The study focuses on the isolation, characterization, and expression analysis of a lectin from the hepatopancreas of Macrobrachium rosenbergii. The protein was isolated by affinity chromatography on a melibiose-agarose column. The molecular weight of the native protein was found to be ~120 kDa which consists of a single polypeptide of ~39.5 kDa. On mass spectrometric analysis, the protein was identified as lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP). LGBP showed hemagglutination with rabbit RBC like a lectin and its carbohydrate-binding specificity was determined by the hemagglutination inhibition test. The protein also showed antibacterial activity against two Gram-negative bacteria Vibrio harveyi and Aeromonas sobria, and one Gram positive bacteria Bacillus cereus in the disc diffusion test. Rabbit antiserum was raised against the purified LGBP and used to develop a sandwich ELISA system for quantitation of the protein in hepatopancreas and serum samples of M. rosenbergii. The expression of the LGBP transcripts in muscle, hepatopancreas, and gill tissues from M. rosenbergii juveniles at 72 h post-challenge of V. harveyi was not modulated as noticed in qPCR analysis. However, significant increases in the concentrations of LGBP protein in hepatopancreas (5.23 ± 0.45 against 3.43 ± 0.43 mg/g tissue in control) and serum (1.08 ± 0.14 against 0.61 ± 0.08 µg/ml in control) were observed in the challenged group of prawns in ELISA suggesting its putative role against bacterial infections. The study for the first time characterized the native LGBP of M. rosenbergii showing a multifunctional role in immunity.
Collapse
Affiliation(s)
- Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | - Debabrata Panda
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bindu R Pillai
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bharat Bhusan Patnaik
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungcheongnam-do, 31538, Korea
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
6
|
Park K, Kwak IS. Growth retardation and suppression of ubiquitin-dependent catabolic processes in the brackish water clam Corbicula japonica in response to salinity changes and bioaccumulation of toxic heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122554. [PMID: 37717895 DOI: 10.1016/j.envpol.2023.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The brackish water clam (Corbicula japonica) is constantly exposed to stressful salinity gradients and high levels of heavy metals in the freshwater-saltwater interface of estuary environments, which are introduced from upstream regions and land. To identify the key molecular pathways involved in the response to salinity changes and heavy metal bioaccumulation, we obtained the transcriptomes of C. japonica inhabiting different salinities and heavy metal distributions in Gwangyang Bay (Korea) using RNA sequencing. Among a total of 404,486 assembled unigenes, 5534 differentially expressed genes were identified in C. japonica inhabiting different conditions, 1549 of which were significantly upregulated and 1355 were significantly downregulated. Correlation analyses revealed distinct gene expression patterns between the low and high conditions of salinity and heavy metal bioaccumulation. Functional annotation revealed significant downregulation of genes involved in "ubiquitin-dependent protein catabolic process," "tricarboxylic acid cycle," and "intracellular protein transport" in C. japonica from the high condition compared to the low condition. Transcription and translation pathways were significantly enriched in the high condition. Additionally, upon comparison of the low and high conditions by qRT-PCR and proteasome enzyme activity analyses, our findings demonstrated that environmental stress could suppress the ubiquitin-proteasome complex (UPC). Additionally, transcriptomic changes under high salinity stress conditions may be related to an increase in cellular protection by defense enzymes, which leads to more energy being required and a disruption of energy homeostasis. Ultimately, this could cause growth retardation in the clam C. japonica. In summary, this study provides the first evidence of UPC suppression induced by a combination of high salinity and heavy metal bioaccumulation stress in C. japonica, which could compromise the survival and growth of estuarine bivalves.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
7
|
Espinosa-Ruíz C, Esteban MÁ. Modulation of cell migration and cell tracking of the gilthead seabream (Sparus aurata) SAF-1 cells by probiotics. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109149. [PMID: 37858786 DOI: 10.1016/j.fsi.2023.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/18/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Cell migration is an essential process in immunity and wound healing. The in vitro scratch assay was optimized for the SAF-1 cell line, obtained from gilthead seabream (Sparus aurata) fin. In addition, selected cells from the cell front were tracked for detailed individual cell movement and morphological analysis. Modulation of migration and cell tracking of the SAF-1 cell line by probiotics was evaluated. Cells were cultured and incubated for 24 h with three species of extremophilic yeasts [Yarrowia lipolytica (D1 and N6) and Debaryomyces hansenii (CBS004)] and the bacterium Shewanella putrefaciens (known as SpPdp11) and then scratch and cell tracking assays were performed. The results indicated that the forward velocity was significantly (p < 0.05) increased in SAF-1 cells incubated with CBS004 or SpPdp11. However, cell velocity, cumulative distance and Euclidean distance were only significantly increased in SAF-1 cells incubated with SpPdp11. Furthermore, to increase our understanding of the genes involved in cell movement, the expression profile of ten structural proteins (α-1β tubulin, vinculin, focal adhesion kinase type, alpha-2 integrin, tetraspanin, integrin-linked kinase 1, tensin 3, tensin 4, paxillin, and light chain 2) was studied by real time-PCR. The expression of these genes was modulated as a function of the probiotic tested and the results indicate that CBS004 and SpPdp11 increase the movement of SAF-1 cells.
Collapse
Affiliation(s)
- Cristóbal Espinosa-Ruíz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Ma Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
8
|
Miao M, Li S, Yu Y, Li F. LysM-containing proteins function in the resistance of Litopenaeus vannamei against Vibrio parahaemolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104900. [PMID: 37536402 DOI: 10.1016/j.dci.2023.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Lysin motif (LysM) is a functional domain that can bind to peptidoglycans, chitin and their derivatives. The LysM-containing proteins participate in multiple biological processes, such as the hydrolysis of bacterial cell walls and the perception of PAMPs in plants and high animals. In the present study, two genes encoding LysM-containing proteins, designated as LvLysM1 and LvLysM2, were identified in the Pacific white shrimp, Litopenaeus vannamei, and their functions during Vibrio infection were analyzed. The open-reading frame (ORF) of LvLysM1 was 795 bp, only encoding a LysM domain at the N-terminal region. The ORF of LvLysM2 was 834 bp, encoding a LysM domain at the central region and a transmembrane region at the C-terminal region. Both LvLysM1 and LvLysM2 were widely transcribed in all tested shrimp tissues. Enzyme-linked immunosorbent assay (ELISA) showed that the recombinant protein of LvLysM2 could bind to different bacterial polysaccharides, while LvLysM1 showed no direct binding activity. The transcripts of LvLysMs in gills increased significantly after infection with Vibrio parahaemolyticus. When LvLysM1 or LvLysM2 was knocked down by dsRNA, the mortality of shrimp was significantly increased after infection with Vibrio parahaemolyticus. Interestingly, some SNPs existed in these two genes were apparently correlated with the VpAHPND resistance of shrimp. These results suggested that LvLysM1 and LvLysM2 might contribute to the disease resistance of shrimp. The data provide new knowledge about the function of LysM-containing proteins in shrimp and potential genetic markers for disease resistance breeding.
Collapse
Affiliation(s)
- Miao Miao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
9
|
Johnpaul A, Arumugam M. Plasma β-1,3 Glucan Binding Protein Mediated Opsono-Phagocytosis by Hemocytes In Vitro of Marine Mussel Perna viridis. DNA Cell Biol 2023; 42:608-616. [PMID: 37695843 DOI: 10.1089/dna.2023.0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
We have shown in the past decade, for the first time in a bivalve mollusc, detection, isolation, and purification of β-1,3 glucan binding protein (β-GBP) in the plasma of the marine mussel Perna viridis and demonstrated its role in a nonself-induced activation of plasma prophenoloxidase system. In this study, we present evidence for its ability to function as an opsonin during phagocytosis of trypsinized yeast cells by the hemocytes of P. viridis. The in vitro pretreatment of target cells (trypsinized yeast cells) with β-GBP enhanced the phagocytic response of hemocytes. Such β-GBP-mediated enhanced phagocytic response appeared to be dose dependent. This opsono-phagocytic response could be inhibited by the presence of laminarin (a polymer of β-1,3 glucans), glucose, as well as polyclonal antibodies raised against β-GBP. These observations clearly indicate that the plasma β-GBP can possibly recognize and bind to β-1,3 glucans on the surface of targets and facilitate hemocyte recognition processes possibly by forming a bridge between the hemocytes and the target, consequently leading to opsono-phagocytosis. These observations together with our earlier annotations indicate the multifunctional potential of plasma β-GBP in the marine mussel P. viridis.
Collapse
Affiliation(s)
- A Johnpaul
- Department of Zoology, St. Joseph's University, Bangalore, India
| | - M Arumugam
- Laboratory of Pathobiology, Department of Zoology, University of Madras, Guindy Campus, Chennai, India
| |
Collapse
|
10
|
Keawthong C, Bunnoy A, Chuchird N, Srisapoome P. Immune responses and histopathological analyses of giant river prawn (Macrobrachium rosenbergii, De Man 1879) challenged with a sub-lethal dose of decapod iridescent virus 1 (DIV1) and chemical control investigation. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108792. [PMID: 37141959 DOI: 10.1016/j.fsi.2023.108792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Decapod iridescent virus 1 (DIV1) is a lethal virus that has a significant influence on the shrimp and prawn culture industries. The mechanism through which infected prawns respond to the DIV1 virus is currently unknown. Here, we examined in detail the clinical signs, histopathology, and humoral, cellular, and immune-related gene responses after a sub-lethal dose of DIV1 during the acute infection period of 0-120 hours post infection (hpi). Interestingly, at the end of the experiment, DIV1-infected prawns had black lesions on several external regions. The DIV1-infected prawns also exhibited few karyopyknotic nuclei in the gills and intestine tissues and exhibited increasing immunological responses, as revealed by significant increases in all examined parameters, including total hemocytes, phagocytosis, lysozyme, and overall bactericidal activity, from 6 to 48 hpi. In addition, between 72 and 120 hpi, all immune response activities of DIV1-infected prawn were impaired compared with those of normal prawns, indicating negative impacts on immunological parameters. A viral load analysis of various tissues by qPCR indicated that hemocytes were the dominant initial viral target tissues, followed by the gills and hepatopancreas. An expression analysis of crucial immune-related genes by qRT‒PCR revealed various expression patterns in response to DIV1 infection; in particular, fold changes in the relative expression of anti-lipopolysaccharide factors (ALFs), prophenoloxidase (proPO), lipopolysaccharide and β-1,3-glucan binding protein (LGBP) were observed. Additionally, five common chemicals, calcium hypochlorite [Ca(OCl)2] at 16.25-130 ppm, hydrogen peroxide (H2O2) at 8.75-70 ppm, povidone iodine (PVP-I) at 3-24 ppm, benzalkonium chloride (BKC) at 20-160 ppm, and formalin at 25-200 ppm, had a significant effect on the killing of DIV1 particles in vitro within 24 h after exposure. These data will be helpful for determining the health status and immune defense mechanisms of giant river prawns during DIV1 infection periods. The study performed the first application of very common disinfectants, and the obtained information will be useful for implementing effective strategies to prevent and control DIV1 infection in both hatchery and grow-out ponds.
Collapse
Affiliation(s)
- Chalinda Keawthong
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Niti Chuchird
- Aquaculture Business Research Center, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
11
|
Farhadi A, Tang S, Huang M, Yu Q, Xu C, Li E. Identification of key immune and stress related genes and pathways by comparative analysis of the gene expression profile under multiple environmental stressors in pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108695. [PMID: 36935045 DOI: 10.1016/j.fsi.2023.108695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Water salinity, pH, and nitrite concentration are considered environmental factors affecting the growth rate, survival, health, and physiological conditions of aquatic animals. The identification of key genes that are involved in the response to environmental stressors is essential for controlling stress in aquatic animals and sustainable aquaculture. In this study, RNA sequencing was performed to identify the differentially expressed genes (DEGs) and biological pathways that are involved in the response of the hepatopancreas to environmental stressors, including low salinity stress, nitrite stress, low pH stress, and high pH stress. The DEGs were enriched in biological pathways related to immune response, energy metabolism, oxidative stress response, hemostasis, and enzymatic activity of the hepatopancreas. In addition to the identification of DEGs related to each stressor, some DEGs were found to be expressed among all groups. The most important overlapping DEGs under multiple stressors were juvenile hormone esterase-like protein 2 (JHE-like), myosin light chain, C-type lectin 2, myosin-9-like, anti-lipopolysaccharide factor 1 (ALF-1), peroxisomal acyl-coenzyme An oxidase 1-like (ACX1), hepatic lectin-like, venom phosphodiesterase 2-like, hemolymph clottable protein-like (CP), cathepsin L, and Ras-like protein 2. The results of the present study provide additional information regarding the transcriptional response of the hepatopancreas to low salinity, nitrite, low pH, and high pH stress. Moreover, the discovery of several overlapping DEGs among different stressors provided a better understanding of the molecular function of the hepatopancreas.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shangshang Tang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Maoxian Huang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qiuran Yu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
12
|
Jatuyosporn T, Laohawutthichai P, Romo JPO, Gallardo-Becerra L, Lopez FS, Tassanakajon A, Ochoa-Leyva A, Krusong K. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon. Sci Rep 2023; 13:996. [PMID: 36653369 PMCID: PMC9849358 DOI: 10.1038/s41598-023-27906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The gut microbiome plays an essential role in the immune system of invertebrates and vertebrates. Pre and pro-biotics could enhance the shrimp immune system by increasing the phenoloxidase (PO), prophenoloxidase (ProPO), and superoxide dismutase activities. During viral infection, the host immune system alteration could influence the gut microbiome composition and probably lead to other pathogenic infections. Since the JAK/STAT pathway is involved in white spot syndrome virus (WSSV) infection, we investigated the intestine immune genes of STAT-silenced shrimp. During WSSV infection, expression levels of PmVago1, PmDoral, and PmSpätzle in PmSTAT-silenced shrimp were higher than normal. In addition, the transcription levels of antimicrobial peptides, including crustinPm1, crustinPm7, and PmPEN3, were higher in WSSV-challenged PmSTAT-silenced shrimp than the WSSV-infected normal shrimp. Meanwhile, PmSTAT silencing suppressed PmProPO1, PmProPO2, and PmPPAE1 expressions during WSSV infection. The microbiota from four shrimp tested groups (control group, WSSV-infected, PmSTAT-silenced, and PmSTAT-silenced infected by WSSV) was significantly different, with decreasing richness and diversity due to WSSV infection. The relative abundance of Bacteroidetes, Actinobacteria, and Planctomycetes was reduced in WSSV-challenged shrimp. However, at the species level, P. damselae, a pathogen to human and marine animals, significantly increased in WSSV-challenged shrimp. In constrast, Shewanella algae, a shrimp probiotic, was decreased in WSSV groups. In addition, the microbiota structure between control and PmSTAT-silenced shrimp was significantly different, suggesting the importance of STAT to maintain the homeostasis interaction with the microbiota.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juan Pablo Ochoa Romo
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Filiberto Sánchez Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Yang S, Yuan Z, Aweya JJ, Deng S, Weng W, Zhang Y, Liu G. Antibacterial and antibiofilm activity of peptide PvGBP2 against pathogenic bacteria that contaminate Auricularia auricular culture bags. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Liu M, Ni H, Zhang X, Sun Q, Wu X, He J. Comparative transcriptomics reveals the immune dynamics during the molting cycle of swimming crab Portunus trituberculatus. Front Immunol 2022; 13:1037739. [PMID: 36389847 PMCID: PMC9659622 DOI: 10.3389/fimmu.2022.1037739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 03/22/2024] Open
Abstract
Molting is one of the most important biological processes of crustacean species, and a number of molecular mechanisms facilitate this complex procedure. However, the understanding of the immune mechanisms underlying crustacean molting cycle remains very limited. This study performed transcriptome sequencing in hemolymph and hepatopancreas of the swimming crab (Portunus trituberculatus) during the four molting stages: post-molt (AB), inter-molt (C), pre-molt (D), and ecdysis (E). The results showed that there were 78,572 unigenes that were obtained in the hemolymph and hepatopancreas of P. trituberculatus. Further analysis showed that 98 DEGs were involved in immunity response of hemolymph and hepatopancreas, and most of the DEGs participated in the process of signal transduction, pattern recognition proteins/receptors, and antioxidative enzymes system. Specifically, the key genes and pathway involved in signal transduction including the GPCR126, beta-integrin, integrin, three genes in mitogen-activated protein kinase (MAPK) signaling cascade (MAPKKK10, MAPKK4, and p38 MAPK), and four genes in Toll pathway (Toll-like receptor, cactus, pelle-like kinase, and NFIL3). For the pattern recognition proteins/receptors, the lowest expression level of 11 genes was found in the E stage, including C-type lectin receptor, C-type lectin domain family 6 member A and SRB3/C in the hemolymph, and hepatopancreatic lectin 4, C-type lectin, SRB, Down syndrome cell adhesion molecule homolog, Down syndrome cell adhesion molecule isoform, and A2M. Moreover, the expression level of copper/zinc superoxide dismutase isoform 4, glutathione peroxidase, glutathione S-transferase, peroxiredoxin, peroxiredoxin 6, and dual oxidase 2 in stage C or stage D significantly higher than that of stage E or stage AB. These results fill in the gap of the continuous transcriptional changes that are evident during the molting cycle of crab and further provided valuable information for elucidating the molecular mechanisms of immune regulation during the molting cycle of crab.
Collapse
Affiliation(s)
- Meimei Liu
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhoushan, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Hongwei Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Xiaokang Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Qiufeng Sun
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jie He
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhoushan, China
| |
Collapse
|
15
|
Corporeau C, Petton S, Vilaça R, Delisle L, Quéré C, Le Roy V, Dubreuil C, Lacas-Gervais S, Guitton Y, Artigaud S, Bernay B, Pichereau V, Huvet A, Petton B, Pernet F, Fleury E, Madec S, Brigaudeau C, Brenner C, Mazure NM. Harsh intertidal environment enhances metabolism and immunity in oyster (Crassostrea gigas) spat. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105709. [PMID: 35988349 DOI: 10.1016/j.marenvres.2022.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The Pacific oyster Crassostrea gigas is established in the marine intertidal zone, experiencing rapid and highly dynamic environmental changes throughout the tidal cycle. Depending on the bathymetry, oysters face oxygen deprivation, lack of nutrients, and high changes in temperature during alternation of the cycles of emersion/immersion. Here we showed that intertidal oysters at a bathymetry level of 3 and 5 m delayed by ten days the onset of mortality associated with Pacific Oyster Mortality Syndrome (POMS) as compared to subtidal oysters. Intertidal oysters presented a lower growth but similar energetic reserves to subtidal oysters but induced proteomic changes indicative of a boost in metabolism, inflammation, and innate immunity that may have improved their resistance during infection with the Ostreid herpes virus. Our work highlights that intertidal harsh environmental conditions modify host-pathogen interaction and improve oyster health. This study opens new perspectives on oyster farming for mitigation strategies based on tidal height.
Collapse
Affiliation(s)
- Charlotte Corporeau
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France.
| | - Sébastien Petton
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Romain Vilaça
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Lizenn Delisle
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Claudie Quéré
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Valérian Le Roy
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Christine Dubreuil
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, CCMA, Nice, France
| | - Yann Guitton
- Laboratoire d'étude des Résidus et Contaminants dans les Aliments, Oniris, INRA, F-44307, Nantes, France
| | - Sébastien Artigaud
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Benoît Bernay
- Plateforme Proteogen, SFR ICORE 4206, Univ. Caen Basse-Normandie, 14000, Caen, France
| | - Vianney Pichereau
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Arnaud Huvet
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Bruno Petton
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Fabrice Pernet
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Elodie Fleury
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Stéphanie Madec
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | | | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches Thérapeutiques, 94805, Villejuif, France
| | - Nathalie M Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, 151 route St Antoine de Ginestière, 06204, Nice, France
| |
Collapse
|
16
|
Kwankaew P, Madsari N, Thongsoi R, Utarabhand P, Runsaeng P. Effects of the interaction between a clip domain serine protease and a white spot syndrome virus protein on phenoloxidase activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104360. [PMID: 35101532 DOI: 10.1016/j.dci.2022.104360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Clip domain serine proteinases participate in invertebrate innate immunity by acting as crucial enzymes in the signaling cascade involved in shrimp immunity. To functionally characterize its role in Fenneropenaeus merguiensis, FmclipSP cDNA was cloned and characterized. The FmclipSP gene comprised 1353 bp with an open reading frame of 1110 bp and encoded 369 amino acids. The protein contained clip and serine protease domains. FmClipSP mRNA is highly expressed in hemocytes, and its expression was significantly upregulated by bacterial or viral pathogen challenge. Furthermore, FmClipSP recombinant protein (rFmClipSP) was produced and possessed protease activity, stimulating prophenoloxidase activity. Additionally, rFmClipSP exhibited antibacterial activity against pathogens and nonpathogens. ELISA results demonstrated the binding ability of rFmClipSP to a recombinant protein of VP28 (rVP28). Interestingly, the binding significantly inhibited prophenoloxidase activity. Altogether, we partially characterized the function of FmclipSP and demonstrated its association with VP28. This study indicates the importance of clipSP as a component of F. merguiensis innate immunity. However, the role of clipSP in crustaceans remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand; Research Excellence Center for Innovation and Health Product, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Naeem Madsari
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Ratiporn Thongsoi
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Prapaporn Utarabhand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Phanthipha Runsaeng
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand.
| |
Collapse
|
17
|
Tran NT, Liang H, Zhang M, Bakky MAH, Zhang Y, Li S. Role of Cellular Receptors in the Innate Immune System of Crustaceans in Response to White Spot Syndrome Virus. Viruses 2022; 14:v14040743. [PMID: 35458473 PMCID: PMC9028835 DOI: 10.3390/v14040743] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Innate immunity is the only defense system for resistance against infections in crustaceans. In crustaceans, white spot diseases caused by white spot syndrome virus (WSSV) are a serious viral disease with high accumulative mortality after infection. Attachment and entry into cells have been known to be two initial and important steps in viral infection. However, systematic information about the mechanisms related to WSSV infection in crustaceans is still limited. Previous studies have reported that cellular receptors are important in the innate immune system and are responsible for the recognition of foreign microorganisms and in the stimulation of the immune responses during infections. In this review, we summarize the current understanding of the functions of cellular receptors, including Toll, C-type lectin, scavenger receptor, β-integrin, polymeric immunoglobulin receptor, laminin receptor, globular C1q receptor, lipopolysaccharide-and β-1,3-glucan-binding protein, chitin-binding protein, Ras-associated binding, and Down syndrome cell adhesion molecule in the innate immune defense of crustaceans, especially shrimp and crabs, in response to WSSV infection. The results of this study provide information on the interaction between viruses and hosts during infections, which is important in the development of preventative strategies and antiviral targets in cultured aquatic animals.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-754-86502485; Fax: +86-754-86503473
| |
Collapse
|
18
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
19
|
Ren Y, Li J, Guo L, Liu JN, Wan H, Meng Q, Wang H, Wang Z, Lv L, Dong X, Zhao W, Zeng Q, Ou J. Full-length transcriptome and long non-coding RNA profiling of whiteleg shrimp Penaeus vannamei hemocytes in response to Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:876-886. [PMID: 32800983 DOI: 10.1016/j.fsi.2020.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Spiroplasma eriocheiris (S. eriocheiris) infection causes a significant economic loss in Penaeus vannamei (P. vannamei) culture industry. However, the response of P. vannamei hemocytes to S. eriocheiris infection has not been extensively studied. In this study, we conducted full-length transcriptome and long non-coding RNA (lncRNA) analyses of P. vannamei hemocytes by a challenge test with S. eriocheiris. Following assembly and annotation, there were 8077 high-quality unigenes. A total of 1168 differentially expressed genes (DEGs) were obtained, including 792 up-regulated and 376 down-regulated genes by differential expression analysis. Gene ontology (GO) enrichment analysis showed that the up-regulated DEGs were mainly clustered into immune system process, defense response, cell cycle and organelle organization. On the other hand, the down-regulated DEGs included that genes that were mainly clustered into metabolic processes related to organic compounds, metabolic process and cellular metabolic process. Protein-protein interaction (PPI) network analysis of DEGs indicated that the pivotal gene interactions were connected to stress response, immune system process and cell cycle. The lncRNA analysis identified multiple lncRNAs, which were highly co-expressed with the immune-related genes, such as lncRNA transcript-12631 and transcript-12631, suggesting that lncRNAs may be involved in the regulation of immune defense in shrimp hemocytes. Additionally, 20 hub unigenes and putative lncRNAs related to immune system were validated by quantitative real-time PCR (qRT-PCR), validating the reliability of RNA-Seq. This study revealed a close connection between the immune and metabolic systems of S. eriocheiris infected P. vannamei.
Collapse
Affiliation(s)
- Yaoqing Ren
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jingyu Li
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Liang Guo
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jian Ning Liu
- KeGene Science & Technology Co. Ltd, Nantianmen Middle Road, Tai'an, 271018, China
| | - Hui Wan
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hui Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Linlan Lv
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xuexing Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Weihong Zhao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
| | - Jiangtao Ou
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
20
|
Licona-Jain A, Campa-Córdova Á, Luna-González A, Racotta IS, Tello M, Angulo C. Dietary supplementation of marine yeast Yarrowia lipolytica modulates immune response in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 105:469-476. [PMID: 32712232 DOI: 10.1016/j.fsi.2020.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The immunostimulatory potential of the marine yeast Yarrowia lipolytica (D1 and N6 strains) administered orally was evaluated in the white shrimp Litopenaeus vannamei. Yeasts and commercial glucans were mixed with a commercial feed to formulate diets with a 1.1% concentration of immunostimulants. The shrimp were fed daily for a period of 21 days. Weekly determinations were performed for immunological parameters in hemolymph, such as total hemocyte count (THC), lysozyme activity (LYZ), prophenoloxidase activity, antioxidant enzymatic activities (superoxide dismutase [SOD], catalase [CAT], and peroxidases), and bactericidal activity against Vibrio parahaemolyticus. Expression profiles of penaeidin (PEN), lysozyme (LYZ), and prophenoloxidase (proPO) immune genes were evaluated in hemocytes. In general, an increase in the immune parameters was observed in shrimp fed yeast diet compared to glucan and the control diets. Yarrowia lipolytica, especially strain N6, provided maximum immunostimulatory effects evidenced by the increase of immune parameters (THC, LYZ, SOD, CAT) and gene expression profile. In conclusion, this study demonstrated that Y. lipolytica had immunostimulatory effects and increased bactericidal activity in L. vannamei hemocytes against V. parahaemolyticus. These findings open the path for the potential application of Y. lipolytica-based immunostimulant for shrimp aquaculture.
Collapse
Affiliation(s)
- Alan Licona-Jain
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Ángel Campa-Córdova
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Antonio Luna-González
- Instituto Politécnico Nacional. Centro Interdiciplinario de Investigación para el Desarrollo Integral Regional (Sinaloa), Blvd. Juan de Dios Bátiz Paredes #250, Guasave, Sinaloa, Mexico
| | - Ilie S Racotta
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Marlene Tello
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico.
| |
Collapse
|
21
|
Santos CA, Andrade SCS, Fernandes JMO, Freitas PD. Shedding the Light on Litopenaeus vannamei Differential Muscle and Hepatopancreas Immune Responses in White Spot Syndrome Virus (WSSV) Exposure. Genes (Basel) 2020; 11:E805. [PMID: 32708590 PMCID: PMC7397224 DOI: 10.3390/genes11070805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
White Spot Syndrome Virus (WSSV) is one of the main threats to farming Litopenaeus vannamei, the most important crustacean commercialized in aquaculture worldwide. Here, we performed RNA-seq analyses in hepatopancreas and muscle from WSSV-negative (healthy) and WSSV-positive (unhealthy) L. vannamei, previously exposed to the virus, to obtain new insights about the molecular basis of resistance to WSSV. We detected 71% of our reads mapped against the recently described L. vannamei genome. This is the first report mapping RNA-seq transcripts from shrimps exposed to WSSV against the species reference genome. Differentially expressed gene (DEG) analyses were performed for four independent comparisons, and 13,338 DEGs were identified. When the redundancies and isoforms were disregarded, we observed 8351 and 6514 DEGs, respectively. Interestingly, after crossing the data, we detected a common set of DEGs for hepatopancreas and healthy shrimps, as well as another one for muscle and unhealthy shrimps. Our findings indicate that genes related to apoptosis, melanization, and the Imd pathway are likely to be involved in response to WSSV, offering knowledge about WSSV defense in shrimps exposed to the virus but not infected. These data present potential to be applied in further genetic studies in penaeids and other farmed shrimp species.
Collapse
Affiliation(s)
- Camilla A. Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 676, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | | | - Patrícia D. Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 676, Brazil
| |
Collapse
|
22
|
Vogt G. Cytopathology and immune response in the hepatopancreas of decapod crustaceans. DISEASES OF AQUATIC ORGANISMS 2020; 138:41-88. [PMID: 32103822 DOI: 10.3354/dao03443] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hepatopancreas of decapod crustaceans is used as an example to illustrate the range of cytopathologies, detoxification mechanisms, and immune responses that environmental toxicants and pathogens can induce in a single organ. The hepatopancreas is the central metabolic organ of decapods and consists of hundreds of blindly-ending tubules and intertubular spaces. The tubular epithelium contains 5 structurally and functionally different cell types, and the interstitium contains haemolymph, haemocytes, connective tissue, and fixed phagocytes. Some physiological conditions such as moulting and starvation cause marked but reversible ultrastructural alterations of the epithelial cells. Environmental toxicants induce either detoxification mechanisms or structural damage in cells, depending on toxicant and concentration. The hepatopancreas is also a main target organ for pathogens, mainly viruses, bacteria, and protists that enter the body via the digestive tract and gills and replicate in the hepatopancreatocytes. The cytopathologies caused by toxicants and pathogens affect single cell types specifically or, more often, several cell types simultaneously. Pathogenesis often begins in a certain cell organelle such as the nucleus, mitochondrion, or endoplasmic reticulum, spreads to other organelles, and ends with death of the infected cell. Fixed phagocytes in the interstitium capture and degrade pathogens that move from the infected tubules into the intertubular spaces or enter the hepatopancreas via circulation. Relatively few disease agents elicit the melanisation and encapsulation reaction that encloses infected tubules by a rigid melanised capsule and kills the entrapped pathogens.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Linton SM. Review: The structure and function of cellulase (endo-β-1,4-glucanase) and hemicellulase (β-1,3-glucanase and endo-β-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110354. [PMID: 31647988 DOI: 10.1016/j.cbpb.2019.110354] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/01/2022]
Abstract
This review discusses the reaction catalysed, and the structure and function of the cellulase, endo-β-1,4-glucanase and the hemicellulase enzymes, β-1,3-glucanase and endo-β-1,4-mannase that are present in numerous invertebrate groups with a diverse range of feeding specialisations. These range from microbial deposit and filter feeders, micro and macrophagous algal feeders, omnivores to herbivorous leaf litter and wood feeders. Endo-β-1,4-glucanase from glycosyl hydrolase family 9 (GH9) digests cellulose like β-1,4-glucans from a range of materials. As it hydrolyses crystalline cellulose very slowly, it is a poor cellulase. Where tested, the enzyme has dual endo-β-1,4-glucanase and lichenase activity. Its presence does not necessarily indicate the ability of an animal to digest cellulose. It only indicates the ability to digest β-1,4-glucans and its function, which is discussed in this review, should be considered with reference to the substrates present in the diet. β-1,3-glucanase (laminarinase) belongs to glycosyl hydrolase family 16 (GH16) and hydrolyses β-1.3-glucans. These polysaccharides are present in the cell walls of algae, protozoans and yeast, and they also occur as storage polysaccharides within protozoans and algae. Depending on their site of expression, these enzymes may function as a digestive enzyme or may be involved in innate immunity. Enzymes present in the digestive fluids or tissues, would be digestive. Haemolymph GH16 proteins may be involved in innate immunity through the activation of the phenol oxidase system. Insect GH16 proteins expressed within the haemolymph have lost their catalytic residues and function as β-glucan binding proteins. In contrast, crustacean GH16 proteins expressed within the same tissue, have retained the catalytic residues and thus possibly their β-1,3-glucanase activity. The potential function of which is discussed. Endo-β-1,4-mannase from glycosyl hydrolase family 5, subfamily 10 (GH5_10) hydrolyses mannan, glucomannan and galactomannan. These hemicelluloses are present in the cell walls of plants and algae and also function as storage polysaccharides within legume and palm seeds. They are digestive enzymes whose high expression in some species suggests they are a major contributor to hemicellulose digestion. They may also provide the animal with substantial amounts of monosaccharides for energy.
Collapse
Affiliation(s)
- Stuart M Linton
- School of Life and Environmental Sciences, Deakin University, VIC 3216, Australia.
| |
Collapse
|
24
|
Fan L, Wang L, Wang Z. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. FISH & SHELLFISH IMMUNOLOGY 2019; 92:438-449. [PMID: 31229644 DOI: 10.1016/j.fsi.2019.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
To understand the homeostasis mechanism of crustacean hepatopancreas to cold stress, iTRAQ proteomics based on the genome database of Litopenaeus vannamei (L. vannamei) was applied to investigate proteins changes and variety of the hepatopancreas during cold stress stage in this study. A total of 4062 distinct proteins were identified, 137 differentially expressed proteins (DEPs) including 62 differentially up-regulated proteins (DUPs) and 75 differentially down-regulated proteins (DDPs) were identified in G1 (18 °C) compared with CK (28 °C), 359 DEPs including 131 DUPs and 228 DDPs were identified in G2 (13 °C for 24 h) compared with CK. Based on bioinformatics analysis, the cold tolerance of L. vannamei might be related to energy metabolism such as amino acid, carbohydrate, lipid, and oxidative phosphorylation. Moreover, shrimp immunity was declined during cold stress stage. However, L. vannamei could cope with cold stress by enhancing the production of ATP and UFA. Notably, arginine kinase, heat shock proteins, and histones may act as positive regulators in L. vannamei under cold stress. Ten randomly selected proteins were used for validation using qRT-PCR and the expressions on the transcription level for most of the genes were similar to the results of iTRAQ. These results indicated that L. vannamei can maintain the organism homeostasis by a series of orderly regulatory process during cold stress. Furthermore, the results can provide guidance for shrimp farming.
Collapse
Affiliation(s)
- Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| | - Lei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
25
|
Vogt G. Functional cytology of the hepatopancreas of decapod crustaceans. J Morphol 2019; 280:1405-1444. [DOI: 10.1002/jmor.21040] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Günter Vogt
- Faculty of BiosciencesUniversity of Heidelberg Heidelberg Germany
| |
Collapse
|
26
|
Structure, function and development of the digestive system in malacostracan crustaceans and adaptation to different lifestyles. Cell Tissue Res 2019; 377:415-443. [DOI: 10.1007/s00441-019-03056-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
|
27
|
Molecular cloning and characterization of the β-1,3-glucan recognition protein in Anatolica polita. Gene X 2019; 697:144-151. [DOI: 10.1016/j.gene.2019.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
|
28
|
Chang ZW, Chang CC. Involvement of a novel protein kinase C (nPKC) in immunocompetence in hemocytes of white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 87:590-599. [PMID: 30738864 DOI: 10.1016/j.fsi.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Complementary (c)DNA encoding novel protein kinase C (PKC) messenger (m)RNA of the white shrimp Litopenaeus vannamei, consisted of 2454-bp cDNA containing an open reading frame (ORF) of 2232 bp, belonging to the novel (n)PKC family of proteins characterized by their containing two phorbol ester/diacylglycerol-binding domains (C1 domain), a C2 domain, and a catalytic domain of the serine/threonine kinase, designated LvnPKC. A comparison of amino acid sequences showed that LvnPKC was closely related to arthropod nPKC. LvnPKC cDNA was detected in all tested tissues with a real-time PCR including the hepatopancreas, gills, muscles, subcuticular epithelium, abdominal nerve, thoracic nerve, brain, the stomach, heart, and especially in hemocytes and the intestines. Moreover, significantly upregulated LvnPKC expression was only observed in the eyestalk, brain, and hepatopancreas of shrimp transferred from 28 °C to 18 °C for 30 min. Induction of LvnPKC expression in hemocytes of L. vannamei injected with Vibrio alginolyticus at 105 cfu shrimp-1 was detected earlier than in those injected with 103 cfu shrimp-1. Shrimp received LvnPKC-dsRNA for 1 days specifically depleted the expression of LvnPKC mRNA in hemocytes compared those of diethylpyrocarbonate water treatment. After that, significantly decreased expressions of lipopolysaccharide - and β-1,3-glucan-binding protein, prophenoloxidase-activating enzyme, peroxinectin, prophenoloxidase I, and prophenoloxidase II in the prophenoloxidase-activating system; lysozyme and cytosolic manganese superoxide dismutase and mitochondrial manganese superoxide dismutase in the antioxidant system were observed. We therefore concluded that LvnPKC is involved in immune defense of L. vannamei exposed to hypothermal stress or infected with V. alginolyticus.
Collapse
Affiliation(s)
- Zhong-Wen Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
29
|
Jiang L, Shao Y, Xing R, Li C, Cui Y, Zhang W, Zhao X. Identification and characterization of a novel PRR of fibrinogen-related protein in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:68-76. [PMID: 30092256 DOI: 10.1016/j.fsi.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Fibrinogen-related proteins (FREPs) play important roles in innate immunity by recognizing pathogen associated molecular patterns on pathogenic bacteria surfaces via conserved fibrinogen-like domain (FBG). In this paper, the full-length cDNA of Apostichopus japonicus FREP (designated as AjFREP) was cloned combined with rapid amplification of cDNA ends (RACE) and transcriptome sequencing. The full-length cDNA of AjFREP was of 2110 bp with an open reading frame (ORF) of 1659 bp. SMART analysis revealed that the AjFREP contained a typical signal peptide of 19 amino acid residues, a FBG and two unusual epidermal growth factor-like domains (EGFs). Multiple sequence alignments suggested that FBG domain shared a remarkably high structural conservation in polypeptide binding site and Ca2+ binding site. Tissue distribution analysis revealed that AjFREP was constitutively expressed in all examined tissues with the largest magnitude in coelomocytes, indicating AjFREP might play an important role in immune defense. The mRNA level of AjFREP in coelomocytes was sharply up-regulated by Vibrio splendidus challenge, and reached its peak expression at 48 h. Knock-down AjFREP by specific siRNA could significantly repress the coelomocyte phagocytosis rate. Meantime, the survival number of V. splendidus in the coelomic fluid was promoted. All these current results indicated that AjFREP might be involved in pathogen clearance through mediating coelomocytes phagocytosis activity.
Collapse
Affiliation(s)
- Liting Jiang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ronglian Xing
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China.
| | - Yi Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
30
|
Molecular characterization of a pattern recognition protein LGBP highly expressed in the early stages of mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:25-31. [PMID: 30201542 DOI: 10.1016/j.cbpa.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
The early developmental stages of the mud crab Scylla paramamosain suffer from high mortality caused by pathogen infections; however, few immune associated factors are known. Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) functions as a typical pathogen recognition receptor and plays an important role in the innate immune system of invertebrates. In this study we characterized a LGBP gene (SpLGBP) which was highly expressed in the late embryonic, zoea I larval stage and hepatopancreas of S. paramamosain.. It encodes 364 amino acids, composed of several conserved domains like the bacterial glucanase motif. The recombinant SpLGBP protein (rSpLGBP) was obtained through the E.coli expression system, in which two 6◊His-tags were added to both C and N terminals during vector construction for the improvement of purification efficiency. In vivo the study showed that the SpLGBP mRNA was significantly up-regulated under Vibrio parahaemolyticus and a lipopolysaccharide (LPS) challenge in the hemocytes and hepatopancreas. The ELISA binding assay in vitro indicated that the rSpLGBP was capable of binding to LPSs and peptidoglycan (PGN). The rSpLGBP could agglutinate both G+ and G- bacteria in the presence of Ca2+. Our results suggest that SpLGBP may play an immunological role against pathogenic infection in the early developmental stages of S. paramamosain.
Collapse
|