1
|
Liu Z, Jia J, Lei Q, Wei Y, Hu Y, Lian X, Zhao L, Xie X, Bai H, He X, Si L, Livermore C, Kuang R, Zhang Y, Wang J, Yu Z, Ma X, Huang D. Electrohydrodynamic Direct-Writing Micro/Nanofibrous Architectures: Principle, Materials, and Biomedical Applications. Adv Healthc Mater 2024; 13:e2400930. [PMID: 38847291 DOI: 10.1002/adhm.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Electrohydrodynamic (EHD) direct-writing has recently gained attention as a highly promising additive manufacturing strategy for fabricating intricate micro/nanoscale architectures. This technique is particularly well-suited for mimicking the extracellular matrix (ECM) present in biological tissue, which serves a vital function in facilitating cell colonization, migration, and growth. The integration of EHD direct-writing with other techniques has been employed to enhance the biological performance of scaffolds, and significant advancements have been made in the development of tailored scaffold architectures and constituents to meet the specific requirements of various biomedical applications. Here, a comprehensive overview of EHD direct-writing is provided, including its underlying principles, demonstrated materials systems, and biomedical applications. A brief chronology of EHD direct-writing is provided, along with an examination of the observed phenomena that occur during the printing process. The impact of biomaterial selection and architectural topographic cues on biological performance is also highlighted. Finally, the major limitations associated with EHD direct-writing are discussed.
Collapse
Affiliation(s)
- Zhengjiang Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jinqiao Jia
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Xin Xie
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Haiqing Bai
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Xiaomin He
- Xellar Biosystems, Cambridge, MA, 02458, USA
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Rong Kuang
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310000, P. R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Jiucun Wang
- Human Phenome Institute, Fudan University, Shanghai, 200433, P. R. China
| | - Zhaoyan Yu
- Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, P. R. China
| | - Xudong Ma
- Cytori Therapeutics LLC., Shanghai, 201802, P. R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi-Zheda Institute of advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| |
Collapse
|
2
|
Olivares-Hernandez AE, Olivares-Robles MA, Méndez-Méndez JV, Gutiérrez-Camacho C. Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection. J Funct Biomater 2024; 15:283. [PMID: 39452582 PMCID: PMC11508653 DOI: 10.3390/jfb15100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Wear on the surface of the femoral head increases the risk of hip and femur fractures. Biomechanical experiments conducted on the femur are based on its bending and torsional rigidities. Studies regarding the deflection of the femur bone when the femoral head is coated with microfilms composed of durable and compatible biomaterials are poor. This study aimed to investigate the effects of different biomaterial microfilm coatings over the femoral head on the deflection of the human femur. We utilized 2023 R1 finite element analysis (FEA) software to model the directional deformation on the femoral head and examine the femur's deflection with varying microfilm thicknesses. The deflection of the femur bone was reported when the femoral head was uncoated and coated with titanium, stainless steel, and pure gold microfilms of different thicknesses (namely, 50, 75, and 100 μm). Our results show that the femur's minimum and maximum deflection occurred for stainless steel and gold, respectively. The deformation of the femur was lower when the femoral head was coated with a 50-micrometer microfilm of stainless steel, compared to the deformation obtained with gold and titanium. When the thickness of the microfilm for each of the materials was increased, the deformation continued to decrease. The minimum deformation of the femur occurred for a thickness of 100 μm with stainless steel, followed by titanium and gold. The difference in the directional deformation of the femur between the materials was more significant when the coating was 100 μm, compared to the thicknesses of 50 and 75 μm. The findings of this study are expected to significantly contribute to the development of advanced medical techniques to enhance the quality of life for patients with femur bone-related issues. This information can be used to develop more resilient coatings that can withstand wear and tear.
Collapse
Affiliation(s)
- Ana Elisabeth Olivares-Hernandez
- Instituto Politecnico Nacional, Seccion de Estudios de Posgrado e Investigacion, Escuela Nacional de Ciencias Biologicas, Ciudad de Mexico 11340, Mexico
| | - Miguel Angel Olivares-Robles
- Instituto Politecnico Nacional, Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Ingenieria Mecanica y Electrica Unidad Culhuacan, Coyoacan, Ciudad de Mexico 04430, Mexico
| | - Juan Vicente Méndez-Méndez
- Instituto Politecnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, “Unidad Profesional Adolfo Lopez Mateos”, Luis Enrico Erro s/n, Ciudad de Mexico 07738, Mexico;
| | - Claudia Gutiérrez-Camacho
- Hospital Infantil de Mexico Federico Gomez, Direccion de Enseñanza y Desarrollo Académico, Ciudad de Mexico 06720, Mexico;
| |
Collapse
|
3
|
Ammar M, Ashraf S, Baltrusaitis J. Nutrient-Doped Hydroxyapatite: Structure, Synthesis and Properties. CERAMICS 2023; 6:1799-1825. [DOI: 10.3390/ceramics6030110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Complex inorganic powders based on calcium phosphates have found a plethora of practical applications. Of particular interest are the CaO-P2O5 system-based multi-component material powders and granules as the source of major- and micronutrients for the plants. The emerging strategy is to use nano fertilizers based on hydroxyapatite (HAP) for phosphorus and other nutrient delivery. The doping of micronutrients into HAP structure presents an interesting challenge in obtaining specific phase compositions of these calcium phosphates. Various techniques, including mechanochemical synthesis, have been employed to fabricate doped HAP. Mechanochemical synthesis is of particular interest in this review since it presents a relatively simple, scalable, and cost-effective method of calcium phosphate powder processing. The method involves the use of mechanical force to promote chemical reactions and create nanometric powders. This technique has been successfully applied to produce HAP nanoparticles alone, and HAP doped with other elements, such as zinc and magnesium. Nanofertilizers developed through mechanochemical synthesis can offer several advantages over conventional fertilizers. Their nanoscale size allows for rapid absorption and controlled release of nutrients, which leads to improved nutrient uptake efficiency by plants. Furthermore, the tailored properties of HAP-based nano fertilizers, such as controlled porosity and degradation levels, contribute to their effectiveness in providing plant nutrition.
Collapse
Affiliation(s)
- Mohamed Ammar
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sherif Ashraf
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
4
|
Sun XD, Liu TT, Wang QQ, Zhang J, Cao MS. Surface Modification and Functionalities for Titanium Dental Implants. ACS Biomater Sci Eng 2023; 9:4442-4461. [PMID: 37523241 DOI: 10.1021/acsbiomaterials.3c00183] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dental implants have become the mainstream strategy for oral restoration, and implant materials are the most important research hot spot in this field. So far, Ti implants dominate all kinds of implants. The surface properties of the Ti implant play decisive roles in osseointegration and antibacterial performance. Surface modifications can significantly change the surface micro/nanotopography and composition of Ti implants, which will effectively improve their hydrophilicity, mechanical properties, osseointegration performance, antibacterial performance, etc. These optimizations will thus improve implant success and service life. In this paper, the latest surface modification techniques of Ti dental implants are systematically and comprehensively reviewed. The various biomedical functionalities of surface modifications are discussed in-depth. Finally, a profound comment on the challenges and opportunities of this frontier is proposed, and the most promising directions for the future were explored.
Collapse
Affiliation(s)
- Xiao-Di Sun
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ting-Ting Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang-Qiang Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Zhang
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Li M, Wang M, Wei L, Werner A, Liu Y. Biomimetic calcium phosphate coating on medical grade stainless steel improves surface properties and serves as a drug carrier for orthodontic applications. Dent Mater 2023; 39:152-161. [PMID: 36610898 DOI: 10.1016/j.dental.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Recently, stainless steel (SSL) miniscrew implants have been used in orthodontic clinics as temporary anchorage devices. Although they have excellent physical properties, their biocompatibility is relatively poor. Previously, our group developed a two-phase biomimetic calcium phosphate (BioCaP) coating that can significantly improve the biocompatibility of medical devices. This study aimed to improve the biocompatibility of SSL by coating SSL surface with the BioCaP coating. METHODS Titanium (Ti) discs and SSL discs (diameter: 5 mm, thickness: 1 mm) were used in this study. To form an amorphous layer, the Ti discs were immersed in a biomimetic modified Tyrode solution (BMT) for 24 h. The SSL discs were immersed in the same solution for 0 h, 12 h, 24 h, 36 h and 48 h. To form a crystalline layer, the discs were then immersed in a supersaturated calcium phosphate solution (CPS) for 48 h. The surface properties of the BioCaP coatings were analysed. In addition, bovine serum albumin (BSA) was incorporated into the crystalline layer during biomimetic mineralisation as a model protein. RESULTS The morphology, chemical composition and drug loading capacity of the BioCaP coating on smooth SSL were confirmed. This coating improved roughness and wettability of SSL surface. In vitro, with the extension of BMT coating period, the cell seeding efficiency, cell spreading area and cell proliferation on the BioCaP coating were increased. SIGNIFICANCE These in vitro results show that the BioCaP coating can improve surface properties of smooth medical grade SSL and serve as a carrier system for bioactive agents.
Collapse
Affiliation(s)
- Menghong Li
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands; Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China; Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, China
| | - Arie Werner
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Pierre C, Bertrand G, Pavy I, Benhamou O, Rey C, Roques C, Combes C. Antibacterial Electrodeposited Copper-Doped Calcium Phosphate Coatings for Dental Implants. J Funct Biomater 2022; 14:jfb14010020. [PMID: 36662066 PMCID: PMC9863956 DOI: 10.3390/jfb14010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Dental implants provide a good solution for the replacement of tooth roots. However, the full restoration of tooth functions relies on the bone-healing period before positioning the abutment and the crown on the implant, with the associated risk of post-operative infection. This study aimed at developing a homogeneous and adherent thin calcium phosphate antibacterial coating on titanium dental implants by electrodeposition to favor both implant osseointegration and to limit peri-implantitis. By combining global (XRD, FTIR-ATR, elemental titration) and local (SEM, Raman spectroscopy on the coating surface and thickness) characterization techniques, we determined the effect of electrodeposition time on the characteristics and phases content of the coating and the associated mechanism of its formation. The 1-min-electrodeposited CaP coating (thickness: 2 ± 1 μm) was mainly composed of nano-needles of octacalcium phosphate. We demonstrated its mechanical stability after screwing and unscrewing the dental implant in an artificial jawbone. Then, we showed that we can reach a high copper incorporation rate (up to a 27% Cu/(Cu+Ca) molar ratio) in this CaP coating by using an ionic exchange post-treatment with copper nitrate solution at different concentrations. The biological properties (antibiofilm activity and cytotoxicity) were tested in vitro using a model of mixed bacteria biofilm mimicking peri-implantitis and the EN 10993-5 standard (direct contact), respectively. An efficient copper-doping dose was determined, providing an antibiofilm property to the coating without cytotoxic side effects. By combining the electrodeposition and copper ionic exchange processes, we can develop an antibiofilm calcium phosphate coating on dental implants with a tunable thickness and phases content.
Collapse
Affiliation(s)
- Camille Pierre
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP-ENSIACET, 31030 Toulouse, France
| | - Ghislaine Bertrand
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP-ENSIACET, 31030 Toulouse, France
| | - Iltaf Pavy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Université Paul Sabatier, Faculté des Sciences Pharmaceutiques, 31062 Toulouse, France
| | - Olivier Benhamou
- Arts Loi Dental Clinic, Rue de la Loi 28, 1040 Bruxelles, Belgium
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP-ENSIACET, 31030 Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Université Paul Sabatier, Faculté des Sciences Pharmaceutiques, 31062 Toulouse, France
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP-ENSIACET, 31030 Toulouse, France
| |
Collapse
|
7
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
8
|
Wang X, Zhao W, Zhao C, Zhang W, Yan Z. Graphene coated Ti‐6Al‐4V exhibits antibacterial and antifungal properties against oral pathogens. J Prosthodont 2022. [DOI: 10.1111/jopr.13595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xu Wang
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Weiwei Zhao
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Chen Zhao
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Wenqing Zhang
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Zhimin Yan
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| |
Collapse
|
9
|
Cheng MS, Salamanca E, Lin JCY, Pan YH, Wu YF, Teng NC, Watanabe I, Sun YS, Chang WJ. Preparation of Calcium Phosphate Compounds on Zirconia Surfaces for Dental Implant Applications. Int J Mol Sci 2022; 23:6675. [PMID: 35743116 PMCID: PMC9223636 DOI: 10.3390/ijms23126675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Titanium is widely used in medical implants despite the release of heavy metal ions over long-term use. Zirconia is very close to the color of teeth; however, its biological inertness hinders bonding with bone tissue. Alkaline treatment and coatings of calcium phosphate can be used to enhance bone regeneration adjacent to dental implants. This study examined the effects of alkaline treatment, calcium phosphate coatings, and sintering, on the physical properties of implant material. Our analysis confirmed that the calcium phosphate species were octacalcium phosphate (OCP). The sintering of calcium phosphate was shown to create B-type HAP, which is highly conducive toward the differentiation of mesenchymal stem cells (MSCs) into osteoblasts for the facilitation of bone integration. Conclusions: This study demonstrated the room-temperature fabrication of dental implants with superhydrophilic surfaces to enhance biocompatibility.
Collapse
Affiliation(s)
- Mei-Shuan Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (E.S.); (J.C.-Y.L.); (Y.-H.P.); (Y.-F.W.); (N.-C.T.)
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (E.S.); (J.C.-Y.L.); (Y.-H.P.); (Y.-F.W.); (N.-C.T.)
| | - Jerry Chin-Yi Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (E.S.); (J.C.-Y.L.); (Y.-H.P.); (Y.-F.W.); (N.-C.T.)
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yu-Hwa Pan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (E.S.); (J.C.-Y.L.); (Y.-H.P.); (Y.-F.W.); (N.-C.T.)
- Department of General Dentistry, Chang Gung Memorial Hospital, Taipei 110, Taiwan
- Graduate Institute of Dental & Craniofacial Science, Chang Gung University, Taoyuan 333, Taiwan
- School of Dentistry, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (E.S.); (J.C.-Y.L.); (Y.-H.P.); (Y.-F.W.); (N.-C.T.)
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (E.S.); (J.C.-Y.L.); (Y.-H.P.); (Y.-F.W.); (N.-C.T.)
- Dental Department, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Ikki Watanabe
- Department of Gerodontology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (E.S.); (J.C.-Y.L.); (Y.-H.P.); (Y.-F.W.); (N.-C.T.)
- Dental Department, Taipei Medical University, Shuang-Ho Hospital, Taipei 110, Taiwan
| |
Collapse
|
10
|
Suntharavel
Muthaiah VM, Rajput M, Tripathi A, Suwas S, Chatterjee K. Electrophoretic Deposition of Nanocrystalline Calcium Phosphate Coating for Augmenting Bioactivity of Additively Manufactured Ti-6Al-4V. ACS MATERIALS AU 2021; 2:132-142. [PMID: 36855763 PMCID: PMC9888615 DOI: 10.1021/acsmaterialsau.1c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Additive manufacturing (AM) is being widely explored for engineering biomedical implants. The microstructure and surface finish of additively manufactured parts are typically different from wrought parts and exhibit limited bioactivity despite the other advantages of using AM for fabrication. The aim of this study was to enhance the bioactivity of selective laser melted Ti-6Al-4V alloy by electrophoretic deposition of nanohydroxyapatite (nanoHAp) coatings. The deposition parameters were systematically investigated after the coatings were deposited on the as-manufactured surface or after polishing the surface of the additively-manufactured sample. The surfaces were coated with nanoHAp suspended in either ethanol or butanol using different voltages (10, 30, or 50 V) for varied deposition times. The formation of the nanoHAp coating was confirmed by Fourier-transform infrared spectroscopy and X-ray diffraction. Microstructural analysis revealed that several conditions of the coating led to crack formation. The coated samples were subsequently heat-treated to improve the integrity of the coating. Heat treatment led to crack formation in several conditions due to thermal shrinkages. Coatings prepared using butanol were more uniform and had minimal cracks compared with the use of ethanol. Nanoindentation confirmed good stability and integrity of the nanoHAP coatings on the as-manufactured and polished surfaces. The coating on the as-manufactured sample exhibited higher hardness and lower elastic modulus as compared with the coating on the polished sample. In vitro study revealed that the nanoHAp coating markedly enhanced the attachment, proliferation, and differentiation of preosteoblasts on the alloy. These results provide a viable route to enhancing the bioactivity through deposition of nanoHAp with important implications for engineering additively manufactured orthopedic and dental implants suitable for better clinical performance.
Collapse
Affiliation(s)
- V. M. Suntharavel
Muthaiah
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Monika Rajput
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Ananya Tripathi
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Satyam Suwas
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India,; Tel.: +91-80-22933408
| |
Collapse
|
11
|
Song YW, Paeng KW, Kim MJ, Cha JK, Jung UW, Jung RE, Thoma DS. Secondary stability achieved in dental implants with a calcium-coated sandblasted, large-grit, acid-etched (SLA) surface and a chemically modified SLA surface placed without mechanical engagement: A preclinical study. Clin Oral Implants Res 2021; 32:1474-1483. [PMID: 34547819 DOI: 10.1111/clr.13848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/15/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To assess the osseointegration of calcium-coated (CS) and chemically modified, sandblasted, large-grit, acid-etched (MS) dental implants with a lack of primary mechanical stability. MATERIALS AND METHODS Eighteen implants in CS and MS groups each were loosely placed in the mandible of six mongrel dogs and allowed to heal for 2, 4 and 8 weeks. Implant stability quotient (ISQ) and implant stability test (IST) values recorded periodically and bone-to-implant contact (BIC) and the number of Haversian canals per 1 mm2 measured histologically were statistically analysed (p < .05). RESULTS All CS and MS implants placed survived. Compared with immediately after installation, ISQ and IST values in both groups increased significantly to over 76 at 2 weeks (p < .0083) and remained stable thereafter. BIC was significantly greater at 8 weeks (61.3 ± 13.6% in CS group; 57.6 ± 5.9% in MS group) compared to 2 and 4 weeks in both groups (p < .017). There were no significant intergroup differences in ISQ, IST or BIC at different time points. Significantly more Haversian canals were observed in group CS (6.2 ± 1.0/mm2 ) compared with group MS at 4 weeks (3.7 ± 1.8 /mm2 ; p < .05), while intergroup difference was not significant at 8 weeks. CONCLUSION Both CS and MS implants inserted without primary stability obtained osseointegration within 2 weeks, and lamellar bone adjacent to the implants was first observed at 8 weeks. The formation of primary osteons was more active at 4 weeks in group CS than in group MS.
Collapse
Affiliation(s)
- Young Woo Song
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Kyoung-Won Paeng
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Myong Ji Kim
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ronald E Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel S Thoma
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Wang X, Mei L, Jiang X, Jin M, Xu Y, Li J, Li X, Meng Z, Zhu J, Wu F. Hydroxyapatite-Coated Titanium by Micro-Arc Oxidation and Steam-Hydrothermal Treatment Promotes Osseointegration. Front Bioeng Biotechnol 2021; 9:625877. [PMID: 34490219 PMCID: PMC8417371 DOI: 10.3389/fbioe.2021.625877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
Titanium (Ti)-based alloys are widely used in tissue regeneration with advantages of improved biocompatibility, high mechanical strength, corrosion resistance, and cell attachment. To obtain bioactive bone–implant interfaces with enhanced osteogenic capacity, various methods have been developed to modify the surface physicochemical properties of bio-inert Ti and Ti alloys. Nano-structured hydroxyapatite (HA) formed by micro-arc oxidation (MAO) is a synthetic material, which could facilitate osteoconductivity, osteoinductivity, and angiogenesis on the Ti surface. In this paper, we applied MAO and steam–hydrothermal treatment (SHT) to produce HA-coated Ti, hereafter called Ti–M–H. The surface morphology of Ti–M–H1 was observed by scanning electron microscopy (SEM), and the element composition and the roughness of Ti–M–H1 were analyzed by energy-dispersive X-ray analysis, an X-ray diffractometer (XRD), and Bruker stylus profiler, demonstrating the deposition of nano-HA particles on Ti surfaces that were composed of Ca, P, Ti, and O. Then, the role of Ti–M–H in osteogenesis and angiogenesis in vitro was evaluated. The data illustrated that Ti–M–H1 showed a good compatibility with osteoblasts (OBs), which promoted adhesion, spreading, and proliferation. Additionally, the secretion of ALP, Col-1, and extracellular matrix mineralization was increased by OBs treated with Ti–M–H1. Ti–M–H1 could stimulate endothelial cells to secrete vascular endothelial growth factor and promote the formation of capillary-like networks. Next, it was revealed that Ti–M–H1 also suppressed inflammation by activating macrophages, while releasing multiple active factors to mediate osteogenesis and angiogenesis. Finally, in vivo results uncovered that Ti–M–H1 facilitated a higher bone-to-implant interface and was more attractive for the dendrites, which promoted osseointegration. In summary, MAO and SHT-treated Ti–M–H1 not only promotes in vitro osteogenesis and angiogenesis but also induces M2 macrophages to regulate the immune environment, which enhances the crosstalk between osteogenesis and angiogenesis and ultimately accelerates the process of osseointegration in vivo.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China.,Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Lina Mei
- Internal Medicine, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Yan Xu
- Department of Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Zhipeng Meng
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Junkun Zhu
- Orthopedics Rehabilitation Department, Lishui Municipal Central Hospital, Lishui, China
| | - Fengfeng Wu
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| |
Collapse
|
13
|
Biomaterials and osteoradionecrosis of the jaw: Review of the literature according to the SWiM methodology. Eur Ann Otorhinolaryngol Head Neck Dis 2021; 139:208-215. [PMID: 34210630 DOI: 10.1016/j.anorl.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To systematically present and interpret the current literature on research and treatment perspectives for mandibular osteoradionecrosis (mORN) in the field of biomaterials. MATERIAL AND METHODS A systematic review of the literature using the "Synthesis without meta-analysis" (SWiM) methodology was performed on PubMed, Embase and Cochrane, focusing on the implantation of synthetic biomaterials for bone reconstruction in mORN in humans and/or animal models. The primary endpoints were the composition, efficacy on mORN and tolerance of the implanted synthetic biomaterials. RESULTS Forty-seven references were obtained and evaluated in full-text by two assessors. Ten (8 in humans and 2 in animal models) met the eligibility criteria and were included for analysis. Materials most often comprised support plates or metal mesh (5 of 10 cases) in combination with grafts or synthetic materials (phosphocalcic ceramics, glutaraldehyde). Other ceramic/polymer composites were also implanted. In half of the selected reports, active compounds (molecules, growth factors, lysates) and/or cells were associated with the reconstruction material. The number of articles referring to implantation of biomaterials for the treatment of mORN was small, and the properties of the implanted biomaterials were generally poorly described, thus limiting a thorough understanding of their role. CONCLUSION In preventing the morbidity associated with some reconstructive surgeries, basic research has benefitted from recent advances in tissue engineering and biomaterials to repair limited bone loss.
Collapse
|
14
|
Matsumoto T, Tashiro Y, Komasa S, Miyake A, Komasa Y, Okazaki J. Effects of Surface Modification on Adsorption Behavior of Cell and Protein on Titanium Surface by Using Quartz Crystal Microbalance System. MATERIALS 2020; 14:ma14010097. [PMID: 33379367 PMCID: PMC7795237 DOI: 10.3390/ma14010097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Primary stability and osseointegration are major challenges in dental implant treatments, where the material surface properties and wettability are critical in the early formation of hard tissue around the implant. In this study, a quartz crystal microbalance (QCM) was used to measure the nanogram level amount of protein and bone marrow cells adhered to the surfaces of titanium (Ti) surface in real time. The effects of ultraviolet (UV) and atmospheric-pressure plasma treatment to impart surface hydrophilicity to the implant surface were evaluated. The surface treatment methods resulted in a marked decrease in the surface carbon (C) content and increase in the oxygen (O) content, along with super hydrophilicity. The results of QCM measurements showed that adhesion of both adhesive proteins and bone marrow cells was enhanced after surface treatment. Although both methods produced implants with good osseointegration behavior and less reactive oxidative species, the samples treated with atmospheric pressure plasma showed the best overall performance and are recommended for clinical use. It was verified that QCM is an effective method for analyzing the initial adhesion process on dental implants.
Collapse
Affiliation(s)
- Takumi Matsumoto
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (T.M.); (Y.T.); (J.O.)
| | - Yuichiro Tashiro
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (T.M.); (Y.T.); (J.O.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (T.M.); (Y.T.); (J.O.)
- Correspondence: ; Tel.: +81-72-864-3084; Fax: +81-72-864-3184
| | - Akiko Miyake
- Department of Japan Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi, Osaka 573-1121, Japan; (A.M.); (Y.K.)
| | - Yutaka Komasa
- Department of Japan Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi, Osaka 573-1121, Japan; (A.M.); (Y.K.)
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (T.M.); (Y.T.); (J.O.)
| |
Collapse
|
15
|
Zhang H, Liu K, Lu M, Liu L, Yan Y, Chu Z, Ge Y, Wang T, Qiu J, Bu S, Tang C. Micro/nanostructured calcium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111402. [PMID: 33255005 DOI: 10.1016/j.msec.2020.111402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
A bioactive micro/nanostructured calcium phytate coating was successfully prepared on titanium surfaces by chemical conversion deposition, mainly through hydrothermal treatment of a mixed solution of phytic acid and saturated calcium hydroxide solution. Ultraviolet radiation was carried out to improve the adhesion of the coating to the titanium substrate. Pure titanium with a sandblasted/acid-etched surface was used as the control group. The topography and chemical composition of the modified surfaces were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and static water contact angle measurement. A pull-off test was performed to measure the coating-to-substrate adhesion strength. Bovine serum albumin was used as a model to study the protein adsorption effect. Cells were cultured on titanium surfaces for 7 days in osteogenic differentiation medium, then the osteoblast compatibility in vitro were explored by alkaline phosphatase and alizarin red staining. After 1, 2, 4 and 8 wks of immediate implantation of titanium implants into the mandibles of New Zealand white rabbits, biological effects in vivo were researched by microcomputed tomography analysis and histological evaluation. The results indicated that the roughness and hydrophilicity of the modified surfaces with micro/nanostructure remarkably increased compared to those of the control group. The pull-off test showed the average adhesion strength at the coating-substrate interface to be higher than 13.56 ± 1.71 MPa. In addition, approximately 4.41 mg/L calcium ion was released from the calcium phytate micro/nano coatings to the local environment after 48 h of immersion. More importantly, the micro/nanostructure titanium substrates significantly promoted cellular differentiation in vitro and in vivo. After 8 wks, the bone implant contact ratio (BIC, %) of the modified implants was higher than that of the control group, at 94.09 ± 0.55% and 86.18 ± 1.99% (p < 0.05). Overall, this study provided new insights into the factors promoting early osseointegration of titanium alloys, which had great potential not only for dental implants but also for various other biomaterial applications.
Collapse
Affiliation(s)
- Hao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Implantology, Hefei Stomatological Hospital, Hefei Clinical School of Stomatology, Anhui Medical University, Hefei 230001, China
| | - Mengmeng Lu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanzhe Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Zhuangzhuang Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Yuran Ge
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shoushan Bu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunbo Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
16
|
Oleshko O, Husak Y, Korniienko V, Pshenychnyi R, Varava Y, Kalinkevich O, Pisarek M, Grundsteins K, Pogorielova O, Mishchenko O, Simka W, Viter R, Pogorielov M. Biocompatibility and Antibacterial Properties of ZnO-Incorporated Anodic Oxide Coatings on TiZrNb Alloy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2401. [PMID: 33266240 PMCID: PMC7760791 DOI: 10.3390/nano10122401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
In a present paper, we demonstrate novel approach to form ceramic coatings with incorporated ZnO nanoparticles (NPs) on low modulus TiZrNb alloy with enhanced biocompatibility and antibacterial parameters. Plasma Electrolytic Oxidation (PEO) was used to integrate ZnO nanoparticles (average size 12-27 nm), mixed with Ca(H2PO2)2 aqueous solution into low modulus TiZrNb alloy surface. The TiZrNb alloys with integrated ZnO NPs successfully showed higher surface porosity and contact angle. XPS investigations showed presence of Ca ions and absence of phosphate ions in the PEO modified layer, what explains higher values of contact angle. Cell culture experiment (U2OS type) confirmed that the surface of as formed oxide-ZnO NPs demonstrated hydrophobic properties, what can affect primary cell attachment. Further investigations showed that Ca ions in the PEO coating stimulated proliferative activity of attached cells, resulting in competitive adhesion between cells and bacteria in clinical situation. Thus, high contact angle and integrated ZnO NPs prevent bacterial adhesion and considerably enhance the antibacterial property of TiZrNb alloys. A new anodic oxide coating with ZnO NPs could be successfully used for modification of low modulus alloys to decrease post-implantation complications.
Collapse
Affiliation(s)
- Oleksandr Oleshko
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
| | - Yevheniia Husak
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
| | - Viktoriia Korniienko
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
| | - Roman Pshenychnyi
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
| | - Yuliia Varava
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
| | | | - Marcin Pisarek
- Institute of Physical Chemistry PAS, 01-224 Warsaw, Poland;
| | - Karlis Grundsteins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1586 Riga, Latvia;
| | - Oksana Pogorielova
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
| | | | - Wojciech Simka
- NanoPrime, 39-200 Dębica, Poland;
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Viter
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1586 Riga, Latvia;
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (Y.H.); (V.K.); (R.P.); (Y.V.); (O.P.)
- NanoPrime, 39-200 Dębica, Poland;
| |
Collapse
|
17
|
Mashtalyar DV, Nadaraia KV, Gnedenkov AS, Imshinetskiy IM, Piatkova MA, Pleshkova AI, Belov EA, Filonina VS, Suchkov SN, Sinebryukhov SL, Gnedenkov SV. Bioactive Coatings Formed on Titanium by Plasma Electrolytic Oxidation: Composition and Properties. MATERIALS 2020; 13:ma13184121. [PMID: 32948063 PMCID: PMC7560279 DOI: 10.3390/ma13184121] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023]
Abstract
Bioactive coatings on VT1-0 commercially pure titanium were formed by the plasma electrolytic oxidation (PEO). A study of the morphological features of coatings was carried out using scanning electron microscopy. A composition of formed coatings was investigated using energy-dispersive spectroscopy and X-ray diffractometry analysis. It was shown that PEO-coatings have calcium phosphate in their composition, which increases the bioactivity of the surface layer. Electrochemical properties of the samples were studied by potentiondynamic polarization and electrochemical impedance spectroscopy in different physiological media: simulated body fluid and minimum essential medium. The data of electrochemical studies indicate more than 15 times decrease in the corrosion current density for the sample with coating (5.0 × 10−9 A/cm2) as compared to the bare titanium (7.7 × 10−8 A/cm2). The formed PEO-layers have elastoplastic properties close to human bone (12–30 GPa) and a lower friction coefficient in comparison with bare metal. The wettability of PEO-layers increased. The contact angle for formed coatings reduced by more than 60° in comparison with bare metal (from 73° for titanium to 8° for PEO-coating). Such an increase in surface hydrophilicity contributes to the greater biocompatibility of the formed coating in comparison with commercially pure titanium. PEO can be prospective as a method for improving titanium surface bioactivity.
Collapse
Affiliation(s)
- Dmitry V. Mashtalyar
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia; (M.A.P.); (A.I.P.)
| | - Konstantine V. Nadaraia
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia; (M.A.P.); (A.I.P.)
- Correspondence: ; Tel.: +7-964-438-4841
| | - Andrey S. Gnedenkov
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
| | - Igor M. Imshinetskiy
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
| | - Mariia A. Piatkova
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia; (M.A.P.); (A.I.P.)
| | - Arina I. Pleshkova
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia; (M.A.P.); (A.I.P.)
| | - Evgeny A. Belov
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
| | - Valeriia S. Filonina
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia; (M.A.P.); (A.I.P.)
| | - Sergey N. Suchkov
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia; (M.A.P.); (A.I.P.)
| | - Sergey L. Sinebryukhov
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
| | - Sergey V. Gnedenkov
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.M.); (A.S.G.); (I.M.I.); (E.A.B.); (V.S.F.); (S.N.S.); (S.L.S.); (S.V.G.)
| |
Collapse
|
18
|
Shiel AI, Ayre WN, Blom AW, Hallam KR, Heard PJ, Payton O, Picco L, Mansell JP. Development of a facile fluorophosphonate-functionalised titanium surface for potential orthopaedic applications. J Orthop Translat 2020; 23:140-151. [PMID: 32818135 PMCID: PMC7427324 DOI: 10.1016/j.jot.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Background Aseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £137 m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices. Methods In realising the development of a superior titanium technology, we exploited the natural affinity of titanium for phosphonic acids and developed a facile means of coating the metal with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation. Results Herein, we provide evidence that simply immersing titanium in aqueous solutions of FHBP afforded a surface that was superior to unmodified metal at enhancing osteoblast maturation. Importantly, FHBP-functionalised titanium remained stable to 2 years of ambient storage, resisted ∼35 kGy of gamma irradiation and survived implantation into a bone substitute (Sawbone™) and irrigation. Conclusion The facile step we have taken to modify titanium and the robustness of the final surface finish are appealing properties that are likely to attract the attention of implant manufacturers in the future. The translational potential of this article We have generated a functionalised titanium (Ti) surface by simply immersing Ti in aqueous solutions of a bioactive lipid. As a facile procedure it will have greater appeal to implant manufacturers compared to onerous and costly developmental processes.
Collapse
Affiliation(s)
- Anna I Shiel
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Wayne N Ayre
- School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - Ashley W Blom
- Musculoskeletal Research Unit, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Keith R Hallam
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Peter J Heard
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Oliver Payton
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Loren Picco
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.,Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Jason P Mansell
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
19
|
Enhanced Human Gingival Fibroblast Response and Reduced Porphyromonas gingivalis Adhesion with Titania Nanotubes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5651780. [PMID: 32596329 PMCID: PMC7298314 DOI: 10.1155/2020/5651780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/24/2020] [Accepted: 05/23/2020] [Indexed: 01/06/2023]
Abstract
Successful dental implants rely on stable osseointegration and soft-tissue integration. Titania nanotubes (TNTs) with a diameter of 100 nm could increase the mesenchymal stem cell response and simultaneously decrease Staphylococcus aureus adhesion. However, the interactions between the modified surface and surrounding soft tissues are still unknown. In the present study, we fully investigated the biological behavior of human gingival fibroblasts (HGFs) and the adhesion of Porphyromonas gingivalis (P. gingivalis). TNTs were synthesized on titanium (Ti) surfaces by electrochemical anodization at 10, 30, and 60 V, and the products were denoted as NT10, NT30, and NT60, respectively. NT10 (diameter: 30 nm) and NT30 (diameter: 100 nm) could enhance the HGF functions, such as cell attachment and proliferation and extracellular matrix- (ECM-) related gene expressions, with the latter showing higher enhancement. NT60 (diameter: 200 nm) clearly impaired cell adhesion and proliferation and ECM-related gene expressions. Bacterial adhesion on the TNTs decreased and reached the lowest value on NT30. Therefore, NT30 without pharmaceuticals can be used to substantially enhance the HGF response and reduce P. gingivalis adhesion to the utmost, thus demonstrating significant potential in the transgingival part of dental implants.
Collapse
|
20
|
Wang Q, Zhou P, Liu S, Attarilar S, Ma RLW, Zhong Y, Wang L. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1244. [PMID: 32604854 PMCID: PMC7353126 DOI: 10.3390/nano10061244] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
The propose of this review was to summarize the advances in multi-scale surface technology of titanium implants to accelerate the osseointegration process. The several multi-scaled methods used for improving wettability, roughness, and bioactivity of implant surfaces are reviewed. In addition, macro-scale methods (e.g., 3D printing (3DP) and laser surface texturing (LST)), micro-scale (e.g., grit-blasting, acid-etching, and Sand-blasted, Large-grit, and Acid-etching (SLA)) and nano-scale methods (e.g., plasma-spraying and anodization) are also discussed, and these surfaces are known to have favorable properties in clinical applications. Functionalized coatings with organic and non-organic loadings suggest good prospects for the future of modern biotechnology. Nevertheless, because of high cost and low clinical validation, these partial coatings have not been commercially available so far. A large number of in vitro and in vivo investigations are necessary in order to obtain in-depth exploration about the efficiency of functional implant surfaces. The prospective titanium implants should possess the optimum chemistry, bionic characteristics, and standardized modern topographies to achieve rapid osseointegration.
Collapse
Affiliation(s)
- Qingge Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi’an Aeronautical Polytechnic Institute, Xi’an 710089, China;
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Robin Lok-Wang Ma
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Yinsheng Zhong
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- National Engineering Research Center for Nanotechnology (NERCN), 28 East JiangChuan Road, Shanghai 200241, China
| |
Collapse
|
21
|
Montañez ND, Carreño H, Escobar P, Estupiñán HA, Peña DY, Goel S, Endrino JL. Functional evaluation and testing of a newly developed Teleost's Fish Otolith derived biocomposite coating for healthcare. Sci Rep 2020; 10:258. [PMID: 31937812 PMCID: PMC6959325 DOI: 10.1038/s41598-019-57128-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Polymers such as polycaprolactone (PCL) possess biodegradability, biocompatibility and affinity with other organic media that makes them suitable for biomedical applications. In this work, a novel biocomposite coating was synthesised by mixing PCL with layers of calcium phosphate (hydroxyapatite, brushite and monetite) from a biomineral called otolith extracted from Teleost fish (Plagioscion Squamosissimus) and multiwalled carbon nanotubes in different concentrations (0.5, 1.0 and 1.5 g/L). The biocomposite coating was deposited on an osteosynthesis material Ti6Al4V by spin coating and various tests such as Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scratch tests, MTT reduction cytotoxicity, HOS cell bioactivity (human osteosarcoma) by alkaline phosphatase (ALP) and fluorescence microscopy were performed to comprehensively evaluate the newly developed biocoating. It was found that an increase in the concentration of carbon nanotube induced microstructural phase changes of calcium phosphate (CP) leading to the formation of brushite, monetite and hydroxyapatite. While we discovered that an increase in the concentration of carbon nanotube generally improves the adhesion of the coating with the substrate, a certain threshold exists such that the best deposition surfaces were obtained as PCL/CP/CNT 0.0 g/L and PCL/CP/CNT 0.5 g/L.
Collapse
Affiliation(s)
- Nerly D Montañez
- Corrosion Research Group GIC, Universidad Industrial de Santander, Piedecuesta, 681011, Colombia
| | - Heider Carreño
- Center for Research in Tropical Diseases CINTROP, Universidad Industrial de Santander, Piedecuesta, 681011, Colombia
| | - Patricia Escobar
- Center for Research in Tropical Diseases CINTROP, Universidad Industrial de Santander, Piedecuesta, 681011, Colombia
| | - Hugo A Estupiñán
- Biomaterials Laboratory, Universidad Nacional de Colombia, Medellín, 050034, Colombia
| | - Darío Y Peña
- Corrosion Research Group GIC, Universidad Industrial de Santander, Piedecuesta, 681011, Colombia
| | - Saurav Goel
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford, MK43 0AL, UK.,School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Jose L Endrino
- Basque Center for Materials, Applications & Nanostructures, UPV/EHU Science Park, Barrio Sarriena s/n, 48940, Leioa, Spain. .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
22
|
Haftlang F, Zarei-Hanzaki A, Abedi HR. The effect of nano-size second precipitates on the structure, apatite-inducing ability and in-vitro biocompatibility of Ti-29Nb-14Ta-4.5Zr alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110561. [PMID: 32228908 DOI: 10.1016/j.msec.2019.110561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022]
Abstract
The apatite formation and in-vitro biocompatibility of Ti-29Nb-14Ta-4.5Zr (TNTZ) alloy reinforced by various nano-sized phases of α″, α, and ω in the β matrix have been studied. The electrochemical performances of the elaborated microstructures have been assessed through potentiodynamic polarization in the simulated body fluid (SBF) and interestingly, the β + ω specimen exhibited an extraordinary corrosion resistance compared to the others. This was attributed to the uniform distribution, spherical morphology and coherent interface of the ω nano-precipitates. The polarization tests in simulated body fluid showed the high tendency of apatite formation on the surface of the β- matrix contained ω precipitates. The in-vitro cytotoxicity analysis employing MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed >85% cell viability of the TNTZ alloy reinforced by nano-ω precipitations. Since this specimen showed the highest cell adhesion as well, it introduces this structure as a promising high potential candidate for biomedical applications due to its high corrosion resistance, biocompatibility, ultra-low cytotoxicity, and good cell adhesion.
Collapse
Affiliation(s)
- Farahnaz Haftlang
- Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Abbas Zarei-Hanzaki
- Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Hamid Reza Abedi
- Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Zhang M, Pu X, Chen X, Yin G. In-vivo performance of plasma-sprayed CaO-MgO-SiO 2-based bioactive glass-ceramic coating on Ti-6Al-4V alloy for bone regeneration. Heliyon 2019; 5:e02824. [PMID: 31763479 PMCID: PMC6861571 DOI: 10.1016/j.heliyon.2019.e02824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The CaO-MgO-SiO2-based bioactive glass-ceramic coating (named M2) on Ti-6Al-4V alloy has been proven to behave well in vitro. But how to make full sense of its performances in terms of osteogenesis and osseointegration in vivo matters very much. For this, the M2-coated Ti-6Al-4V cylinders were prepared by atmospheric plasma spraying (APS) and implanted into New Zealand rabbit for 1, 2 and 3 months, respectively, by setting commercial HA-coated Ti-6Al-4V as the control. It is encouraging that, the two groups bonded with the surrounding tissues stably and newly formed bone grew towards or around the implants after 3-month implantation according to radiographic images. From the histological sections, it is obvious that, compared to the control, the M2-coated implant was more favorable for the osteogenesis and neo-vascularisation in the whole experimental process and demonstrated a better osseointegration with the host bone, indicating the former possessed better osteoconductivity, osteoinductivity and osteogenic ability. The study indicated that the M2-coated Ti-6Al-4V implant exerted a great potential to substitute the commercial HA-coated Ti-6Al-4V implant in repairing load-bearing bone defects.
Collapse
Affiliation(s)
- Mengjiao Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|