1
|
Su Y, Ding C, Zhou Y, Xu YN, Liu PF, Sun X, Fan S, Wu H, Zeng T, Peng H, Li B. Colloidal ZnAl-Layered Double Hydroxide Nanomaterials for Effective Prevention of SARS-CoV-2. ACS APPLIED BIO MATERIALS 2025; 8:329-340. [PMID: 39739620 DOI: 10.1021/acsabm.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure. The incorporation of trace amounts of Ag induces the formation of ZnO particles on the ZnAl-LDH surface, where both ZnO and Ag enhance UV light absorption. Interestingly, ZnAl-LDH-Ag shows a significantly high anticoronavirus effect upon exposure to the daylight lamp of the operation console and ultraviolet light. Moreover, ZnAl-LDH and ZnAl-LDH-Ag potently blocked the entry of SARS-CoV-2 pseudoparticles to cells. The in vivo biocompatibility experiment has demonstrated that ZnAl-LDH-Ag is a potentially biocompatible and potent anti-SARS-CoV-2 agent for virus prevention. The synergistic interactions between these nanoparticles continuously generate reactive oxygen species (ROS), leading to effective and sustained viral inactivation. This light-sensitive ROS production introduces a photocatalytic inactivation mechanism in antiviral materials. Moreover, unlike conventional antiviral agents that rapidly deplete their active components, the layered structure of this composite enables the controlled long-term release of antiviral radicals, enhancing its durability. ZnAl-LDH-Ag has been expected to be a promising solution for long-lasting antiviral applications.
Collapse
Affiliation(s)
- Yonghua Su
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cuiling Ding
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yaqiong Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Ning Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoying Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Siwei Fan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyu Wu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tiancheng Zeng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Skin Disease Hospital Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| |
Collapse
|
2
|
Soni SK, Marya T, Sharma A, Thakur B, Soni R. A systematic overview of metal nanoparticles as alternative disinfectants for emerging SARS-CoV-2 variants. Arch Microbiol 2024; 206:111. [PMID: 38372809 DOI: 10.1007/s00203-023-03818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
Coronaviruses are a diverse family of viruses, and new strains can emerge. While the majority of coronavirus strains cause mild respiratory illnesses, a few are responsible for severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). SARS-CoV-2, the virus responsible for COVID-19, is an example of a coronavirus that has led to a pandemic. Coronaviruses can mutate over time, potentially leading to the emergence of new variants. Some of these variants may have increased transmissibility or resistance to existing vaccines and treatments. The emergence of the COVID-19 pandemic in the recent past has sparked innovation in curbing virus spread, with sanitizers and disinfectants taking center stage. These essential tools hinder pathogen dissemination, especially for unvaccinated or rapidly mutating viruses. The World Health Organization supports the use of alcohol-based sanitizers and disinfectants globally against pandemics. However, there are ongoing concerns about their widespread usage and their potential impact on human health, animal well-being, and ecological equilibrium. In this ever-changing scenario, metal nanoparticles hold promise in combating a range of pathogens, including SARS-CoV-2, as well as other viruses such as norovirus, influenza, and HIV-1. This review explores their potential as non-alcoholic champions against SARS-CoV-2 and other pandemics of tomorrow. This extends beyond metal nanoparticles and advocates a balanced examination of pandemic control tools, exploring their strengths and weaknesses. The manuscript thus involves the evaluation of metal nanoparticle-based alternative approaches as hand sanitizers and disinfectants, providing a comprehensive perspective on this critical issue.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| | - Tripta Marya
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Apurav Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Bishakha Thakur
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Raman Soni
- Department of Biotechnology, DAV College, Chandigarh, 160011, India
| |
Collapse
|
3
|
Hou W, Huang LJ, Huang H, Liu SL, Dai W, Li ZM, Zhang ZY, Xin SY, Wang JY, Zhang ZY, Ouyang X, Lan JX. Bioactivities and Mechanisms of Action of Diphyllin and Its Derivatives: A Comprehensive Systematic Review. Molecules 2023; 28:7874. [PMID: 38067601 PMCID: PMC10707837 DOI: 10.3390/molecules28237874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Natural products are treasure houses for modern drug discovery. Diphyllin is a natural arylnaphthalene lignan lactone isolated from the leaf of Astilboides tabularis. Studies have found that it possesses plenty of bioactivity characteristics. In this paper, we reviewed the structure, bioactivity, and mechanism of action of diphyllin and its derivatives. The references were obtained from PubMed, Web of Science, and Science Direct databases up to August 2023. Papers without a bio-evaluation were excluded. Diphyllin and its derivatives have demonstrated V-ATPase inhibition, anti-tumor, anti-virus, anti-biofilm, anti-inflammatory, and anti-oxidant activities. The most studied activities of diphyllin and its derivatives are V-ATPase inhibition, anti-tumor activities, and anti-virus activities. Furthermore, V-ATPase inhibition activity is the mechanism of many bioactivities, including anti-tumor, anti-virus, and anti-inflammatory activities. We also found that the galactosylated modification of diphyllin is a common phenomenon in plants, and therefore, galactosylated modification is applied by researchers in the laboratory to obtain more excellent diphyllin derivatives. This review will provide useful information for the development of diphyllin-based anti-tumor and anti-virus compounds.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Sheng-Lan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Zeng-Min Li
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
4
|
Lishchynskyi O, Shymborska Y, Stetsyshyn Y, Raczkowska J, Skirtach AG, Peretiatko T, Budkowski A. Passive antifouling and active self-disinfecting antiviral surfaces. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 446:137048. [PMID: 35601363 PMCID: PMC9113772 DOI: 10.1016/j.cej.2022.137048] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 05/15/2023]
Abstract
Viruses pose a serious threat to human health and society in general, as virus infections are one of the main causes of morbidity and mortality. Till May 2022, over 513 million people around the world have been confirmed to be infected and more than 6.2 million have died due to SARS-CoV-2. Although the COVID-19 pandemic will be defeated in the near future, we are likely to face new viral threats in the coming years. One of the important instruments to protect from viruses are antiviral surfaces, which are essentially capable of limiting their spread. The formulation of the concept of antiviral surfaces is relatively new. In general, five types of mechanism directed against virus spread can be proposed for antiviral surfaces; involving: direct and indirect actions, receptor inactivation, photothermal effect, and antifouling behavior. All antiviral surfaces can be classified into two main types - passive and active. Passive antiviral surfaces are based on superhydrophobic coatings that are able to repel virus contaminated droplets. In turn, viruses can become biologically inert (e.g., blocked or destroyed) upon contact with active antiviral surfaces, as they contain antiviral agents: metal atoms, synthetic or natural polymers, and small molecules. The functionality of antiviral surfaces can be significantly improved with additional properties, such as temperature- or pH-responsivity, multifunctionality, non-specific action on different virus types, long-term application, high antiviral efficiency and self-cleaning.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Taras Peretiatko
- Ivan Franko National University of Lviv, Universytetska 1, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| |
Collapse
|
5
|
Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2022; 128:248-330. [PMID: 36096911 DOI: 10.1016/j.prosdent.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2021 dental literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to coverage of this broad topical area. Specific subject areas addressed, in order of the appearance in this report, include COVID-19 and the dental profession (new); prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders; sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence daily dental treatment decisions with an emphasis on future trends in dentistry. With the tremendous volume of dentistry and related literature being published daily, this review cannot possibly be comprehensive. Rather, its purpose is to update interested readers and provide important resource material for those interested in pursuing greater details on their own. It remains our intent to assist colleagues in negotiating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the patients and dental problems they encounter.
Collapse
|
6
|
Pandemic Preparedness and Response: A Foldable Tent to Safely Remove Contaminated Dental Aerosols—Clinical Study and Patient Experience. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The D-DART (Droplet and Aerosol Reducing Tent) is a foldable design that can be attached to the dental chair to prevent the spread of contaminated dental aerosols. The objective of this study was to evaluate the ability of the D-DART to reduce spread of aerosols generated during dental treatment. Thirty-two patients (sixteen per group) undergoing deep ultrasonic scaling were recruited and randomly allocated to groups D-DART or Control (no D-DART). After 20 min from the start of the treatment, the clinician’s face shield and dental chair light were swabbed and the viable microbial load was quantified (ATP bioluminescence analysis, blinded operator). Statistical analyses were performed with Tukey’s Honest Test with a level of significance pre-set at 5%. There were significant increases in ATP values obtained from the operator’s face shield and dental chair light for the Control compared with baseline (31.3 ± 8.5 and fold increase). There was no significant change in microbial load when the D-DART was used compared with baseline (1.5 ± 0.4 fold increase). The D-DART contained and prevented the spread of aerosols generated during deep scaling procedures.
Collapse
|
7
|
Reiss RA, Makhnin O, Lowe TC. Rapid Method to Quantify the Antiviral Potential of Porous and Nonporous Material Using the Enveloped Bacteriophage Phi6. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8350-8362. [PMID: 35543429 DOI: 10.1021/acs.est.1c07716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pandemic revealed significant gaps in our understanding of the antiviral potential of porous textiles used for personal protective equipment and nonporous touch surfaces. What is the fate of a microbe when it encounters an abiotic surface? How can we change the microenvironment of materials to improve antimicrobial properties? Filling these gaps requires increasing data generation throughput. A method to accomplish this leverages the use of the enveloped bacteriophage ϕ6, an adjustable spacing multichannel pipette, and the statistical design opportunities inherent in the ordered array of the 24-well culture plate format, resulting in a semi-automated small drop assay. For 100 mm2 nonporous coupons of Cu and Zn, the reduction in ϕ6 infectivity fits first-order kinetics, resulting in half-lives (T50) of 4.2 ± 0.1 and 29.4 ± 1.6 min, respectively. In contrast, exposure to stainless steel has no significant effect on infectivity. For porous textiles, differences associated with composition, color, and surface treatment of samples are detected within 5 min of exposure. Half-lives for differently dyed Zn-containing fabrics from commercially available masks ranged from 2.1 ± 0.05 to 9.4 ± 0.2 min. A path toward full automation and the application of machine learning techniques to guide combinatorial material engineering is presented.
Collapse
Affiliation(s)
- Rebecca A Reiss
- Biology Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801-4750, United States
| | - Oleg Makhnin
- Mathematics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801-4750, United States
| | - Terry C Lowe
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, 920 15th, Street, Golden, Colorado 80401-1887, United States
| |
Collapse
|
8
|
Bello-Morales R, Andreu S, Ruiz-Carpio V, Ripa I, López-Guerrero JA. Extracellular Polymeric Substances: Still Promising Antivirals. Viruses 2022; 14:1337. [PMID: 35746808 PMCID: PMC9227104 DOI: 10.3390/v14061337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Sulfated polysaccharides and other polyanions have been promising candidates in antiviral research for decades. These substances gained attention as antivirals when they demonstrated a high inhibitory effect in vitro against human immunodeficiency virus (HIV) and other enveloped viruses. However, that initial interest was followed by wide skepticism when in vivo assays refuted the initial results. In this paper we review the use of sulfated polysaccharides, and other polyanions, in antiviral therapy, focusing on extracellular polymeric substances (EPSs). We maintain that, in spite of those early difficulties, the use of polyanions and, specifically, the use of EPSs, in antiviral therapy should be reconsidered. We base our claim in several points. First, early studies showed that the main disadvantage of sulfated polysaccharides and polyanions is their low bioavailability, but this difficulty can be overcome by the use of adequate administration strategies, such as nebulization of aerosols to gain access to respiratory airways. Second, several sulfated polysaccharides and EPSs have demonstrated to be non-toxic in animals. Finally, these macromolecules are non-specific and therefore they might be used against different variants or even different viruses.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Vicente Ruiz-Carpio
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
| | - Inés Ripa
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
10
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
11
|
Kunrath MF, Muradás TC, Penha N, Campos MM. Innovative surfaces and alloys for dental implants: What about biointerface-safety concerns? Dent Mater 2021; 37:1447-1462. [PMID: 34426019 DOI: 10.1016/j.dental.2021.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The present review article aimed to discuss the recent technologies employed for the development of dental implants, mainly regarding innovative surface treatments and alternative alloys, emphasizing the bio-tribocorrosion processes. METHODS An electronic search applying specific MeSH terms was carried out in PubMed and Google Scholar databases to collect data until August 2021, considering basic, pre-clinical, clinical and review studies. The relevant articles (n=111), focused on innovative surface treatments for dental implants and their potential undesirable biological effects, were selected and explored. RESULTS Novel texturization methodologies for dental implants clearly provided superficial and structural atomic alterations in micro- and nanoscale, promoting different mechanical-chemical interactions when applied in the clinical set. Some particulate metals released from implant surfaces, their degradation products and/or contaminants exhibited local and systemic reactions after implant installation and osseointegration, contributing to unexpected treatment drawbacks and adverse effects. Therefore, there is an urgent need for development of pre-clinical and clinical platforms for screening dental implant devices, to predict the biointerface reactions as early as possible during the development phases. SIGNIFICANCE Modern surface treatments and innovative alloys developed for dental implants are not completely understood regarding their integrity during long-term clinical function, especially when considering the bio-tribocorrosion process. From this review, it is possible to assume that degradation and contamination of dental surfaces might be associated within peri-implant inflammation and cumulative long-lasting systemic toxicity. The in-depth comprehension of the biointerface modifications on these novel surface treatments might preclude unnecessary expenses and postoperative complications involving osseointegration failures.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thaís C Muradás
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Maria M Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Rodriguez-Morales AJ, Cardona-Ospina JA, Collins MH. Editorial: Emerging and Re-emerging Vector-borne and Zoonotic Diseases. Front Med (Lausanne) 2021; 8:714630. [PMID: 34422869 PMCID: PMC8374163 DOI: 10.3389/fmed.2021.714630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia.,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.,Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|