1
|
Conde MYED, Planta J, Bautista MAM. Transcriptomic Profiling Provides Insight into the Molecular Basis of Heterosis in Philippine-Reared Bombyx mori Hybrids. INSECTS 2025; 16:243. [PMID: 40266772 PMCID: PMC11942671 DOI: 10.3390/insects16030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
In the Philippines, Bombyx mori parental strains Lat21 and B221 are crossed to yield NC144 and CN144, which demonstrate hybrid vigor. The molecular basis of the observed vigor in the hybrids is warranted, as it may assist in improving local sericulture programs. This study, therefore, aims to investigate the basis of hybrid vigor and generate molecular resources through whole-silkworm larvae transcriptome sequencing, assembly, and analysis. Differential gene expression was also conducted among the parental strains and hybrids. Assembly of the pre-processed reads was also performed using de novo and reference-based protocols. As expected, the reference-based assembly was better than de novo, based on E90N50, N50, and BUSCO assembly completeness metrics. The Analysis of the differentially expressed genes (DEGs) revealed 202 upregulated and 182 downregulated genes in the hybrids (with the parents as the reference) and 66 upregulated and 753 downregulated genes in NC144 (with CN144 as the reference). Among these were genes encoding heat shock proteins and antimicrobial peptides, which may serve as markers for marker-assisted breeding. The genes were further validated using quantitative real-time PCR. Moreover, the inducible nature of these genes under stressors like extreme temperature and bacterial exposure suggests their potential as diagnostic tools for stress assessment.
Collapse
Affiliation(s)
- Ma. Ysabella Elaine D. Conde
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | | | - Ma. Anita M. Bautista
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
2
|
Suraporn S, Liu J, Ren F, Wang L, Feng M, Terenius O, Swevers L. Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance. INSECTS 2025; 16:162. [PMID: 40003792 PMCID: PMC11856270 DOI: 10.3390/insects16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Pathogenic infections of silkworms constitute the greatest threat to sericulture. An attractive approach to the improvement in silkworm health and performance comprises the use of probiotics, i.e., microorganisms that confer beneficial properties such as an increased growth rate and resistance against pathogens. While this method has already resulted in promising results, generally, there is a lack of a rational basis for guidance on the selection of probiotics. This review attempts to organize useful information that needs to be considered for the successful application of probiotics: the constitution of the microbiota in silkworms and its origins; the interaction of the major silkworm pathogens with the microbiota; and the microorganisms that have been used so far as silkworm probiotics. Our analysis points to two major issues that seem of vital importance: (1) the absence of a "core microbiota" in silkworms which necessitates continuous supply of beneficial microorganisms according to environmental conditions and (2) the apparent negative impact that some other microorganisms can have on resistance against baculovirus infections. Recent findings have reported the beneficial effects of lactic acid bacteria (Lactobacillus sp.) when applied as probiotics in improving silkworm health and performance.
Collapse
Affiliation(s)
- Siripuk Suraporn
- Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Mahasarakham 44150, Thailand;
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Feifei Ren
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi 563006, China;
| | - Luoluo Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, Regional Sericulture Training Centre for Asia-Pacific, South China Agricultural University, Guangzhou 510642, China;
| | - Olle Terenius
- Department of Cell and Molecular Biology, Microbiology and Immunology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden;
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
3
|
Vimonish R, Capelli-Peixoto J, Johnson W, Kappmeyer L, Saelao P, Taus N, Chung C, Ueti M. Transcriptomic analysis of Rhipicephalus microplus hemocytes from female ticks infected with Babesia bovis or Babesia bigemina. Parasit Vectors 2025; 18:37. [PMID: 39901199 PMCID: PMC11789329 DOI: 10.1186/s13071-025-06662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Tick hemolymph is a sterile fluid that carries nutrients to maintain tick health. The hemolymph creates a hostile environment for invaders including the destruction of microorganisms by its circulating hemocytes. However, Babesia parasites escape and disseminate to other organs through the hemolymph to continue their transmission life cycle. Still, it is unknown how tick hemocytes respond to B. bovis or B. bigemina infection. In this study, we conducted a transcriptomic analysis of hemocytes from female Rhipicephalus microplus ticks infected with Babesia parasites to understand how gene expression changes during parasite infection. METHODS During Babesia acute infection, female R. microplus ticks were fed on bovines to acquire parasites. Engorged females were collected and incubated to develop Babesia kinetes in tick hemolymph. The hemolymph was examined to identify ticks that were highly infected with Babesia kinetes. Hemocyte cells were collected from replete female ticks infected with Babesia bovis or Babesia bigemina to perform high-throughput RNA-sequencing (RNA-Seq) analysis. RESULTS This study identified major changes in the gene profile of tick hemocytes during Babesia infection. The main groups of hemocyte genes that were altered during Babesia infection were associated with metabolism, immunity, and cytoskeletal rearrangement. Upregulated genes were mainly involved in defense mechanisms, while downregulated genes were related to cell proliferation and apoptosis. However, the expression of hemocyte genes varied among Babesia species' infections, and it reflected the changes that occurred in the tick's physiology, including growth, reproduction, and skeletal muscle development. CONCLUSIONS The differential gene expression of R. microplus hemocytes revealed that genes highly regulated upon Babesia infection were related to metabolism, tick immunity, cell growth, apoptosis, development, metabolism, and reproduction. Additional research is necessary to further define the genes that exhibited varying expression levels in hemocytes during the infection. The findings of this study will enhance our understanding on how Babesia parasites survive in the hostile environment of ticks and perpetuate their transmission cycle, ultimately contributing to the spread of bovine babesiosis.
Collapse
Affiliation(s)
- Rubikah Vimonish
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Janaina Capelli-Peixoto
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Wendell Johnson
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | | - Perot Saelao
- Veterinary Pest Genetic Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Naomi Taus
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, USA
| | - Chungwon Chung
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, USA
| | - Massaro Ueti
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, USA
| |
Collapse
|
4
|
Sun LN, Meng JY, Wang Z, Lin SY, Shen J, Yan S. Research progress of aphid immunity system: Potential effective target for green pest management. INSECT SCIENCE 2024; 31:1662-1674. [PMID: 38415382 DOI: 10.1111/1744-7917.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Due to the absence of acquired immunity, insects primarily rely on their innate immune system to resist pathogenic microorganisms and parasitoids in natural habitats. This innate immune system can be classified into cellular immunity and humoral immunity. Cellular immunity is mediated by hemocytes, which perform phagocytosis, aggregation, and encapsulation to fight against invaders, whereas the humoral immunity primarily activates the immune signaling pathways and induces the generation of immune effectors. Existing studies have revealed that the hemipteran aphids lack some crucial immune genes compared to other insect species, indicating the different immune mechanisms in aphids. The current review summarizes the adverse impacts of pathogenic microorganisms and parasitoids on aphids, introduces the cellular and humoral immune systems in insects, and analyzes the differences between aphids and other insect species. Furthermore, our review also discussed the existing prospects and challenges in aphid immunity research, and proposed the potential application of immune genes in green pest management.
Collapse
Affiliation(s)
- Li-Na Sun
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Yang Lin
- Pu'er Agricultural Science Research Institute, Pu'er, Yunnan Province, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Sang H, Li Y, Tan S, Gao P, Wang B, Guo S, Luo S, Sun C. Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus. INSECT SCIENCE 2024; 31:1631-1644. [PMID: 38297451 DOI: 10.1111/1744-7917.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (Ne) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting Ne trajectories and population decline could be caused by a combination of various stressors.
Collapse
Affiliation(s)
- Huiling Sang
- College of Life Sciences, Capital Normal University, Beijing, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yancan Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Shuxin Tan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Pu Gao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Bei Wang
- Yan'an Beekeeping Experimental Station, Yan'an, Shannxi, China
| | - Shengnan Guo
- Hengshui center for Disease Prevention and Control, Hengshui, Hebei, China
| | - Shudong Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
6
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
7
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
8
|
Wang J, Hu H, Pang S, Yin X, Cao B, Huang J, Xu X, Weng Q, Hu Q. Destruxin A inhibits the hemocytin-mediated hemolymph immunity of host insects to facilitate Metarhizium infection. Cell Rep 2024; 43:113686. [PMID: 38219149 DOI: 10.1016/j.celrep.2024.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Insects have an effective innate immune system to protect themselves against fungal invasion. Metarhizium employs a toxin-based strategy using a nonribosomal peptide called destruxin A (DA) to counteract the host immune response. However, the mechanism by which DA inhibits insect immunity is still unclear. Here, we identified 48 DA-binding proteins in silkworm hemolymph, with the binding affinity (KD) ranging from 2 to 420 μM. Among these proteins, hemocytin, an important immune factor, was determined to be the strongest DA-binding protein. DA binds to hemocytin and regulates its conformation in a multisite manner. Furthermore, DA exerts a significant inhibitory effect on hemocytin-mediated hemocyte aggregation. By disrupting the interaction between hemocytin, actin A3, and gelsolin, DA prevents the transformation of granules into vesicles in hemocytes. These vesicles are responsible for storing, maturing, and exocytosing hemocytin. Therefore, hemocytin secretion is reduced, and the formation of structures that promote aggregation in outer hemocytes is inhibited.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China; College of Horticulture, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Hongwang Hu
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Suyun Pang
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Xuyu Yin
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Bihao Cao
- College of Horticulture, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Jilei Huang
- Instrumental Analytical and Research Center, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Xiaoli Xu
- Instrumental Analytical and Research Center, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China.
| |
Collapse
|
9
|
Hu H, Hu Q, Weng Q, Wang J. Hemocytin, the special aggregation factor connecting insect hemolymph immunity, a potential target of insecticidal immunosuppresant. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105704. [PMID: 38225099 DOI: 10.1016/j.pestbp.2023.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Insects possess an effective innate immunity that enables them to adapt to their intricate living environment and fend off various pathogens (or parasites). This innate immunity comprises both humoral and cellular immunity, which synergistically orchestrate immune responses. Hemocytin, a lectin with a distinctive structure, plays a crucial role in insect hemolymph immunity. Hemocytin is involved in the early immune response, facilitating processes such as coagulation, nodulation, and encapsulation in the hemolymph. It prevents hemolymph overflow and microbial pathogens invasion resulting from epidermal damage, and also aids in the recognition and elimination of invaders. However, the research on hemocytin is still limited. Our previous findings demonstrated that destruxin A effectively inhibits insect hemolymph immunity by interacting with hemocytin, suggesting that hemocytin could be a potential target for insecticides development. Therefore, it is crucial to gain a deeper understanding of hemocytin. This review integrates recent advancements in the study of the structure and function of insect hemocytin and also explores the potential of hemocytin as a target for insecticides. This review aims to enhance our comprehension of insect innate immunity and provide innovative ideas for the development of environmentally friendly pesticides.
Collapse
Affiliation(s)
- Hongwang Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Jingjing Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Zhang L, Yang T, Su X, Zhang X, Zhou X. Debilitation of Galleria mellonella hemocytes using CytCo a cytolytic-like protein derived from the entomopathogen Conidiobolus obscurus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105418. [PMID: 37247995 DOI: 10.1016/j.pestbp.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Cytolytic (Cyt)-like genes are present in both pathogenic bacteria and fungi. Bacterial Cyt proteins can destroy insect midgut epithelial cells after ingestion by hosts and some of them have been developed as biopesticides; however, few studies have investigated their functions in fungal pathogens. This study investigated the effects of a Cyt-like protein (CytCo) derived from Conidiobolus obscurus (Entomophthoromycotina) on the hemocytes of the greater wax moth Galleria mellonella larvae. The results showed a significant decline in hemocyte viability after treatment with CytCo in vivo or in vitro. The hemocyte density in the hemolymph was reduced by 65.2% and 50.2% after 12 h in vivo and 6 h in vitro treatments, respectively. Apoptosis/necrosis tests using fluorescence microscopy demonstrated that CytCo-treated hemocytes displayed apoptosis, and many of them also showed necrosis after 6 h in vitro treatment. Based on transcriptome analysis, several genes involved in the programmed cell death signaling pathway were upregulated in the CytCo-treated hemocytes. Meanwhile, the differentially expressed genes related to energy production, signal transduction, transcription regulation, and melanization were upregulated, demonstrating activated immune responses; those putatively related to hemocyte adhesion were downregulated, possibly in response to the reduction of hemocytes in hemolymph. In conclusion, CytCo as a virulence factor, could irreversibly incapacitate host hemocytes, playing an important role in debilitating insect immunity. This novel insecticidal protein holds a potential to develop biopesticide for controlling agroforestry pests.
Collapse
Affiliation(s)
- Lvhao Zhang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Tian Yang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiu Su
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xinqi Zhang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiang Zhou
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
12
|
Sukonthamarn P, Nanakorn Z, Junprung W, Supungul P, Tassanakajon A. Role of hemocytin from Litopenaeus vannamei in immune response against microsporidian, Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108710. [PMID: 37004896 DOI: 10.1016/j.fsi.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Hemocytin, a multidomain hemostasis-related protein, is a homologous protein of hemolectin in Drosophila melanogaster and von Willebrand factor (vWF) in humans. The vWF type D (VWD) domain in hemocytin is thought to be a major mediator of hemocyte aggregation and the prophenoloxidase (proPO) activation system. Here, we report for the first time the role of hemocytin from Litopenaeus vannamei (LvHCT) against Enterocytozoon hepatopenaei (EHP), the pathogenic microsporidian causing hepatopancreatic microsporidiosis in Pacific white shrimp (L. vannamei). The LvHCT gene contains 58,366 base pairs consisting of 84 exons encoding for 4267 amino acids. Multiple sequence alignment and phylogenetic analysis revealed that LvHCT was clustered with crustacean hemocytins. Gene expression analysis by quantitative real-time RT-PCR showed that LvHCT in hemocytes was significantly upregulated at 9 and 11 days post-EHP cohabitation, which was consistent with EHP copy numbers in the infected shrimp. To further investigate the biological function of LvHCT in EHP infection, a recombinant protein containing an LvHCT-specific VWD domain (rLvVWD) was expressed in Escherichia coli. In vitro agglutination assays showed that rLvVWD was functionally representative of LvHCT and induced aggregation of pathogens, including Gram-negative and -positive bacteria, fungi, and EHP spore. LvHCT suppression resulted in higher EHP copy numbers and proliferation due to the lack of hemocytin-mediated EHP spore aggregation in LvHCT-silenced shrimp. Moreover, immune-related genes in the proPO-activating cascade and Toll, IMD and JAK/STAT signaling pathways were upregulated to eliminate the over-controlled EHP in LvHCT-silenced shrimp. Furthermore, the impaired phenoloxidase activity due to LvLGBP suppression was recovered after rLvVWD injection, suggesting that LvHCT may be directly involved in phenoloxidase activation. In conclusion, a novel LvHCT is involved in shrimp immunity against EHP via EHP spore aggregation and possible activation of the proPO-activating cascade.
Collapse
Affiliation(s)
- Pongsakorn Sukonthamarn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Limkul S, Phiwthong T, Massu A, Boonanuntanasarn S, Teaumroong N, Somboonwiwat K, Boonchuen P. Transcriptome-based insights into the regulatory role of immune-responsive circular RNAs in Litopanaeus vannamei upon WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108499. [PMID: 36549581 DOI: 10.1016/j.fsi.2022.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) originating from a post-transcriptional modification process called back-splicing. Despite circRNAs being traditionally considered by-products rather than independently functional, circRNAs play many vital roles, such as in host immunity during viral infection. However, in shrimp, these remain largely unexplored. Therefore, this study aims to identify circRNAs in Litopenaeus vannamei in the context of WSSV infection, one of the most eradicative pathogens threatening shrimp populations worldwide. We identified 290 differentially expressed circRNAs (DECs) in L. vannamei upon WSSV infection. Eight DECs were expressed from their parental genes, including alpha-1-inhibitor-3, calpain-B, integrin-V, hemicentin-2, hemocytin, mucin-17, proPO2, and rab11-FIP4. These were examined quantitatively by qRT-PCR, which revealed the relevant expression profiles to those obtained from circRNA-Seq. Furthermore, the structural and chemical validation of the DECs conformed to the characteristics of circRNAs. One of the functional properties of circRNAs as a miRNA sponge was examined via the interaction network between DECs and WSSV-responsive miRNAs, which highlighted the targets of miRNA sponges. Our discovery could provide insight into the participation of these ncRNAs in shrimp antiviral responses.
Collapse
Affiliation(s)
- Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
14
|
Möllmann JS, Colgan TJ. Genomic architecture and sexually dimorphic expression underlying immunity in the red mason bee, Osmia bicornis. INSECT MOLECULAR BIOLOGY 2022; 31:686-700. [PMID: 35716016 DOI: 10.1111/imb.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite the importance of solitary bees, which are ecologically relevant, our understanding of the genomic basis and molecular mechanisms underlying their immune potential, and how intrinsic and extrinsic factors may influence it is limited. To improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterized putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionarily conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, with greater enrichment of immune-related processes among genes with higher constitutive expression in males than females. Our results also suggest an up-regulation of immune-related genes in response to exposure to two common neonicotinoids, thiacloprid and imidacloprid. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.
Collapse
Affiliation(s)
- Jannik S Möllmann
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas J Colgan
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Yuan C, Yang Q, Wu J, Peng Y, Li Y, Xiong S, Zhou J, Wang M, Hu Z, Zou Z, Xia Q. Proteomics reveals the hemolymph components of partially fed Hyalomma asiaticum ticks. Ticks Tick Borne Dis 2022; 13:102032. [PMID: 36088665 DOI: 10.1016/j.ttbdis.2022.102032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Hemolymph infection facilitates pathogen invasion of internal tick tissues. However, the overall protein composition of the hemolymph has not been analyzed for any tick species. Here, a gel based liquid chromatography tandem mass spectrometry method was used to characterize the hemolymph proteome of Hyalomma asiaticum females during blood feeding. A total of 311 proteins were identified. Hemelipoglyco-carrier proteins, apolipophorin-like proteins, and intracellular proteins were the most abundant proteins. Thirteen immunity-related proteins were identified, including peptidoglycan recognition protein (PGRP), Thioester-containing proteins (TEPs), clip‑serine proteinases, serpins and Dome. The presence of hemocytin, proclotting enzyme homologs, serpins, TEPs, factor D-like protein and the lack of coagulin, hemocyanin, and prophenoloxidase suggest ticks may possess a unique coagulation system, which is largely different from that of insects. Taken together, the study revealed the constitution, level, and possible functions of global hemolymph proteins in H. asiaticum and could facilitate the discovery of new targets for control of tick-borne pathogens.
Collapse
Affiliation(s)
- Chuanfei Yuan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qingtai Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Wu
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Peng
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shirui Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
16
|
Li YH, Chang ZT, Yen MR, Huang YF, Chen TH, Chang JC, Wu MC, Yang YL, Chen YW, Nai YS. Transcriptome of Nosema ceranae and Upregulated Microsporidia Genes during Its Infection of Western Honey Bee ( Apis mellifera). INSECTS 2022; 13:716. [PMID: 36005340 PMCID: PMC9409478 DOI: 10.3390/insects13080716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Nosema ceranae is one of the fungal parasites of Apis mellifera. It causes physical and behavioral effects in honey bees. However, only a few studies have reported on gene expression profiling during A. mellifera infection. In this study, the transcriptome profile of mature spores at each time point of infection (5, 10, and 20 days post-infection, d.p.i.) were investigated. Based on the transcriptome and expression profile analysis, a total of 878, 952, and 981 differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified in N. ceranae spores (NcSp) at 5 d.p.i., 10 d.p.i., and 20 d.p.i., respectively. Moreover, 70 upregulated genes and 340 downregulated genes among common DEGs (so-called common DEGs) and 166 stage-specific genes at each stage of infection were identified. The Gene Ontology (GO) analysis indicated that the DEGs and corresponding common DEGs are involved in the functions of cytosol (GO:0005829), cytoplasm (GO:0005737), and ATP binding (GO:0005524). Furthermore, the pathway analysis found that the DEGs and common DEGs are involved in metabolism, environmental information processing, and organismal systems. Four upregulated common DEGs with higher fold-change values, highly associated with spore proteins and transcription factors, were selected for validation. In addition, the stage-specific genes are highly involved in the mechanism of pre-mRNA splicing according to GO enrichment analysis; thus, three of them showed high expression at each d.p.i. and were also subjected to validation. The relative gene expression levels showed a similar tendency as the transcriptome predictions at different d.p.i., revealing that the gene expression of N. ceranae during infection may be related to the mechanism of gene transcription, protein synthesis, and structural proteins. Our data suggest that the gene expression profiling of N. ceranae at the transcriptomic level could be a reference for the monitoring of nosemosis at the genetic level.
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Zih-Ting Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yi-Lan City 26047, Taiwan
| | - Ming-Ren Yen
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Computer Science and Engineering, Yuan-Ze University, Tao-Yuan City 32003, Taiwan
| | - Tzu-Han Chen
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ming-Cheng Wu
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 11529, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yi-Lan City 26047, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| |
Collapse
|
17
|
Li M, Huang Q, Lv X, Small HJ, Li C. Integrative omics analysis highlights the immunomodulatory effects of the parasitic dinoflagellate hhematodinium on crustacean hemocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 125:35-47. [PMID: 35526798 DOI: 10.1016/j.fsi.2022.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Parasitic dinoflagellates in genus Hematodinium have caused substantial economic losses to multiple commercially valuable marine crustaceans around the world. Recent efforts to better understand the life cycle and biology of the parasite have improved our understanding of the disease ecology. However, studies on the host-parasite interaction, especially how Hematodinium parasites evade the host immune response are lacking. To address this shortfall, we used the comprehensive omics approaches (miRNA transcriptomics, iTRAQ-based proteomics) to get insights into the host-parasite interaction between hemocytes from Portunus trituberculatus and Hematodinium perezi in the present study. The parasitic dinoflagellate H. perezi remodeled the miRNome and proteome of hemocytes from challenged hosts, modulated the host immune response at both post-transcriptional and translational levels and caused post-transcriptional regulation to the host immune response. Multiple important cellular and humoral immune-related pathways (ex. Apoptosis, Endocytosis, ECM-receptor interaction, proPO activation pathway, Toll-like signaling pathway, Jak-STAT signaling pathway) were significantly affected by Hematodinium parasites. Through modulation of the host miRNome, the host immune responses of nodulation, proPO activation and antimicrobial peptides were significantly suppressed. Cellular homeostasis was imbalanced via post-transcriptional dysregulation of the phagosome and peroxisome pathways. Cellular structure and communication was seriously impacted by post-transcriptional downregulation of ECM-receptor interaction and focal adhesion pathways. In conclusion, H. perezi parasites could trigger striking changes in the miRNome and proteome of crustacean hemocytes, and this parasite exhibited multifaceted immunomodulatory effects and potential immune-suppressive mechanisms in crustacean hosts.
Collapse
Affiliation(s)
- Meng Li
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qian Huang
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Lv
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hamish J Small
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA.
| | - Caiwen Li
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|
19
|
UDP-Glucosyltransferases Induced by Nosema bombycis Provide Resistance to Microsporidia in Silkworm ( Bombyx mori). INSECTS 2021; 12:insects12090799. [PMID: 34564239 PMCID: PMC8469862 DOI: 10.3390/insects12090799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Nosema bombycis (N. bombycis), an obligate intracellular eukaryotic parasite, is a virulent pathogen of the silkworm, that causes major economic losses. Although many studies have reported on B. mori host response to this pathogen, little is known about which genes are induced by N. bombycis. Our results showed that two B. mori uridine diphosphate-glucosyltransferases (UGTs) (BmUGT10295 and BmUGT8453) could be activated by N. bombycis and provide resistance to the microsporidia in silkworms. These results will contribute to our understanding of host stress reaction to pathogens and the two pathogen-induced resistant genes will provide a target for promoting pathogen resistance. Abstract As a silkworm pathogen, the microsporidian N. bombycis can be transovarially transmitted from parent to offspring and seriously impedes sericulture industry development. Previous studies found that Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are involved in regulating diverse cellular processes, such as detoxification, pigmentation, and odorant sensing. Our results showed that BmUGT10295 and BmUGT8453 genes were specifically induced in infected silkworms, but other BmUGTs were not. Tissue distribution analysis of the two BmUGTs showed that the transcriptions of the two BmUGTs were mainly activated in the midgut and Malpighian tubule of infected silkworms. Furthermore, there were significantly fewer microsporidia in over-expressed BmUGTs compared with the control, but there were significantly more microsporidia in RNA interference BmUGTs compared with the control. These findings indicate that the two BmUGTs were induced by N. bombycis and provided resistance to the microsporidia.
Collapse
|
20
|
Intraspecific variation in immune gene expression and heritable symbiont density. PLoS Pathog 2021; 17:e1009552. [PMID: 33901257 PMCID: PMC8102006 DOI: 10.1371/journal.ppat.1009552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes. Insects frequently form beneficial partnerships with heritable microbes that are passed from mothers to offspring. Natural populations exhibit a great deal of variation in the frequency of heritable microbes and in the within-host density of these infections. Uncovering the mechanisms underlying variation in host-microbe interactions is key to understanding how they evolve. We study a model host-microbe interaction: the pea aphid and a heritable bacterium that makes aphids resistant to fungal pathogens. We show that aphids harboring bacteria show sharply reduced expression of innate immune system genes, and that this leads to increased densities of symbionts. We further show that populations of aphids that live on different species of plants vary in differential immune gene expression and in the density of their symbiont infections. This study contributes to our mechanistic understanding of an important model of host-microbe symbiosis and suggests that hosts and heritable microbes are evolving antagonistically. This work also sheds light on how invertebrate immune systems evolve to manage the complex task of combatting harmful pathogens while accommodating potentially beneficial microbes.
Collapse
|
21
|
Dong Z, Wu Q, Long J, Lu B, Zheng N, Hu C, Chen P, Hu N, Lu C, Pan M. Silver nanoparticles are effective in controlling microsporidia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112106. [PMID: 33965113 DOI: 10.1016/j.msec.2021.112106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Many approaches and technologies have been developed as treatments for microsporidian, infections but effective, broad-spectrum, and sustainable therapeutic approaches have not been found. Silver nanoparticles (AgNPs) have antimicrobial activity and are widely used against many different pathogens. AgNPs provide an opportunity to develop formulations that will control microsporidia. In this study, we synthesized AgNPs via a chemical reduction method and evaluated their formation, morphology, and stability using transmission electron microscopy (TEM) and ultraviolet spectroscopy analysis. We verified that AgNPs could disrupt the spore cell membrane and spore germination of microsporidia Nosema bombycis. This resulted in the release of microsporidia nucleic acids, proteins, and respiratory chain enzymes. The anti-microsporidia activity of AgNPs was studied by measuring the silkworm larvae survival rate and spore genome replication after microsporidia infection. AgNPs have anti-microsporidian activity and could be effective components of formulations for treating or preventing microsporidia infection.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jiangqiong Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Congwu Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
22
|
Pantha P, Chalivendra S, Oh DH, Elderd BD, Dassanayake M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int J Mol Sci 2021; 22:3568. [PMID: 33808210 PMCID: PMC8037200 DOI: 10.3390/ijms22073568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host-pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic landscape during systemic infection.
Collapse
Affiliation(s)
| | | | | | - Bret D. Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| |
Collapse
|
23
|
Tamim El Jarkass H, Reinke AW. The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 2020; 22:e13247. [PMID: 32748538 DOI: 10.1111/cmi.13247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Microsporidia are a large group of fungal-related obligate intracellular parasites. They are responsible for infections in humans as well as in agriculturally and environmentally important animals. Although microsporidia are abundant in nature, many of the molecular mechanisms employed during infection have remained enigmatic. In this review, we highlight recent work showing how microsporidia invade, proliferate and exit from host cells. During invasion, microsporidia use spore wall and polar tube proteins to interact with host receptors and adhere to the host cell surface. In turn, the host has multiple defence mechanisms to prevent and eliminate these infections. Microsporidia encode numerous transporters and steal host nutrients to facilitate proliferation within host cells. They also encode many secreted proteins which may modulate host metabolism and inhibit host cell defence mechanisms. Spores exit the host in a non-lytic manner that is dependent on host actin and endocytic recycling proteins. Together, this work provides a fuller picture of the mechanisms that these fascinating organisms use to infect their hosts.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|