1
|
Machado N, Rocha MG, Oliveira D, Reardon KG, Martins E, Lawson NC. Compressive modulus, translucency, and irradiance transmittance of clear PVS materials used for resin injection molding technique. J ESTHET RESTOR DENT 2025; 37:412-422. [PMID: 38817077 DOI: 10.1111/jerd.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/07/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES To evaluate the compressive modulus, translucency, and light curing irradiance transmittance of four clear polyvinyl siloxane (PVS) materials used for the injection molding technique at varying thicknesses, and to assess the correlation between color parameters and irradiance transmittance. MATERIALS AND METHODS Four clear PVS materials (Exaclear, Clear Bite Matrix, Affinity Crystal, and Memosil 2) were used in this study. Compressive modulus was measured by compressing cylindrical PVS specimens (n = 9; d = 10 mm; t = 6 mm) up to 30% strain using a universal testing machine. For the translucency analysis and irradiance transmittance, specimens (n = 5) were fabricated with five different thicknesses (d = 12 mm and t = 2, 4, 6, 8 and 10 mm). The L*, a, *b* values of specimens were obtained using a CIELab spectrophotometer (CMD-700, Konica Minolta) with calibrated white and black tiles; the translucency parameter was calculated. The same specimens were placed onto a spectrophotometer (MARC Light Collector) to measure irradiance transmitted through the specimens from a light curing unit (Valo Corded, Ultradent). Data were analyzed using analysis of variance (ANOVA) with Tukey post hoc test and the correlation between translucency and irradiance transmittance of materials for each thickness was evaluated using Pearson's correlation. RESULTS Compressive modulus differences in PVS materials were significant (one-way ANOVA: df = 3, F = 76.27, p < 0.001); Affinity and Memosil 2 were highest with no significant difference between them (Tukey: t = -1.62; p = 0.382). Clear Bite was higher than Exaclear (Tukey: t = -3.70; p = 0.004). Exaclear was lowest. Translucency decreased with thickness (Two-way ANOVA: df = 3, F = 586.53, p < 0.001; thickness: df = 4, F = 1389.34, p < 0.001). Exaclear was most translucent at all thicknesses. L*, a*, b* values varied by material and thickness (L*: df = 3, F = 1213.32, p < 0.001; a*: df = 3, F = 10766.8, p < 0.001; b*: df = 3, F = 3260.42, p < 0.001). Memosil 2 had lowest b* values. Irradiance transmittance was affected by material and thickness (Two-way ANOVA: df = 4, F = 2388.86, p < 0.001). Exaclear had highest irradiance transmission, surpassing control at >6 mm. Violet/blue irradiance ratio decreased with thickness; Exaclear maintained a constant ratio, indicating preserved violet irradiance. There was a strong positive correlation between translucency and light irradiance (Pearson's r = 0.97, R2 = 0.86-0.96). Radiant exposure analysis suggests adjusting the curing time based on PVS thickness for optimal exposure (10 J/cm2) is achievable within 13-14 s for <2 mm and 21-30 s for 8-10 mm with Clear Bite, Affinity, and Memosil 2; whereas Exaclear requires less time. CONCLUSIONS Compressive modulus in clear PVS materials varied by type; Affinity and Memosil 2 demonstrate higher modulus, offering more stability of the clear mold. Translucency and irradiance transmission through clear PVS materials decreased as their thickness increased, yet Exaclear exceled in maintaining high translucency and superior light transmission capabilities. Additionally, there is a strong positive linear correlation between translucency and light irradiance transmittance, offering a method to adjust curing times effectively based on material translucency. CLINICAL SIGNIFICANCE The light curing time to adequately polymerize composite through clear impression material may need to be increased, particularly with thicker matrices or less translucent materials.
Collapse
Affiliation(s)
- Nadia Machado
- Division of Biomaterials, UAB School of Dentistry, Birmingham, Alabama, USA
| | - Mateus G Rocha
- Center for Dental Biomaterials, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Dayane Oliveira
- Center for Dental Biomaterials, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | | | - Emerson Martins
- Division of General Dental Sciences, UAB School of Dentistry, Birmingham, Alabama, USA
| | - Nathaniel C Lawson
- Division of Biomaterials, UAB School of Dentistry, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Messer-Hannemann P, Wienhold M, Esbak H, Brunner A, Schönebaum A, Schwendicke F, Effenberger S. Residual TPO Content of Photopolymerized Additively Manufactured Dental Occlusal Splint Materials. Biomedicines 2024; 13:44. [PMID: 39857628 PMCID: PMC11761549 DOI: 10.3390/biomedicines13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) is widely used in the dental industry as a photoinitiator for resin-based materials, while its use may be further limited given its toxicological risks. The aim of this study was, therefore, to analyze the residual TPO content of 3D-printed resin-based dental splint materials. Methods: Six resin-based splint materials were analyzed: LuxaPrint Ortho Plus (DMG), FREEPRINT splint 2.0 (Detax), optiprint splint (Dentona), KeySplint Soft (KeyPrint), FREEPRINT ortho (Detax), V-Print splint comfort (Voco). Grid-shaped specimens were fabricated using the recommended workflow of each manufacturer (n = 18). TPO extraction was conducted using a maximum of eight extraction cycles of 72 h at a temperature of 37 °C until no more TPO eluates were detected by high-performance liquid chromatography (HPLC). The margin of safety (MoS) was calculated as the ratio between the Derived No-Effect Level (DNEL) and the estimated exposure based on the amount of TPO extracted. Results: The total amount of extracted TPO was the lowest for LuxaPrint Ortho Plus (Mean ± SD; 44.0 ± 17.1 ng/mL), followed by optiprint splint (80.6 ± 21.1 ng/mL), FREEPRINT splint 2.0 (127.4 ± 25.3 ng/mL), FREEPRINT ortho (2813.2 ± 348.0 ng/mL), V-Print splint comfort (33,424.6 ± 8357.9 ng/mL) and KeySplint Soft (42,083.5 ± 3175.2 ng/mL). For all tested materials, the calculated MoS was above the critical value of 1, demonstrating toxicological safety in the cured, clinically relevant state. Conclusions: Large differences in the residual TPO content were observed between the materials. Although the TPO content in the uncured state may exceed toxicological safety limits, appropriate curing of the investigated materials resulted in a significant reduction in TPO elution and, thus, in products with a very low toxicological risk for the patient.
Collapse
Affiliation(s)
| | - Max Wienhold
- DMG Dental-Material Gesellschaft mbH, 22547 Hamburg, Germany; (M.W.); (H.E.); (A.B.); (A.S.)
| | - Hoda Esbak
- DMG Dental-Material Gesellschaft mbH, 22547 Hamburg, Germany; (M.W.); (H.E.); (A.B.); (A.S.)
| | - Alexander Brunner
- DMG Dental-Material Gesellschaft mbH, 22547 Hamburg, Germany; (M.W.); (H.E.); (A.B.); (A.S.)
| | - Andreas Schönebaum
- DMG Dental-Material Gesellschaft mbH, 22547 Hamburg, Germany; (M.W.); (H.E.); (A.B.); (A.S.)
| | - Falk Schwendicke
- Department of Conservative Dentistry and Periodontology, LMU Klinikum, 80336 Munich, Germany; (F.S.); (S.E.)
| | - Susanne Effenberger
- DMG Dental-Material Gesellschaft mbH, 22547 Hamburg, Germany; (M.W.); (H.E.); (A.B.); (A.S.)
- Department of Conservative Dentistry and Periodontology, LMU Klinikum, 80336 Munich, Germany; (F.S.); (S.E.)
| |
Collapse
|
3
|
Strazzi-Sahyon HB, Hadis MA, Dos Santos PH, Palin WM. The effect of photoinitiator type and filler load on physicochemical and mechanical properties of experimental light-cured resin cements through lithium disilicate ceramics of different shades and thicknesses. Dent Mater 2024; 40:1452-1463. [PMID: 38945741 DOI: 10.1016/j.dental.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE This study investigated the influence of photoinitiator types on degree of conversion (DC), rate of polymerization (RP), flexural strength (FS), flexural modulus (FM), and light transmittance (LT) of filled and unfilled light-curable resin cements through different thicknesses and shades of lithium disilicate ceramics. METHODS Lithium disilicate ceramic discs (IPS Emax Press, background [0.0], 0.5, 1.0, 2.0, 3.0, and 4.0 mm, shades A1 and BL3) were prepared. Experimental resin-based cements [TEGDMA/BisGMA (50/50 mass%)] were prepared using either camphorquinone (CQ)/amine (0.44/1.85 mol%) or TPO (0.44 mol%)], and a micro and nanofiller loads of nil (unfilled); 40/10 mass%; and 50/10 mass%). Resin cements (0.2 mm thick) were placed on the lower surface of the ceramic specimens and light-activated for 30 s from the upper surface using a Bluephase Style curing light (exitance at tip: 1236 mW/cm2 ± 1.20). LT and distribution of irradiance through the ceramics were measured using a UV-vis spectrometer and a beam profile camera, respectively (n = 3). The DC and RP were measured in real-time using mid infrared spectroscopy in attenuated total reflectance (ATR) mode (n = 3). FS and FM were measured using a universal testing machine (n = 5). Statistical analyses were performed on LT, DC, RP, FS, and FM data using a general linear model, and supplementary ANOVA and post hoc Tukey multiple comparison test were also performed (α = .05). RESULTS Thicknesses, shades, photoinitiator type, and fillers load significantly influenced the optical and mechanical characteristics of the resin-based materials (p < 0.05). The BL3 shade ceramic provided higher values of DC, RP, FS, FM, and LT compared with the A1 shade (p < 0.05). Increasing ceramic thickness decreased the properties of the resin-based materials (p < 0.05). Generally, TPO improved mechanical properties of the resin cement compared with CQ (p < 0.05). SIGNIFICANCE The luting process of indirect restorations may be improved by using high molar absorptivity, more reactive, and more efficient photoinitiators such as TPO, as opposed to conventional CQ. The use of such initiator may allow the placement of thicker and more opaque indirect restorations.
Collapse
Affiliation(s)
- Henrico Badaoui Strazzi-Sahyon
- Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, USP, Bauru, SP, Brazil; Biomaterials Unit, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B4 6NN, UK.
| | - Mohammed A Hadis
- Biomaterials Unit, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B4 6NN, UK
| | - Paulo Henrique Dos Santos
- Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Dental Research Institute - Restorative Dentistry, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - William M Palin
- Biomaterials Unit, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B4 6NN, UK
| |
Collapse
|
4
|
Santos M, Fidalgo-Pereira R, Torres O, Carvalho O, Henriques B, Özcan M, Souza JCM. The impact of inorganic fillers, organic content, and polymerization mode on the degree of conversion of monomers in resin-matrix cements for restorative dentistry: a scoping review. Clin Oral Investig 2024; 28:454. [PMID: 39066793 PMCID: PMC11283416 DOI: 10.1007/s00784-024-05829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE The main aim of the present study was to carry out a scoping review on the differences in degree of conversion of monomers regarding several types resin cements, indirect restorative materials, and light-curing procedures used in dentistry. METHOD A bibliographic review was performed on PubMed using the following search items: "degree of conversion" OR "filler" AND "resin cement" OR "inorganic cement" AND "organic" OR "radiopacity" OR "refractive" OR "transmittance" OR "type" AND "resin composite." The search involved articles published in English language within the last thirteen years. A research question has been formulated following the PICO approach as follow: "How different is the degree of conversion of monomers comparing several types of resin-matrix cements?". RESULTS Within the 15 selected studies, 8 studies reported a high degree of conversion (DC) of the organic matrix ranging from 70 up to 90% while 7 studies showed lower DC values. Dual-cured resin-matrix cements revealed the highest mean values of DC, flexural strength, and hardness when compared with light- and self-polymerized ones. DC mean values of resin-matrix cements light-cured through a ceramic veneer with 0.4 mm thickness were higher (~ 83%) than those recorded for resin-matrix cements light-cured through a thicker ceramic layer of 1.5 mm (~ 77%). CONCLUSIONS The highest percentage of degree of conversion of monomers was reported for dual-cured resin-matrix cements and therefore both chemical and light-induced pathways promoted an enhanced polymerization of the material. Similar degree of conversion of the same resin-matrix cement were recorded when the prosthetic structure showed a low thickness. On thick prosthetic structures, translucent materials are required to allow the light transmission achieving the resin-matrix cement. CLINICAL RELEVANCE The chemical composition of resin-matrix cements and the light-curing mode can affect the polymerization of the organic matrix. Thus, physical properties of the materials can vary leading to early clinical failures at restorative interfaces. Thus, the analysis of the polymerization pathways of resin-matrix cements is significantly beneficial for the clinical performance of the restorative interfaces.
Collapse
Affiliation(s)
- Marcionilia Santos
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Rita Fidalgo-Pereira
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505, Viseu, Portugal
| | - Orlanda Torres
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Oscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
| | - Bruno Henriques
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Mutlu Özcan
- Clinic for Masticatory Disorders and Dental Biomaterials, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Júlio C M Souza
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505, Viseu, Portugal.
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal.
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal.
| |
Collapse
|
5
|
Ribeiro M, Maucoski C, Price RB, Soares CJ. Effect of a 3-second Off-label Exposure on the Depth of Cure of Eight Resin-based Composites. Oper Dent 2024; 49:421-431. [PMID: 38978305 DOI: 10.2341/23-155-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES This study evaluated the depth of cure (DoC) of eight resin-based composites (RBCs) photocured using one multipeak light-curing unit (LCU) on the standard output setting for the manufacturer's RBC recommended exposure time and at a higher irradiance for 3 seconds. METHODS Three conventional RBCs: Tetric EvoCeram (Evo), Tetric N-Ceram (Cer), Tetric Prime (Pri); and five bulk-fill: Tetric N-Ceram Bulk Fill (CerBF), Opus Bulk Fill APS (OpusBF), Opus Bulk Fill Flow APS (OpusF), Tetric PowerFill (PFill) and Tetric PowerFlow (PFlow) were examined. Only PFill and PFlow are formulated to be photocured in 3 seconds. The RBCs were packed into a metal mold and photocured using a Bluephase PowerCure LCU for the RBC manufacturer's recommended exposure time on the standard mode and using the 3-second high irradiance mode. After photocuring, the specimens were immersed in a solvent for 1 hour. The length of the remaining RBC was measured and divided by 2. Data were analyzed using two-way analysis of variance (ANOVA) followed by the Tukey post hoc multiple comparison test (α=0.05). RESULTS There was no significant difference in the DoC values for PFill and PFlow when photocured using the 3-second high irradiance protocol compared to the lower irradiance standard mode protocol. All other RBCs had significantly lower DoC values (p<0.001) when photocured off-label using the 3-second high irradiance mode. CONCLUSION Of the eight RBCs tested, only PFill and PFlow achieved the same DoC when the high irradiance 3-second curing method was used compared to when their longer lower irradiance protocol was used.
Collapse
Affiliation(s)
- Mth Ribeiro
- Maria Tereza Hordones Ribeiro DDS, MSc, PhD student, Department of Operative Dentistry and Dental Materials, Dental School, Federal University of Uberlândia, Minas Gerais, Brazil
| | - C Maucoski
- Cristiane Maucoski, DDS, MSc, PhD, Department of Operative Dentistry and Dental Materials, Dental School, Federal University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - R B Price
- Richard Bengt Price, DDS, MS, PhD, professor, Department of Dental Clinical Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C J Soares
- *Carlos José Soares, DDS, MSc, PhD, professor, Department of Operative Dentistry and Dental Materials, Biomechanics Research Center, Federal University of Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
6
|
Mazão JD, Ribeiro MTH, Braga SSL, Zancopé K, Price RB, Soares CJ. Effect of thickness and shade of CAD/CAM composite on the light transmission from different light-curing units. Braz Oral Res 2023; 37:e114. [PMID: 37970934 DOI: 10.1590/1807-3107bor-2023.vol37.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/12/2023] [Indexed: 11/19/2023] Open
Abstract
The thickness and shade of a restoration will affect the transmission of light from the light-curing unit (LCU). This study determined the power (mW), spectral radiant power (mW/nm), and beam profile of different LCUs through various thicknesses and shades of a CAD-CAM resin composite (BRAVA Block, FGM). Five thicknesses: 0.5; 0.75; 1.0; 1.5, and 2.0 mm, in three shades: Bleach; A2 and A3.5 of a CAD-CAM resin (n = 5). Two single-peak LCUs: EL, Elipar DeepCure-S (3M Oral Care); and OP, Optilight Max (Gnatus), and one multiple-peak LCU: VL, VALO Grand (Ultradent), were used. The LCUs were positioned touching the surface of the BRAVA Block. The power and emission spectrum were measured using a fiberoptic spectrometer attached to an integrating sphere, and the beam profiles using a laser beam profiler. The effect of the material thickness on the light attenuation coefficients was determined. VL and EL delivered more homogeneous beam profiles than OP. The type of the BRAVA Block had a significant effect on the transmitted power, and wavelengths of transmitted light (p < 0.001). There was an exponential reduction in the power and emission spectrum as the thickness of the BRAVA Block increased (p < 0.001). The light transmission through the A2 shade was least affected by the thickness (p < 0.001). The attenuation coefficient was higher for the violet light and higher for A3.5 than the A2 or Bleach shades. No violet light from the VL could be detected at the bottom of 2.0 mm of the BRAVA Block.
Collapse
Affiliation(s)
- Julia Dantas Mazão
- Universidade Federal de Uberlânida - UFU, School of Dentistry, Operative Dentistry and Dental Materials Department, Uberlândia, MG, Brazil
| | - Maria Tereza Hordones Ribeiro
- Universidade Federal de Uberlânida - UFU, School of Dentistry, Operative Dentistry and Dental Materials Department, Uberlândia, MG, Brazil
| | - Stella Sueli Lourenço Braga
- Universidade Federal de Uberlânida - UFU, School of Dentistry, Operative Dentistry and Dental Materials Department, Uberlândia, MG, Brazil
| | - Karla Zancopé
- Universidade Federal de Uberlânida - UFU, School of Dentistry, Department of Occlusion, Fixed Prosthodontic and Dental Materials, School of Dentistry, Federal University of Uberlândia, MG, Brazil
| | - Richard Bengt Price
- Dalhousie University, Department of Dental Clinical Sciences, Halifax, Nova Scotia, Canada
| | - Carlos José Soares
- Universidade Federal de Uberlânida - UFU, School of Dentistry, Operative Dentistry and Dental Materials Department, Uberlândia, MG, Brazil
| |
Collapse
|
7
|
Lima RBW, Melo AMDS, Dias JDN, Barbosa LMM, Santos JVDN, Souza GMD, Andrade AKM, Assunção IVD, Borges BCD. Are polywave light-emitting diodes more effective than monowave ones in the photoactivation of resin-based materials containing alternative photoinitiators? A systematic review. J Mech Behav Biomed Mater 2023; 143:105905. [PMID: 37201225 DOI: 10.1016/j.jmbbm.2023.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE This systematic review aimed to analyze if using polywave light-emitting diodes (LED) to photoactivate resin-based materials (resin composites, adhesive systems, and resin cements) containing alternative photoinitiators provide better physicochemical properties than monowave ones. MATERIAL AND METHODS Inclusion criteria were in vitro studies that evaluated the degree of conversion, microhardness and flexural strength in resin-based materials containing alternative photoinitiators and light-activated with mono and polywave LEDs. Exclusion criteria were studies that evaluated the physicochemical properties of composites through any material interposed between the LED and the resin composite and studies that exclusively compared different modes and/or light activation times. Selection of studies, data extraction, and risk-of-bias analysis was performed. Data from selected studies were qualitatively analyzed. A systematic search was performed in June 2021 using PubMed/Medline, Embase, Scopus, and ISI Web of Science databases and grey literature without language restriction. RESULTS A total of 18 studies were included in the qualitative analysis. Nine studies used diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as an alternative photoinitiator for resin composite. Polywave LED improved the degree of conversion of resin composite compared to monowave in 9 of the included studies. Polywave LED improved the microhardness of resin composite compared to monowave in 7 of the included studies. Polywave LED improved the degree of conversion for 11 studies and microhardness of resin composite compared to monowave for 7 included studies. No differences in the flexural strength medium between poly and monowave LEDs were observed. The evidence was graded as low quality due to the high risk of bias for 11 studies. CONCLUSION The existing studies, with their limitations, revealed that the polywave light-emitting diode maximizes activation, resulting in a higher degree of double-bond conversion and microhardness of resin composites containing alternative photoinitiators. However, the flexural strength of these materials is not influenced by the type of light activation device.
Collapse
|
8
|
de Castro EF, Fronza BM, Soto-Montero J, Giannini M, Dos-Santos-Dias CT, Price RB. Effect of thickness of CAD/CAM materials on light transmission and resin cement polymerization using a blue light-emitting diode light-curing unit. J ESTHET RESTOR DENT 2023; 35:368-380. [PMID: 35894446 DOI: 10.1111/jerd.12946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Evaluate the effect of thickness of high-translucency (HT) CAD/CAM materials on irradiance and beam profile from a blue light-emitting diode light-curing unit (LCU) and on the degree of conversion (DC) and maximum polymerization rate (Rpmax ) of a light-cured resin cement (LCC). MATERIAL AND METHODS The direct output from the LCU, the light transmission and irradiance ratio (IR) through one conventional composite and nine HT CAD/CAM materials (0.5, 1.0, 1.5, or 2.0-mm thick; n = 5) were measured with a integrating sphere coupled to a spectrometer. The light beam was assessed with a beam profiler camera. The DC at 600 s and the Rpmax of one LCC was determined using a Fourier transform infrared spectrometer (n = 5). Data were analyzed by ANOVA followed by Tukey's tests, and Dunnett's test was also used for irradiance data (α = 0.05). RESULTS A significant decrease in irradiance through all materials occurred as thickness increased. Thin CAD/CAM materials improved light homogeneity, which decreased with the increase in thickness. The DC of the LCC directly exposed to light was the same as when exposed to 45%, 25%, 15%, or 5% IRs. Rpmax decreased with the decrease in IR. CONCLUSIONS Although the HT CAD/CAM materials reduced the irradiance from the LCU, minor effects were observed in the LCC's DC. CLINICAL SIGNIFICANCE Despite the light attenuation of blue light through different CAD/CAM materials that were up to 2-mm thick, the degree of conversion of one brand of light-cured resin cement was clinically acceptable when the LCU was used for 30 s.
Collapse
Affiliation(s)
- Eduardo Fernandes de Castro
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Bruna Marin Fronza
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Jorge Soto-Montero
- Department of Restorative Dentistry, School of Dentistry, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Marcelo Giannini
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Carlos Tadeu Dos-Santos-Dias
- Department of Exact Sciences, College of Agriculture, "Luiz de Queiroz"/University of São Paulo, Piracicaba, Brazil
| | - Richard Bengt Price
- Department of Dental Clinical Sciences, School of Dentistry, Dalhousie University, Halifax, Canada
| |
Collapse
|
9
|
Favarão J, Oliveira DCRSD, Zanini MM, Rocha MG, Ogliari FA, Correr-Sobrinho L, Sinhoreti MAC. Effect of light attenuation through veneers on bond strength of adhesives with photoinitiator combinations. Braz Oral Res 2022; 36:e075. [PMID: 35703702 DOI: 10.1590/1807-3107bor-2022.vol36.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate the effect of light attenuation through ceramic veneers and resin cement on degree of conversion (DC), cohesive strength (CS), and microshear bond strength (μSBS) of experimental adhesive systems. Experimental etch-and-rinse and self-etch adhesives were combined with different ratios of camphorquinone (CQ) and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) photoinitiators: CQ-only; 3CQ:1TPO; 1CQ:1TPO; 1CQ:3TPO and TPO-only. Square-shaped ceramic veneer (IPS Empress Esthetic, Ivoclar Vivadent) (n = 10; 10mm long x 10mm wide x 0.5mm thick) and resin cement specimens (Variolink Esthetic LC, Ivoclar Vivadent) (n = 10; 10 mm long x 10 mm wide and 0.3 mm thick) were prepared. Light transmittance of a multiple-peak LED (Bluephase G2, Ivoclar Vivadent) was measured through restorative materials using a spectrometer (n = 5). Adhesive specimens were analyzed for DC, CS, and μSBS by light-curing the adhesive with or without (control) ceramic veneer, and with resin cement fixed to output region of the light-curing tip (n = 10). Data were submitted to ANOVA and Tukey's test (α = 0.05). Total light transmittance through the restorative materials was attenuated, and this attenuation was more evident for the violet spectrum. The DC for the TPO groups in ratios up to 1CQ:1TPO was similar to the control. 1CQ:3TPO showed lower values for CS. μSBS was reduced for all groups with light attenuation, but lower values were observed for 1CQ:3TPO and TPO-only. In conclusion, light transmission was reduced with interposed restorative materials. Adhesives combined with CQ and TPO up to 1CQ:1TPO showed greater cure efficiency and mechanical properties compared with a higher amount of TPO.
Collapse
Affiliation(s)
- Jamille Favarão
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School , Department of Restorative Dentistry , Piracicaba , SP , Brazil
| | | | - Mauricio Matté Zanini
- Universidade Estadual do Oeste do Paraná - Unioeste, Dental School , Cascavel , PR , Brazil
| | - Mateus Garcia Rocha
- University of Florida , College of Dentistry , Department of Restorative Dental Sciences , Gainesville , FL , USA
| | - Fabrício Aulo Ogliari
- Universidade Federal de Pelotas - UFPel, Department of Materials Engineering , Pelotas , RS , Brazil
| | - Lourenço Correr-Sobrinho
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School , Department of Restorative Dentistry , Piracicaba , SP , Brazil
| | - Mário Alexandre Coelho Sinhoreti
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School , Department of Restorative Dentistry , Piracicaba , SP , Brazil
| |
Collapse
|
10
|
German MJ. Developments in resin-based composites. Br Dent J 2022; 232:638-643. [PMID: 35562465 PMCID: PMC9106574 DOI: 10.1038/s41415-022-4240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
With the phasing down of dental amalgam use in response to the Minamata Convention, it is likely that resin-based composite restoratives will be the dental material of choice for the direct restoration of compromised dentition in the UK, at least for the foreseeable future. The current materials have a finite lifespan, with failures predominately due to either secondary caries or fracture. Consequently, there is considerable in vitro research reported each year with the intention of producing improved materials. This review describes the recent research in materials designed to have low polymerisation shrinkage and increased mechanical properties. Also described is research into materials that are either antimicrobial or are designed to release ions into the surrounding oral environment, with the aim of stimulating remineralisation of the surrounding dental tissues. It is hoped that by describing this recent research, clinicians will be able to gain some understanding of the current research that will potentially lead to new products that they can use to improve patient treatment in the future. Provides an overview of recent research developments aimed at improving the performance of resin-based composites. Details the recent developments in monomers and fillers to produce resin-based composites that either have lower polymerisation shrinkage or better mechanical properties compared to current commercially available products. Describes recent research on developing resin-based composites that can act as potential sources of antimicrobial or remineralising agents.
Collapse
Affiliation(s)
- Matthew J German
- School of Dental Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Kim GT, Go HB, Yu JH, Yang SY, Kim KM, Choi SH, Kwon JS. Cytotoxicity, Colour Stability and Dimensional Accuracy of 3D Printing Resin with Three Different Photoinitiators. Polymers (Basel) 2022; 14:polym14050979. [PMID: 35267799 PMCID: PMC8912826 DOI: 10.3390/polym14050979] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/30/2023] Open
Abstract
Biocompatibility is important for the 3D printing of resins used in medical devices and can be affected by photoinitiators, one of the key additives used in the 3D printing process. The choice of ingredients must be considered, as the toxicity varies depending on the photoinitiator, and unreacted photoinitiator may leach out of the polymerized resin. In this study, the use of ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO-L) as a photoinitiator for the 3D printing of resin was considered for application in medical device production, where the cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical/physical properties were evaluated. Along with TPO-L, two conventional photoinitiators, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), were considered. A total of 0.1 mol% of each photoinitiator was mixed with the resin matrix to prepare a resin mixture for 3D printing. The specimens were printed using a direct light processing (DLP) type 3D printer. The 3D-printed specimens were postprocessed and evaluated for cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical properties in accordance with international standards and the methods described in previous studies. The TPO-L photoinitiator showed excellent biocompatibility and colour stability and possessed with an acceptable dimensional accuracy for use in the 3D printing of resins. Therefore, the TPO-L photoinitiator can be sufficiently used as a photoinitiator for dental 3D-printed resin.
Collapse
Affiliation(s)
- Gi-Tae Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Hye-Bin Go
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
| | - Jae-Hun Yu
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Song-Yi Yang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
| | - Sung-Hwan Choi
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (S.-H.C.); (J.-S.K.); Tel.: +82-2-2228-3102 (S.-H.C.); +82-2-2228-8301 (J.-S.K.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
- Correspondence: (S.-H.C.); (J.-S.K.); Tel.: +82-2-2228-3102 (S.-H.C.); +82-2-2228-8301 (J.-S.K.)
| |
Collapse
|
12
|
Berghaus E, Muxkopf GA, Feddersen S, Eisenburger M, Petersen S. Antimicrobial agents in dental restorative materials: Effect on long-term drug release and material properties. Eur J Oral Sci 2021; 130:e12840. [PMID: 34935216 DOI: 10.1111/eos.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
The present study reports on the long-term drug release and mechanical properties of bioactive dental filling materials based on chlorhexidine diacetate (CHX) or octinidine (di)hydrochloride (ODH) incorporated in a composite based on dimethacrylates or an ormocer. CHX or ODH were added to a nano-hybrid ormocer (O) and a nano-hybrid composite (C) with the amount of 2 wt% to achieve four matrix-drug combinations: O-CHX, O-ODH, C-CHX, and C-ODH. Drug extraction and release were measured using high-performance liquid chromatography with diode-array detection (HPLC-DAD), while drug distribution was assessed by using energy dispersive X-ray spectroscopy (EDX). Drug release in water at 37°C was observed over 87 d. To determine the material properties, the water absorption, water solubility, flexural strength and hardness were measured and compared to the reference materials. Persistent drug release over 87 d was observed for both ODH-based systems and both ormocer-systems, with the longest duration of activity seen for the O-ODH combination. Persistent drug release was achieved via the loosening of the polymer network indicated via decreasing polymerization enthalpies, enhanced water absorption, and water solubility. As a consequence, the flexural strengths of the materials were reduced. However, surface hardness was hardly reduced. ODH seems to be more adequate than CHX for the design of bioactive dental filling materials based on nano-hybrid ormocer and composites.
Collapse
Affiliation(s)
- Eva Berghaus
- Laboratory of Chemistry and Surface Modification, University of Applied Sciences, Osnabrück, Germany
| | | | - Silas Feddersen
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Michael Eisenburger
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Svea Petersen
- Laboratory of Chemistry and Surface Modification, University of Applied Sciences, Osnabrück, Germany
| |
Collapse
|
13
|
Balcerak A, Kabatc J, Czech Z, Nowak M, Mozelewska K. High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7814. [PMID: 34947409 PMCID: PMC8705399 DOI: 10.3390/ma14247814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
The popularity of using the photopolymerization reactions in various areas of science and technique is constantly gaining importance. Light-induced photopolymerization is the basic process for the production of various polymeric materials. The key role in the polymerization reaction is the photoinitiator. The huge demand for radical and cationic initiators results from the dynamic development of the medical sector, and the optoelectronic, paints, coatings, varnishes and adhesives industries. For this reason, we dealt with the subject of designing new, highly-efficient radical photoinitiators. This paper describes novel photoinitiating systems operating in UV-Vis light for radical polymerization of acrylates. The proposed photoinitiators are composed of squaraine (SQ) as a light absorber and various diphenyliodonium (Iod) salts as co-initiators. The kinetic parameters of radical polymerization of trimethylolpropane triacrylate (TMPTA), such as the degree of double bonds conversion (C%), the rate of photopolymerization (Rp), as well as the photoinitiation index (Ip) were calculated. It was found that 2-aminobenzothiazole derivatives in the presence of iodonium salts effectively initiated the polymerization of TMPTA. The rates of polymerization were at about 2 × 10-2 s-1 and the degree of conversion of acrylate groups from 10% to 36% were observed. The values of the photoinitiating indexes for the most optimal initiator concentration, i.e., 5 × 10-3 M were in the range from 1 × 10-3 s-2 even to above 9 × 10-3 s-2. The photoinitiating efficiency of new radical initiators depends on the concentration and chemical structure of used photoinitiator. The role of squaraine-based photoinitiating systems as effective dyeing photoinitiators for radical polymerization is highlighted in this article.
Collapse
Affiliation(s)
- Alicja Balcerak
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| | - Janina Kabatc
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| | - Zbigniew Czech
- International Laboratory of Adhesives and Self-Adhesive Materials, Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (M.N.); (K.M.)
| | - Małgorzata Nowak
- International Laboratory of Adhesives and Self-Adhesive Materials, Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (M.N.); (K.M.)
| | - Karolina Mozelewska
- International Laboratory of Adhesives and Self-Adhesive Materials, Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (M.N.); (K.M.)
| |
Collapse
|
14
|
Lara L, Rocha MG, de Menezes LR, Correr AB, Sinhoreti MAC, Oliveira D. Effect of combining photoinitiators on cure efficiency of dental resin-based composites. J Appl Oral Sci 2021; 29:e20200467. [PMID: 34320117 PMCID: PMC8315791 DOI: 10.1590/1678-7757-2020-0467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Camphorquinone is the most conventionally used photoinitiator in Dentistry. Although different alternative photoinitiators have been proposed, no photoinitiator was capable of completely substituting camphorquinone. The combination of photoinitiators has been considered the best alternative. OBJECTIVES To evaluate the effect of combining Norrish type I and II photoinitiators on the cure efficiency of dental resin-based composites. METHODOLOGY Experimental composites were produced containing different photoinitiator systems: Norrish type I-only, mono-alkyl phosphine oxide (TPO); Norrish type II-only, camphorquinone (CQ); or its combination, CQ and TPO, in a 1: 1 molar ratio. UV-vis absorption spectrophotometry was performed to assess the consumption of each photoinitiator after curing (n=3). A multi-wave LED (Bluephase® G2, Ivoclar Vivadent) was pre-characterized and used with a radiant exposure of 24 J/cm2. The degree of conversion was evaluated by Raman spectrometry, and the elution of the monomers by nuclear magnetic resonance analysis (n=3). Data were analyzed using ANOVA and Tukey's test (α=0.05; β=0.2). RESULTS The combination of CQ and TPO increased the consumption of the photoinitiator system compared to CQ-only (p=0.001), but presented similar consumption compared to TPO-only (p=0.52). There was no significant difference in the degree of conversion between the composites regardless of the photoinitiator system (p=0.81). However, the elution of the monomers was reduced when both photoinitiators were combined. TPO-based material presented the highest elution of monomers. CONCLUSIONS The combination of the photoinitiator systems seems to be beneficial for the cure efficiency of dental resin-based composites.
Collapse
Affiliation(s)
- Lucas Lara
- Universidade Estadual de Campinas – UNICAMPFaculdade de Odontologia de PiracicabaDepartamento de Odontologia RestauradoraPiracicabaSPBrasilUniversidade Estadual de Campinas – UNICAMP, Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Restauradora, Piracicaba, SP, Brasil.
| | - Mateus Garcia Rocha
- Universidade Federal do Rio de JaneiroInstituto de Macromoléculas Professora Eloisa ManoRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, Rio de Janeiro, RJ, Brasil.
| | - Livia Rodrigues de Menezes
- Universidade Federal do Rio de JaneiroInstituto de Macromoléculas Professora Eloisa ManoRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, Rio de Janeiro, RJ, Brasil.
| | - Américo Bortolazzo Correr
- Universidade Estadual de Campinas – UNICAMPFaculdade de Odontologia de PiracicabaDepartamento de Odontologia RestauradoraPiracicabaSPBrasilUniversidade Estadual de Campinas – UNICAMP, Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Restauradora, Piracicaba, SP, Brasil.
| | - Mario Alexandre Coelho Sinhoreti
- Universidade Estadual de Campinas – UNICAMPFaculdade de Odontologia de PiracicabaDepartamento de Odontologia RestauradoraPiracicabaSPBrasilUniversidade Estadual de Campinas – UNICAMP, Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Restauradora, Piracicaba, SP, Brasil.
| | - Dayane Oliveira
- University of FloridaDivision of Operative DentistryDepartment of Restorative Dental SciencesGainesvilleFLUnited StatesUniversity of Florida, Division of Operative Dentistry, Department of Restorative Dental Sciences, Gainesville, FL, United States.
| |
Collapse
|
15
|
Rocha MG, Roulet JF, Sinhoreti MAC, Correr AB, Oliveira D. Light Transmittance and Depth of Cure of a Bulk Fill Composite Based on the Exposure Reciprocity Law. Braz Dent J 2021; 32:78-84. [PMID: 33914006 DOI: 10.1590/0103-6440202103842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to evaluate the effect of the exposure reciprocity law of a multi-wave light-emitting diode (LED) on the light transmittance (LT), depth of cure (DOC) and degree of conversion in-depth (DC) of a bulk fill composite. A bulk fill composite (EvoCeram® bulk fill, Ivoclar Vivadent) was photoactivated using the multi-wave LED (VALO™ Cordless, Ultradent). The LED was previously characterized using a spectrophotometer to standardize the time of exposure when using the Standard or Xtra-Power modes with the same radiant exposure of 20J/cm2. LT was evaluated through samples of the bulk fill composite every millimeter till 4 mm in-depth. DOC was evaluated according to the ISO 4049. DC of the central longitudinal cross-section from each sample of the DOC test was mapped using FT-NIR microscopy. Data were statistically analyzed according to the experimental design (α=0.05; ß=0.2). The radiant exposure in the violet wavelength range for Standard and Xtra-Power was 4.5 and 5.0 J/cm2, respectively; for the blue wavelength range the radiant exposure for Standard and Xtra-Power was 15.5 and 15.0 J/cm2, respectively. There was no statistical difference in the DOC using Standard or Xtra-Power light-curing modes, but the DOC was lower than the claimed by the manufacturer (4 mm). The DC was not significantly affected by the light-curing mode up to 4 mm in depth (p>0.05). According to exposure reciprocity law, the reduction in exposure time using the same radiant exposure did not affect the depth of cure of the bulk fill composite.
Collapse
Affiliation(s)
- Mateus Garcia Rocha
- Department of Restorative Dental Sciences, Operative Dentistry Division, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jean-François Roulet
- Department of Restorative Dental Sciences, Operative Dentistry Division, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Mario Alexandre Coelho Sinhoreti
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Dayane Oliveira
- Department of Restorative Dental Sciences, Operative Dentistry Division, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Zeng B, Cai Z, Lalevée J, Yang Q, Lai H, Xiao P, Liu J, Xing F. Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells. Toxicol In Vitro 2021; 72:105103. [PMID: 33516932 DOI: 10.1016/j.tiv.2021.105103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Photoinitiators (PIs) are widely used for photopolymerization in industrial area and recently paid close attention to in biomedical field. However, there are few reports on their toxicity to human health. Here we explored cytotoxicity and cytocompatibilty of seven commercial and industrial-used PIs for developing their potential clinical application. Phenylbis(acyl) phosphine oxides (BAPO), 2-Benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone (369), 4,4'-Bis(diethylamino) benzophenone (EMK), Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), and 2-Isopropylthioxanthone (ITX) caused different extent cytotoxicities to four tissue types of cells at the concentrations of 1 to 50 μM under a non-irradiation condition, of which the BAPO cytotoxicity was the highest, whereas Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPOL) and Methyl benzoylformate (MBF) displayed the lowest cellular toxicity. The cell lines and primary cells appeared highly sensitive to BAPO toxicity, the primary lymphocytes relatively to photoinitiator 369 (369) and EMK toxicities, LO2 cells to EMK and TPO toxicities, the primary lymphocytes and HUVEC-12 cells to MBF toxicity, but only HEK293T cells not to 369 toxicity. Furthermore, these PIs led to increasing cytotoxicity to different extents after exposure to 455 nm blue light, which is consistent with non-irradiation tendency. All the cells presented low sensitivity to TPOL and MBF, of which TPOL-triggered polymer is dramatically superior in its cytocompatibility to MBF, and in its transparency to clinically exclusively-used camphorquinone (CQ). The novel findings indicate that BAPO is the most toxic among the seven PIs, but TPOL and MBF are the least toxic, directing their development and application. Combined their triggered polymer cytocompatibility and color with reported deep curing efficiency, TPOL is more promising to be applied especially to clinical practice.
Collapse
Affiliation(s)
- Boning Zeng
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Zhenlong Cai
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France
| | - Qizhi Yang
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Haiwang Lai
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Pu Xiao
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Jing Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China.
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| |
Collapse
|
17
|
KAPDAN A, KAYA S, EREN D. Influence Of Different Led Curing-Units On Depth Of Cure and Micro-Hardness Of Nano-Hybrid Resin Composite. CUMHURIYET DENTAL JOURNAL 2021. [DOI: 10.7126/cumudj.855065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Soto-Montero J, Nima G, Rueggeberg FA, Dias CTS, Giannini M. Influence of Multiple Peak Light-emitting-diode Curing Unit Beam Homogenization Tips on Microhardness of Resin Composites. Oper Dent 2020; 45:327-338. [DOI: 10.2341/19-027-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
This study evaluated the effect of light curing unit (LCU) guide type (regular or homogenizing) on top and bottom microhardness of conventional and bulk-fill resin-based composites (RBCs). A polywave light-emitting-diode (LED) LCU (Bluephase Style, Ivoclar Vivadent AG) was used with two different light guides: a regular tip (RT, 935 mW/cm2 emittance) and a homogenizer tip (HT, 851 mW/cm2 emittance). Two conventional RBCs (Herculite Ultra [HER], Kerr Corp; Tetric EvoCeram [TEC], Ivoclar Vivadent AG) and two bulk-fill RBCs (SonicFill [SOF], Kerr Corp; Tetric EvoCeram Bulk Fill [TBF], Ivoclar Vivadent AG) were tested. Disc-shaped samples (10 mm Ø), 2-mm thick for conventional composites and 4-mm thick for bulk-fill composites were prepared. Samples were light cured according to manufacturer-recommended times. Knoop microhardness values (KHN) were obtained on the top and bottom surfaces of each specimen at locations correlated with the output of the three LED chips emitting blue (456 nm) or violet light (409 nm). Beam profile analysis using both light guides was also performed. Microhardness of each composite was analyzed using three-way analysis of variance and Tukey honestly significant difference post hoc test (α=0.05). Beam profile images showed better light distribution across the surface of the HT light guide. Use of the HT decreased KHN of HER at the locations of the blue LED chips at bottom of the sample but had no effect on the top surface. For TEC, use of HT increased KHN of all three LED locations at the top surface. Use of the HT increased KHN of SOF at locations corresponding to one of the blue and the violet LED chips at the bottom surface. For TBF, HT increased KHN at all top surface locations. All RBCs showed higher mean KHN at the top compared with the bottom surfaces. In general, all composites presented a higher KHN at the blue LED areas regardless of the surface or the tip used. Results suggest that the homogenizer light guide resulted in significantly increased microhardness at the top, in composite resins containing alternative photoinitiators; however, that effect was not observed at the bottom surfaces.
Collapse
Affiliation(s)
- J Soto-Montero
- Jorge Soto-Montero, DDS, MS, MS, PhD student, Operative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil and professor, Department of Restorative Dentistry, University of Costa Rica - School of Dentistry, San José, Costa Rica
| | - G Nima
- Gabriel Nima, DDS, MSc, PhD student, Dental Materials, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - FA Rueggeberg
- Frederick A Rueggeberg, DDS, MSc, professor, Dental Materials, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - CTS Dias
- Carlos TS Dias, DDS, MS, PhD, titular professor, Department of Statistical Mathematics, Luiz de Queiroz Higher School of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - M Giannini
- Marcelo Giannini, DDS, MS, PhD, associate professor, Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
19
|
Guo J, Yang B, Yang J, Holmes B, Fok A, Chen J, Wang Y. Optical and mechanical factors in the temporal development of tooth-composite bond. Dent Mater 2020; 36:660-671. [PMID: 32278482 DOI: 10.1016/j.dental.2020.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To obtain an accurate picture of the temporal development of bond strength between resin composites and tooth structures during cure for assessing debonding at the tooth-composite interface. METHODS An assembly of uncured composite sandwiched between a glass block and a dentin slab with a layer of pre-cured adhesive was used in this study. A conventional composite was compared against a bulk-fill composite. The rate of bond formation was determined by measuring the tensile bond strength of specimens of different thicknesses at different time points during cure. The changing light irradiance exiting the composite as it cured was also recorded. Mode of fracture was analyzed by examining the fracture surfaces. RESULTS Photo-bleaching occurred in both resin composites. The development of the dentin-composite bond strength was initially dictated by the developing cohesive strength of the resin composite, and its final value was capped by the strength of the preformed dentin-adhesive bond. The higher interfacial irradiance in the bulk-fill composite did not lead to faster development of the overall bond strength. This was caused by its slower rate of cohesive strength development as reflected in the longer time for its interfacial irradiance to plateau and the greater proportion of cohesive failure seen in the initial stage of polymerization. The law of reciprocity did not hold for the development of dentin bond strength. SIGNIFICANCE The results from this study, when compared with the development of shrinkage stress, can be used as a basis for ensuring the integrity of the dentin-composite interface during cure.
Collapse
Affiliation(s)
- Jiawen Guo
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bo Yang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiajun Yang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Brian Holmes
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA
| | - Alex Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA.
| | - Jihua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Yan Wang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Influence of different light-curing units in surface roughness and gloss of resin composites for bleached teeth after challenges. J Mech Behav Biomed Mater 2020; 102:103458. [DOI: 10.1016/j.jmbbm.2019.103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022]
|
21
|
Juckes SM, Sullivan B, Kostylev I, Price RB, Labrie D. Three-dimensional beam profiling used to characterize dental light-curing units. APPLIED OPTICS 2019; 58:9540-9547. [PMID: 31873552 DOI: 10.1364/ao.58.009540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) beam profiling is an emerging technique used to characterize the beam homogeneity in dental light-curing units (LCUs). This project developed a method to combine multiple 2D beam profiles that had been measured along the beam path to create a 3D profile of the beam. This allowed a quantitative investigation of beam divergence and homogeneity at different distances from the source. To illustrate the use of this technique, four representative dental LCUs were measured. In addition, the selected dental LCUs demonstrated the effects of LCU design, particularly that of fiber optic light guides, on beam quality. The results show the value of a program that can recombine multiple beam profile images made at different distances from the source to create a 3D beam profile of a light beam.
Collapse
|
22
|
de Oliveira DCRS, Rocha MG, Correr AB, Ferracane JL, Sinhoreti MAC. Effect of Beam Profiles From Different Light Emission Tip Types of Multiwave Light-emitting Diodes on the Curing Profile of Resin-based Composites. Oper Dent 2019; 44:365-378. [DOI: 10.2341/16-242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
Light activation is an important clinical step for achieving success in restorative procedures. This study evaluated the influence of beam profile from different light emission tip types of multiwave light-emitting diodes (LEDs) on the curing profile of resin-based composites. Experimental composites were produced containing either camphorquinone (CQ) or diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) as a photoinitiator. Multiwave LEDs with either a bundle light guide tip (Bluephase G2, Ivoclar Vivadent) or a microlens tip (VALO Cordless, Ultradent) were characterized using a beam profiler. Block-shaped samples (5×5×3 mm depth) of the two composites were cured in a custom-designed mold with the multiwave LEDs positioned to compare the regions exposed to the 420-495 nm (blue) and 380-420 nm (violet) emittances. To map the curing profile, the degree of conversion (DC) of longitudinal thin cross sections from each block was evaluated using transmission FT-NIR. Radiant exposure transmitted through the composites during curing was evaluated at different thicknesses. Data were analyzed using analysis of variance and Tukey test (α=0.05; β=0.2). The results indicated that there were differences in the beam profile and the overall radiant exposures transmitted through the composites using each multiwave LED (p<0.01, df=1 F=73.18). However, there were no differences in the curing profiles provided by the two multiwave LEDs (p=0.89, df=12 F=0.52), and similar effects were found according to the different LED emittance regions (p=0.09, df=5, F=2.11). When considering up to 1 mm in depth, no differences in the DC were found between the composites containing either photoinitiators. Starting at 2 mm in depth, the composite containing TPO showed a decrease in DC in the 420-495 nm emittance region, while the composite containing CQ showed a similar decrease in cure efficiency only at 3-mm depth under both 380-420 nm and 420-495 nm emittance regions. Thus, despite the fact that the nonuniform light beam emitted from the two multiwave LEDs was visually distinctly different when delivering 24 J/cm2, this difference did not seem to affect the curing profile of the composites. However, light transmission within 380-420 nm seems to be reduced with depth, directly affecting the curing profile of composites containing a photoinitiator with absorbance falling within this emission range.
Collapse
Affiliation(s)
- DCRS de Oliveira
- Dayane Carvalho Ramos Salles de Oliveira, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - MG Rocha
- Mateus Garcia Rocha, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - AB Correr
- Américo Bortolazzo Correr, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - JL Ferracane
- Jack Liborio Ferracane, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - MAC Sinhoreti
- Mario Alexandre Coelho Sinhoreti, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
23
|
Calcium phosphates as fillers for methacrylate-based sealer. Clin Oral Investig 2019; 23:4417-4423. [DOI: 10.1007/s00784-019-02898-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
|
24
|
Rocha MG, de Oliveira D, Sinhoreti M, Roulet JF, Correr AB. The Combination of CQ-amine and TPO Increases the Polymerization Shrinkage Stress and Does Not Improve the Depth of Cure of Bulk-fill Composites. Oper Dent 2019; 44:499-509. [PMID: 30702413 DOI: 10.2341/18-234-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To evaluate the effect of combining camphorquinone (CQ) and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) on the depth of cure and polymerization shrinkage stress of bulk-fill composites. METHODS AND MATERIALS Experimental bulk-fill composites were produced containing equal molar concentrations of either CQ-amine or CQ-amine/TPO. The degree of in-depth conversion through each millimeter of a 4-mm-thick bulk-fill increment was evaluated by Fourier transform near-infrared microspectroscopy using a central longitudinal cross section of the increment of each bulk-fill composite (n=3). Light-transmittance of the multi-wave light-emitting diode (LED) emittance used for photoactivation (Bluephase G2, Ivoclar Vivadent) was recorded through every millimeter of each bulk-fill composite using spectrophotometry. The volumetric shrinkage and polymerization shrinkage stress were assessed using a mercury dilatometer and the Bioman, respectively. The flexural modulus was also assessed by a three-point bend test as a complementary test. Data were analyzed according to the different experimental designs (α=0.05 and β=0.2). RESULTS Up to 1 mm in depth, adding TPO to CQ-based bulk-fill composites increased the degree of conversion, but beyond 1 mm no differences were found. The light-transmittance of either wavelengths emitted from the multi-wave LED (blue or violet) through the bulk-fill composites were only different up to 1 mm in depth, regardless of the photoinitiator system. Adding TPO to CQ-based bulk-fill composites did not affect volumetric shrinkage but did increase the flexural modulus and polymerization shrinkage stress. CONCLUSION Adding TPO to CQ-based bulk-fill composites did not increase the depth of cure. However, it did increase the degree of conversion on the top of the restoration, increasing the polymerization shrinkage stress.
Collapse
|
25
|
Delgado AJ, Castellanos EM, Sinhoreti M, Oliveira DC, Abdulhameed N, Geraldeli S, Sulaiman TA, Roulet JF. The Use of Different Photoinitiator Systems in Photopolymerizing Resin Cements Through Ceramic Veneers. Oper Dent 2018; 44:396-404. [PMID: 30517069 DOI: 10.2341/17-263-l] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To evaluate the effect of different photoinitiator systems on photopolymerizing resin cements through ceramic veneers with different thickness on microshear bond strength (μSBS), flexural strength (FS), and ultimate tensile strength (UTS) and verify the light attenuation through these ceramic veneers. METHODS AND MATERIALS Four photopolymerizing experimental resin cements were produced with the same resin matrix and associated with four different photoinitiator systems: camphorquinone (CQ), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), Ivocerin, and TPO + Ivocerin. Eighty disc-shaped ceramic veneers (IPS Empress Esthetic, Ivoclar Vivadent) were fabricated (10-mm diameter) in two different thicknesses: 0.7 and 1.5 mm. A previously characterized multiwave LED (Bluephase G2, Ivoclar Vivadent) was standardized for 40 seconds of photoactivation. Light transmittance through each ceramic veneer thickness (n=5) was measured using a spectrometer (USB 2000, Ocean Optics). The μSBS of each resin cement (n=15) to the ceramic veneer was evaluated using 0.5-mm cylinders with 0.7-mm diameters photoactivated through the different ceramic veneer thicknesses. Samples for FS and UTS tests were made either with or without ceramics veneers (0.7 and 1.5 mm) fixed to the light-curing tip. Data were submitted to two-way analysis of variance and the Tukey test (α=0.05). RESULTS The multiwave LED emitted higher irradiance into the blue wavelength spectra than into the violet wavelength spectra (p=0.0001). Light transmittance through the ceramic veneers was reduced in a systematic manner based on thickness regardless of the wavelength spectra emitted from the multiwave LED (p=0.00037). The μSBS was reduced in a systematic manner based on thickness regardless of the photoinitiator system (p<0.05). However, resin cements with CQ and Ivocerin showed higher bond strength values in comparison to the resin cement with TPO regardless of the ceramic veneer thickness (p<0.05). The FS and UTS means decreased (p<0.05) with the interposition of 0.7- and 1.5-mm ceramic veneers for all resin cements. The resin cement containing only TPO showed the lowest FS and UTS means (p<0.05) for all ceramic veneers. CONCLUSIONS The thickness of the ceramic veneers reduced the irradiance of the multiwave LED in all wavelength spectra. Ivocerin alone or associated with TPO showed to be an effective alternative photoinitiator to substitute for CQ. The resin cement containing only TPO had lower bond strength values in comparison to resin cements with CQ, Ivocerin, and Ivocerin + TPO.
Collapse
|
26
|
Ye Q, Abedin F, Parthasarathy R, Spencer P. Photoinitiators in Dentistry: Challenges and Advances. PHOTOPOLYMERISATION INITIATING SYSTEMS 2018. [DOI: 10.1039/9781788013307-00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photopolymerization is used in a wide range of clinical applications in dentistry and the demand for dental materials that can restore form, function and esthetics is increasing rapidly. Simultaneous with this demand is the growing need for photoinitiators that provide effective and efficient in situ polymerization of dental materials using visible light irradiation. This chapter reviews the fundamentals of Type I and II photoinitiators. The advantages and disadvantages of these photoinitiators will be considered with a particular focus on parameters that affect the polymerization process in the oral cavity. The chapter examines recent developments in photoinitiators and opportunities for future research in the design and development of photoinitiators for dental applications. Future research directions that employ computational models in conjunction with iterative synthesis and experimental methods will also be explored in this chapter.
Collapse
Affiliation(s)
- Qiang Ye
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| | - Farhana Abedin
- Electromechanical Engineering Technology program, College of Engineering, California State Polytechnic University Pomona 3801 W. Temple Ave Pomona CA 91768 USA
| | - Ranganathan Parthasarathy
- Nanomaterials Research Lab, Tennessee State University 3500 John A Merritt Blvd Nashville TN 37209 USA
| | - Paulette Spencer
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
- Department of Mechanical Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| |
Collapse
|
27
|
Shining a light on high volume photocurable materials. Dent Mater 2018; 34:695-710. [DOI: 10.1016/j.dental.2018.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/29/2022]
|
28
|
Effective Catalyst for Oxidation Synthesis of 2,4,6-Trimethylbenzoyldipenylphosphine Oxide: V/MCM-41. Catal Letters 2018. [DOI: 10.1007/s10562-018-2299-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Grohmann CVS, Soares EF, Souza-Junior EJC, Brandt WC, Puppin-Rontani RM, Geraldeli S, Sinhoreti MAC. Influence of Different Concentration and Ratio of a Photoinitiator System on the Properties of Experimental Resin Composites. Braz Dent J 2017; 28:726-730. [DOI: 10.1590/0103-6440201701372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
Abstract The aim in this study was to evaluate the influence of different ratio of camphorquinone/tertiary amine concentration on the flexural strength (FS), elastic modulus (EM), degree of conversion (DC), yellowing (YL), water sorption (WS) and water solubility (WSL) of experimental composites. Thus, acrylate blends were prepared with different camphorquinone (CQ) and amine (DABE) concentrations and ratios by weight: (CQ/DABE%): 0.4/0.4% (C1), 0.4/0.8% (C2), 0.6/0.6% (C3), 0.6/1.2% (C4), 0.8/0.8% (C5), 0.8/1.6% (C6), 1.0/1.0% (C7), 1.0/2.0% (C8), 1.5/1.5% (C9), 1.5/3.0% (C10). For the FS and EM, rectangular specimens (7x2x1 mm, n=10) were photo-activated by single-peak LED for 20 s and tested at Instron (0.5 mm/min). Then, the same specimens were evaluated by FTIR for DC measurement. For YL, disks (5x2 mm, n=10) were prepared, light-cured for 20 s and evaluated in spectrophotometer using the b aspect of the CIEL*a*b* system. For WS and WSL, the volume of the samples was calculated (mm³). For WS and WSL, composites disks (5x0.5 mm, n=5) were prepared. After desiccation, the specimens were stored in distilled water for 7 days and again desiccated, in order to measure the WS and WSL. Data were submitted to one-way ANOVA and Tukey’s test (5%). The groups C8, C9 and C10 showed higher DC, EM and YL means, compared to other composites. Therefore, the FS and WS values were similar among all groups. Also, C1, C2 and C3 presented higher WSL in 7 days, compared to other composites. In general, higher concentrations of camphorquinone promoted higher physical-mechanical properties; however, inducing higher yellowing effect for the experimental composites
Collapse
|
30
|
Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res 2017; 31:e61. [PMID: 28902241 DOI: 10.1590/1807-3107bor-2017.vol31.0061] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022] Open
Abstract
Contemporary dentistry literally cannot be performed without use of resin-based restorative materials. With the success of bonding resin materials to tooth structures, an even wider scope of clinical applications has arisen for these lines of products. Understanding of the basic events occurring in any dental polymerization mechanism, regardless of the mode of activating the process, will allow clinicians to both better appreciate the tremendous improvements that have been made over the years, and will also provide valuable information on differences among strategies manufacturers use to optimize product performance, as well as factors under the control of the clinician, whereby they can influence the long-term outcome of their restorative procedures.
Collapse
Affiliation(s)
- Frederick Allen Rueggeberg
- Augusta University, Dental College of Georgia, Department of Restorative Sciences, Augusta, GA, United States of America
| | - Marcelo Giannini
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | | | | |
Collapse
|
31
|
Rocha MG, de Oliveira DCRS, Correa IC, Correr-Sobrinho L, Sinhoreti MAC, Ferracane JL, Correr AB. Light-emitting Diode Beam Profile and Spectral Output Influence on the Degree of Conversion of Bulk Fill Composites. Oper Dent 2017; 42:418-427. [DOI: 10.2341/16-164-l] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
Objectives:
To evaluate the beam profile and the spectral output of monowave and polywave light-emitting diodes (LEDs) and their influence on the degree of conversion (DC) of bulk fill composites.
Methods:
A monowave LED (Smartlite Focus, Dentsply) and a polywave LED (Valo Cordless, Ultradent) were characterized using a resin calibrator and a laser beam profile analyzer. Two bulk fill composites, Sonic Fill 2 (SF) containing camphorquinone (CQ) and Tetric EvoCeram Bulk Fill (TEB) containing CQ associated with alternative photoinitiators, were placed in custom-designed molds (n=3) and photoactivated by the monowave or polywave LED with 20 J/cm2. To map the DC, longitudinal cross sections (0.5 mm thick) from the center of the restoration were evaluated using FT-NIR microscopy. SF and TEB light transmittances (n=3) through 4-mm-thick specimens were evaluated during curing. Data were analyzed using a split-plot analysis of variance and Tukey test (α=0.05; β=0.2).
Results:
The monowave LED had a radiant emittance of 20 ± 0.5 J/cm2 over 420-495 nm, and the polywave LED had an emittance of 15.5 ± 0.4 J/cm2 over 420-495 nm and of 4.5 ± 0.2 J/cm2 over 380-420 nm. The total radiant exposure at the bottom of TEB was 2.2 ± 0.2 J/cm2 with the monowave LED and 1.6 ± 0.3 J/cm2 with the polywave LED, and for SF it was 0.4 ± 0.1 J/cm2 for both LEDs. There were no differences in the curing profiles produced either by the monowave or the polywave LED (p=0.9), according to the regions under influence of blue and/or violet emission at the same depth. There was no statistical difference in the DC for SF using the monowave or polywave LED at any depth (p=0.29). TEB had a higher DC at up to 2 mm in depth when the polywave LED was used (p<0.004), but no differences were found when starting at 2.5 mm.
Conclusions:
Monowave and polywave LEDs emitted nonhomogeneous light beams, but this did not affect the DC homogeneity of bulk fill composites. For composites containing CQ associated with alternative photoinitiators, polywave LEDs had a higher DC, but only at the top part of the restoration; lower wavelength absorption photoinitiators were ineffective in deeper areas.
Collapse
Affiliation(s)
- MG Rocha
- Mateus Garcia Rocha, DDS, MSc, Piracicaba Dental School, State University of Campinas, Restorative Dentistry, Piracicaba, SP, Brazil
| | - DCRS de Oliveira
- Dayane CRS de Oliveira, DDS, MS, PhD, Piracicaba Dental School, State University of Campinas, Restorative Dentistry, Piracicaba, SP, Brazil
| | - IC Correa
- Ivo Carlos Correa, DDS, MSc, PhD, Federal University of Rio de Janeiro, Prosthesis and Dental Materials, Rio de Janeiro, RJ, Brazil
| | - L Correr-Sobrinho
- Lourenco Correr-Sobrinho, DDS, MS, PhD, Piracicaba Dental School, University of Campinas, Restorative Dentistry, Piracicaba, SP, Brazil
| | - MAC Sinhoreti
- Mario Alexandre C Sinhoreti, PhD, Piracicaba School of Dentistry, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | - JL Ferracane
- Jack L Ferracane, PhD, Oregon Health & Science University, Restorative Dentistry, Portland, OR, USA
| | - AB Correr
- Américo Bortolazzo Correr, DDS, Piracicaba Dental School, University of Campinas, Restorative Dentistry, Piracicaba, SP, Brazil
| |
Collapse
|