1
|
Wollet M, Hernandez A, Nip K, Ginsburg B, Pugh JR, Kim JH. Impacts of perinatal nicotine exposure on nicotinic acetylcholine receptor expression and glutamatergic synaptic transmission in the mouse auditory brainstem. J Physiol 2025; 603:2857-2876. [PMID: 40320912 PMCID: PMC12072241 DOI: 10.1113/jp286971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
In utero nicotine exposure from maternal smoking is linked to increased risk of auditory processing deficits. This study investigated the impact of developmental nicotine exposure during the critical period on nicotinic acetylcholine receptor (nAChR) functional expression, glutamatergic synaptic transmission and auditory processing in the mouse auditory brainstem. We assessed nAChR function at a central synapse and the consequences of perinatal nicotine exposure (PNE) on synaptic currents and auditory brainstem responses (ABRs) in mice. Our results indicate developmentally regulated changes in nAChR expression in medial nucleus of the trapezoid body (MNTB) neurons and presynaptic calyx of Held terminals. PNE led to increased ACh-evoked postsynaptic currents and impaired glutamatergic neurotransmission, underscoring the importance of nAChR activity in early auditory synaptic development. PNE also increased ABR thresholds and reduced ABR peak amplitudes, indicating impaired central auditory processing without cochlear dysfunction. Our study provides new insights into the synaptic disruptions underlying auditory deficits from prenatal nicotine exposure. KEY POINTS: In utero nicotine exposure leads to increased risk of sensory processing deficits and elevated expression of nicotinic acetylcholine receptors (nAChRs). nAChRs are essential for auditory processing and are present in the auditory brainstem. Within the medial nucleus of the trapezoid body in the auditory brainstem, the patterning of nicotinic receptor expression during development and how nicotine exposure might affect this are unknown. Nicotinic receptors are expressed postsynaptically before hearing onset and switch to presynaptic expression after hearing onset. Perinatal nicotine exposure disrupts physiological nicotinic receptor patterning and impairs synaptic transmission at the calyx of Held.
Collapse
Affiliation(s)
- Mackenna Wollet
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Abram Hernandez
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Kaila Nip
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Brett Ginsburg
- Department of Psychiatry and Behavioral ScienceUT Health San AntonioSan AntonioTexasUSA
| | - Jason R. Pugh
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Jun Hee Kim
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
- Department of Otolaryngology and Cell and Developmental Biology, Kresge Hearing Research InstituteUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
3
|
Wollet M, Hernandez A, Nip K, Pugh J, Kim JH. Impacts of Perinatal Nicotine Exposure on nAChR Expression and Glutamatergic Synaptic Transmission in the Mouse Auditory Brainstem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592930. [PMID: 38765998 PMCID: PMC11100749 DOI: 10.1101/2024.05.08.592930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Exposure to nicotine in utero, often due to maternal smoking, significantly elevates the risk of auditory processing deficits in offspring. This study investigated the effects of chronic nicotine exposure during a critical developmental period on the functional expression of nicotinic acetylcholine receptors (nAChRs), glutamatergic synaptic transmission, and auditory processing in the mouse auditory brainstem. We evaluated the functionality of nAChRs at a central synapse and explored the impact of perinatal nicotine exposure (PNE) on synaptic currents and auditory brainstem responses (ABR) in mice. Our findings revealed developmentally regulated changes in nAChR expression in the medial nucleus of the trapezoid body (MNTB) neurons and presynaptic Calyx of Held terminals. PNE was associated with enhanced acetylcholine-evoked postsynaptic currents and compromised glutamatergic neurotransmission, highlighting the critical role of nAChR activity in the early stages of auditory synaptic development. Additionally, PNE resulted in elevated ABR thresholds and diminished peak amplitudes, suggesting significant impairment in central auditory processing without cochlear dysfunction. This study provides novel insights into the synaptic disturbances that contribute to auditory deficits resulting from chronic prenatal nicotine exposure, underlining potential targets for therapeutic intervention.
Collapse
|
4
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
5
|
Kwapiszewski JT, Rivera-Perez LM, Roberts MT. Cholinergic Boutons are Distributed Along the Dendrites and Somata of VIP Neurons in the Inferior Colliculus. J Assoc Res Otolaryngol 2023; 24:181-196. [PMID: 36627519 PMCID: PMC10121979 DOI: 10.1007/s10162-022-00885-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Cholinergic signaling shapes sound processing and plasticity in the inferior colliculus (IC), the midbrain hub of the central auditory system, but how cholinergic terminals contact and influence individual neuron types in the IC remains largely unknown. Using pharmacology and electrophysiology, we recently found that acetylcholine strongly excites VIP neurons, a class of glutamatergic principal neurons in the IC, by activating α3β4* nicotinic acetylcholine receptors (nAChRs). Here, we confirm and extend these results using tissue from mice of both sexes. First, we show that mRNA encoding α3 and β4 nAChR subunits is expressed in many neurons throughout the IC, including most VIP neurons, suggesting that these subunits, which are rare in the brain, are important mediators of cholinergic signaling in the IC. Next, by combining fluorescent labeling of VIP neurons and immunofluorescence against the vesicular acetylcholine transporter (VAChT), we show that individual VIP neurons in the central nucleus of the IC (ICc) are contacted by a large number of cholinergic boutons. Cholinergic boutons were distributed adjacent to the somata and along the full length of the dendritic arbors of VIP neurons, positioning cholinergic signaling to affect synaptic computations arising throughout the somatodendritic compartments of VIP neurons. In addition, cholinergic boutons were occasionally observed in close apposition to dendritic spines on VIP neurons, raising the possibility that cholinergic signaling also modulates presynaptic release onto VIP neurons. Together, these results strengthen the evidence that cholinergic signaling exerts widespread influence on auditory computations performed by VIP neurons and other neurons in the IC.
Collapse
Affiliation(s)
- Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA.
- Department of Molecular and Integrative Pharmacology, University of Michigan, MI, Ann Arbor, 48109, USA.
| |
Collapse
|
6
|
Rivera-Perez LM, Kwapiszewski JT, Roberts MT. α 3β 4 ∗ Nicotinic Acetylcholine Receptors Strongly Modulate the Excitability of VIP Neurons in the Mouse Inferior Colliculus. Front Neural Circuits 2021; 15:709387. [PMID: 34434092 PMCID: PMC8381226 DOI: 10.3389/fncir.2021.709387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
The inferior colliculus (IC), the midbrain hub of the central auditory system, receives extensive cholinergic input from the pontomesencephalic tegmentum. Activation of nicotinic acetylcholine receptors (nAChRs) in the IC can alter acoustic processing and enhance auditory task performance. However, how nAChRs affect the excitability of specific classes of IC neurons remains unknown. Recently, we identified vasoactive intestinal peptide (VIP) neurons as a distinct class of glutamatergic principal neurons in the IC. Here, in experiments using male and female mice, we show that cholinergic terminals are routinely located adjacent to the somas and dendrites of VIP neurons. Using whole-cell electrophysiology in brain slices, we found that acetylcholine drives surprisingly strong and long-lasting excitation and inward currents in VIP neurons. This excitation was unaffected by the muscarinic receptor antagonist atropine. Application of nAChR antagonists revealed that acetylcholine excites VIP neurons mainly via activation of α3β4∗ nAChRs, a nAChR subtype that is rare in the brain. Furthermore, we show that acetylcholine excites VIP neurons directly and does not require intermediate activation of presynaptic inputs that might express nAChRs. Lastly, we found that low frequency trains of acetylcholine puffs elicited temporal summation in VIP neurons, suggesting that in vivo-like patterns of cholinergic input can reshape activity for prolonged periods. These results reveal the first cellular mechanisms of nAChR regulation in the IC, identify a functional role for α3β4∗ nAChRs in the auditory system, and suggest that cholinergic input can potently influence auditory processing by increasing excitability in VIP neurons and their postsynaptic targets.
Collapse
Affiliation(s)
- Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Beebe NL, Zhang C, Burger RM, Schofield BR. Multiple Sources of Cholinergic Input to the Superior Olivary Complex. Front Neural Circuits 2021; 15:715369. [PMID: 34335196 PMCID: PMC8319744 DOI: 10.3389/fncir.2021.715369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
The superior olivary complex (SOC) is a major computation center in the brainstem auditory system. Despite previous reports of high expression levels of cholinergic receptors in the SOC, few studies have addressed the functional role of acetylcholine in the region. The source of the cholinergic innervation is unknown for all but one of the nuclei of the SOC, limiting our understanding of cholinergic modulation. The medial nucleus of the trapezoid body, a key inhibitory link in monaural and binaural circuits, receives cholinergic input from other SOC nuclei and also from the pontomesencephalic tegmentum. Here, we investigate whether these same regions are sources of cholinergic input to other SOC nuclei. We also investigate whether individual cholinergic cells can send collateral projections bilaterally (i.e., into both SOCs), as has been shown at other levels of the subcortical auditory system. We injected retrograde tract tracers into the SOC in gerbils, then identified retrogradely-labeled cells that were also immunolabeled for choline acetyltransferase, a marker for cholinergic cells. We found that both the SOC and the pontomesencephalic tegmentum (PMT) send cholinergic projections into the SOC, and these projections appear to innervate all major SOC nuclei. We also observed a small cholinergic projection into the SOC from the lateral paragigantocellular nucleus of the reticular formation. These various sources likely serve different functions; e.g., the PMT has been associated with things such as arousal and sensory gating whereas the SOC may provide feedback more closely tuned to specific auditory stimuli. Further, individual cholinergic neurons in each of these regions can send branching projections into both SOCs. Such projections present an opportunity for cholinergic modulation to be coordinated across the auditory brainstem.
Collapse
Affiliation(s)
- Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Chao Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
8
|
Beebe NL, Schofield BR. Cholinergic boutons are closely associated with excitatory cells and four subtypes of inhibitory cells in the inferior colliculus. J Chem Neuroanat 2021; 116:101998. [PMID: 34186203 DOI: 10.1016/j.jchemneu.2021.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/23/2023]
Abstract
Acetylcholine (ACh) is a neuromodulator that has been implicated in multiple roles across the brain, including the central auditory system, where it sets neuronal excitability and gain and affects plasticity. In the cerebral cortex, subtypes of GABAergic interneurons are modulated by ACh in a subtype-specific manner. Subtypes of GABAergic neurons have also begun to be described in the inferior colliculus (IC), a midbrain hub of the auditory system. Here, we used male and female mice (Mus musculus) that express fluorescent protein in cholinergic cells, axons, and boutons to look at the association between ACh and four subtypes of GABAergic IC cells that differ in their associations with extracellular markers, their soma sizes, and their distribution within the IC. We found that most IC cells, including excitatory and inhibitory cells, have cholinergic boutons closely associated with their somas and proximal dendrites. We also found that similar proportions of each of four subtypes of GABAergic cells are closely associated with cholinergic boutons. Whether the different types of GABAergic cells in the IC are differentially regulated remains unclear, as the response of cells to ACh is dependent on which types of ACh receptors are present. Additionally, this study confirms the presence of these four subtypes of GABAergic cells in the mouse IC, as they had previously been identified only in guinea pigs. These results suggest that cholinergic projections to the IC modulate auditory processing via direct effects on a multitude of inhibitory circuits.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Brett R Schofield
- Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
9
|
Godfrey DA, Carlson L, Park JL, Ross CD. Enzymes of acetylcholine metabolism in the rat inferior colliculus. Brain Res 2021; 1766:147518. [PMID: 33991492 DOI: 10.1016/j.brainres.2021.147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Although there is strong evidence for cholinergic projections to the rat inferior colliculus, especially from the pedunculopontine tegmental nucleus (Noftz et al., 2020), there is a lack of information about the quantitative prevalence of the enzymes of acetylcholine metabolism in its various portions. We have used microdissection of freeze-dried sections combined with radiometric assays to map the distributions in the rat inferior colliculus of the activities of choline acetyltransferase (ChAT), which catalyzes synthesis of acetylcholine, and acetylcholinesterase (AChE), which catalyzes its breakdown by hydrolysis. Both enzyme activities were present throughout the inferior colliculus. Average ChAT activity was consistently somewhat higher in the external cortex, excluding its most superficial layer, than in the dorsal cortex or central nucleus. Within the external cortex, ChAT activity was about half as high laterally in its most superficial layer as elsewhere. The distribution of AChE activity was more uniform than that of ChAT. Overall, ChAT activity in the rat inferior colliculus was relatively low, about a fifth of that in whole brain of rat and lower than in other central auditory regions, whereas AChE activity was about two-thirds that of rat whole brain and about average for central auditory regions. The results are compared to previous measurements for cat and hamster inferior colliculus. They are consistent with a modest role for cholinergic neurotransmission in the inferior colliculus, to modulate the activity of its major neuronal types.
Collapse
Affiliation(s)
- Donald A Godfrey
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Lissette Carlson
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jami L Park
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - C David Ross
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
10
|
Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 41:674-688. [PMID: 33268542 DOI: 10.1523/jneurosci.1633-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/29/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other computationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered prominent expression of α7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural activity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demonstrated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit recording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antagonists to two receptor types, α7 and α4β2. We observed that tone-evoked responses are dependent on ACh modulation by both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.SIGNIFICANCE STATEMENT This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brainstem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic understanding of modulatory influences in sensory processing.
Collapse
|
11
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Cholinergic Projections From the Pedunculopontine Tegmental Nucleus Contact Excitatory and Inhibitory Neurons in the Inferior Colliculus. Front Neural Circuits 2020; 14:43. [PMID: 32765226 PMCID: PMC7378781 DOI: 10.3389/fncir.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The inferior colliculus processes nearly all ascending auditory information. Most collicular cells respond to sound, and for a majority of these cells, the responses can be modulated by acetylcholine (ACh). The cholinergic effects are varied and, for the most part, the underlying mechanisms are unknown. The major source of cholinergic input to the inferior colliculus is the pedunculopontine tegmental nucleus (PPT), part of the pontomesencephalic tegmentum known for projections to the thalamus and roles in arousal and the sleep-wake cycle. Characterization of PPT inputs to the inferior colliculus has been complicated by the mixed neurotransmitter population within the PPT. Using selective viral-tract tracing techniques in a ChAT-Cre Long Evans rat, the present study characterizes the distribution and targets of cholinergic projections from PPT to the inferior colliculus. Following the deposit of viral vector in one PPT, cholinergic axons studded with boutons were present bilaterally in the inferior colliculus, with the greater density of axons and boutons ipsilateral to the injection site. On both sides, cholinergic axons were present throughout the inferior colliculus, distributing boutons to the central nucleus, lateral cortex, and dorsal cortex. In each inferior colliculus (IC) subdivision, the cholinergic PPT axons appear to contact both GABAergic and glutamatergic neurons. These findings suggest cholinergic projections from the PPT have a widespread influence over the IC, likely affecting many aspects of midbrain auditory processing. Moreover, the effects are likely to be mediated by direct cholinergic actions on both excitatory and inhibitory circuits in the inferior colliculus.
Collapse
Affiliation(s)
- William A. Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brett R. Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
12
|
Felix RA, Chavez VA, Novicio DM, Morley BJ, Portfors CV. Nicotinic acetylcholine receptor subunit α 7-knockout mice exhibit degraded auditory temporal processing. J Neurophysiol 2019; 122:451-465. [PMID: 31116647 DOI: 10.1152/jn.00170.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The CHRNA7 gene that encodes the α7-subunit of the nicotinic acetylcholine receptor (α7-nAChR) has been associated with some autism spectrum disorders and other neurodevelopmental conditions characterized, in part, by auditory and language impairment. These conditions may include auditory processing disorders that represent impaired timing of neural activity, often accompanied by problems understanding speech. Here, we measure timing properties of sound-evoked activity via the auditory brainstem response (ABR) of α7-nAChR knockout mice of both sexes and wild-type colony controls. We find a significant timing delay in evoked ABR signals that represents midbrain activity in knockouts. We also examine spike-timing properties of neurons in the inferior colliculus, a midbrain nucleus that exhibits high levels of α7-nAChR during development. We find delays of evoked responses along with degraded spiking precision in knockout animals. We find similar timing deficits in responses of neurons in the superior paraolivary nucleus and ventral nucleus of the lateral lemniscus, which are brainstem nuclei thought to shape temporal precision in the midbrain. In addition, we find that other measures of temporal acuity including forward masking and gap detection are impaired for knockout animals. We conclude that altered temporal processing at the level of the brainstem in α7-nAChR-deficient mice may contribute to degraded spike timing in the midbrain, which may underlie the observed timing delay in the ABR signals. Our findings are consistent with a role for the α7-nAChR in types of neurodevelopmental and auditory processing disorders and we identify potential neural targets for intervention.NEW & NOTEWORTHY Disrupted signaling via the α7-nicotinic acetylcholine receptor (α7-nAChR) is associated with neurodevelopmental disorders that include impaired auditory processing. The underlying causes of dysfunction are not known but a common feature is abnormal timing of neural activity. We examined temporal processing of α7-nAChR knockout mice and wild-type controls. We found degraded spike timing of neurons in knockout animals, which manifests at the level of the auditory brainstem and midbrain.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Vicente A Chavez
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Dyana M Novicio
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | | | - Christine V Portfors
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| |
Collapse
|
13
|
Increased risk of developing schizophrenia in animals exposed to cigarette smoke during the gestational period. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:199-206. [PMID: 28229913 DOI: 10.1016/j.pnpbp.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 02/12/2017] [Indexed: 11/22/2022]
Abstract
Cigarette smoking during the prenatal period has been investigated as a causative factor of obstetric abnormalities, which lead to cognitive and behavioural changes associated with schizophrenia. The aim of this study was to investigate behaviour and AChE activity in brain structures in adult rats exposed to cigarette smoke during the prenatal period. Pregnant rats were divided into non-PCSE (non-prenatal cigarette smoke exposure) and PCSE (prenatal cigarette smoke exposure) groups. On post-natal day 60, the rats received saline or ketamine for 7days and were subjected to behavioural tasks. In the locomotor activity task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited increased locomotor activity compared with the saline group. In the social interaction task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited an increased latency compared with the control groups. However, the PCSE+ketamine group exhibited a decreased latency compared with the non-PCSE+ketamine group, which indicates that the cigarette exposure appeared to decrease, the social deficits generated by ketamine. In the inhibitory avoidance task, the non-PCSE+ketamine, PCSE, and PCSE+ketamine groups exhibited impairments in working memory, short-term memory, and long-term memory. In the pre-pulse inhibition (PPI) test, cigarette smoke associated with ketamine resulted in impaired PPI in 3 pre-pulse (PP) intensity groups compared with the control groups. In the biochemical analysis, the AChE activity in brain structures increased in the ketamine groups; however, the PCSE+ketamine group exhibited an exacerbated effect in all brain structures. The present study indicates that exposure to cigarette smoke during the prenatal period may affect behaviour and cerebral cholinergic structures during adulthood.
Collapse
|
14
|
Baumann VJ, Koch U. Perinatal nicotine exposure impairs the maturation of glutamatergic inputs in the auditory brainstem. J Physiol 2017; 595:3573-3590. [PMID: 28190266 DOI: 10.1113/jp274059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Chronic perinatal nicotine exposure causes abnormal auditory brainstem responses and auditory processing deficits in children and animal models. The effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem was investigated in granule cells in the ventral nucleus of the lateral lemniscus, which receive a single calyx-like input from the cochlear nucleus. Perinatal nicotine exposure caused a massive reduction in the amplitude of the excitatory input current. This caused a profound decrease in the number and temporal precision of spikes in these neurons. Perinatal nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons. ABSTRACT Maternal smoking causes chronic nicotine exposure during early development and results in auditory processing deficits including delayed speech development and learning difficulties. Using a mouse model of chronic, perinatal nicotine exposure we explored to what extent synaptic inputs to granule cells in the ventral nucleus of the lateral lemniscus are affected by developmental nicotine treatment. These neurons receive one large calyx-like input from octopus cells in the cochlear nucleus and play a role in sound pattern analysis, including speech sounds. In addition, they exhibit high levels of α7 nicotinic acetylcholine receptors, especially during early development. Our whole-cell patch-clamp experiments show that perinatal nicotine exposure causes a profound reduction in synaptic input amplitude. In contrast, the number of inputs innervating each neuron and synaptic release properties of this calyx-like synapse remained unaltered. Spike number and spiking precision in response to synaptic stimulation were greatly diminished, especially for later stimuli during a stimulus train. Moreover, chronic nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons, indicating a direct action of nicotine in this brain area. This presumably direct effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem might be one of the underlying causes for auditory processing difficulties in children of heavy smoking mothers.
Collapse
Affiliation(s)
- Veronika J Baumann
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
15
|
Knott V, Impey D, Choueiry J, Smith D, de la Salle S, Saghir S, Smith M, Beaudry E, Ilivitsky V, Labelle A. An acute dose, randomized trial of the effects of CDP-Choline on Mismatch Negativity (MMN) in healthy volunteers stratified by deviance detection level. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40810-014-0002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Franzen DL, Gleiss SA, Berger C, Kümpfbeck FS, Ammer JJ, Felmy F. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons. J Neurophysiol 2015; 113:524-36. [DOI: 10.1152/jn.00601.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9–28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing.
Collapse
Affiliation(s)
- Delwen L. Franzen
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Sarah A. Gleiss
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Franziska S. Kümpfbeck
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Julian J. Ammer
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- BioImaging Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Aparicio MA, Saldaña E. The dorsal tectal longitudinal column (TLCd): a second longitudinal column in the paramedian region of the midbrain tectum. Brain Struct Funct 2013; 219:607-30. [PMID: 23468089 PMCID: PMC3933748 DOI: 10.1007/s00429-013-0522-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/08/2013] [Indexed: 11/03/2022]
Abstract
The tectal longitudinal column (TLC) is a longitudinally oriented, long and narrow nucleus that spans the paramedian region of the midbrain tectum of a large variety of mammals (Saldaña et al. in J Neurosci 27:13108–13116, 2007). Recent analysis of the organization of this region revealed another novel nucleus located immediately dorsal, and parallel, to the TLC. Because the name “tectal longitudinal column” also seems appropriate for this novel nucleus, we suggest the TLC described in 2007 be renamed the “ventral tectal longitudinal column (TLCv)”, and the newly discovered nucleus termed the “dorsal tectal longitudinal column (TLCd)”. This work represents the first characterization of the rat TLCd. A constellation of anatomical techniques was used to demonstrate that the TLCd differs from its surrounding structures (TLCv and superior colliculus) cytoarchitecturally, myeloarchitecturally, neurochemically and hodologically. The distinct expression of vesicular amino acid transporters suggests that TLCd neurons are GABAergic. The TLCd receives major projections from various areas of the cerebral cortex (secondary visual mediomedial area, and granular and dysgranular retrosplenial cortices) and from the medial pretectal nucleus. It densely innervates the ipsilateral lateral posterior and laterodorsal nuclei of the thalamus. Thus, the TLCd is connected with vision-related neural centers. The TLCd may be unique as it constitutes the only known nucleus made of GABAergic neurons dedicated to providing massive inhibition to higher order thalamic nuclei of a specific sensory modality.
Collapse
Affiliation(s)
- M-Auxiliadora Aparicio
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain
| | | |
Collapse
|
18
|
Rogers SW, Myers EJ, Gahring LC. The expression of nicotinic receptor alpha7 during cochlear development. Brain Behav 2012; 2:628-39. [PMID: 23139908 PMCID: PMC3489815 DOI: 10.1002/brb3.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 01/24/2023] Open
Abstract
Nicotinic acetylcholine receptor alpha7 expression was examined in the developing and adult auditory system using mice that were modified through homologous recombination to coexpress either GFP (alpha7GFP) or Cre (alpha7Cre), respectively. The expression of alpha7GFP is first detected at embryonic (E) day E13.5 in cells of the spiral prominence. By E14.5, sensory regions including the putative outer hair cells and Deiters' cells express alpha7GFP as do solitary efferent fibers. This pattern diminishes after E16.5 in a basal to apex progression, as Hensen's cells and cells of the spiral ligament acquire alpha7GFP expression. At birth and thereafter alpha7GFP also identifies a subset of spiral ganglion cells whose processes terminate on inner hair cells. Efferent fibers identified by peripherin or calcitonin gene-related protein do not coexpress alpha7GFP. In addition to cochlear structures, there is strong expression of alpha7GFP by cells of the central auditory pathways including the ventral posterior cochlear nucleus, lateral lemniscus, central inferior colliculus, and the medial geniculate nucleus. Our findings suggest that alpha7 expression by both neuronal and non-neuronal cells has the potential to impact multiple auditory functions through mechanisms that are not traditionally attributed to this receptor.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City VA Geriatric Research, Education and Clinical Center, University of Utah Salt Lake City, Utah, 84132 ; Department of Neurobiology and Anatomy, University of Utah School of Medicine Salt Lake City, Utah, 84132
| | | | | |
Collapse
|
19
|
Lacy RT, Mactutus CF, Harrod SB. Prenatal IV nicotine exposure produces a sex difference in sensorimotor gating of the auditory startle reflex in adult rats. Int J Dev Neurosci 2011; 29:153-61. [PMID: 21145386 PMCID: PMC3312379 DOI: 10.1016/j.ijdevneu.2010.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/24/2010] [Accepted: 12/01/2010] [Indexed: 01/19/2023] Open
Abstract
Maternal smoking during pregnancy is associated with auditory processing deficits in children; these effects have been confirmed with animal models of continuous high-dose prenatal nicotine exposure. The present experiments utilized a novel, low-dose, intermittent, intravenous (IV) gestational nicotine exposure model to investigate potential deficits on the preattentive process of sensorimotor gating, as indexed by prepulse inhibition (PPI), in preweanling and adult rat offspring. Pregnant dams received bolus IV injections of nicotine (0.05 mg/kg/injection) 3×/day on gestational days 8-21. Auditory and tactile stimulus modalities were probed with tone and air puff prepulse stimuli, respectively. These prepulse stimuli preceded a 100 dB(A) startle tone by six different interstimulus intervals (ISIs; 0, 8, 40, 80, 120, 4000 ms) to define a curve of response inhibition. The magnitude of PPI increased with age, from 59 to 81% inhibition. Preweanlings (PNDs 14 and 18) and adults (PND 75) gestationally exposed to nicotine exhibited altered startle responding relative to controls, but the nature of the deficit became more localized at later ages. The entire curve of response inhibition in preweanlings exposed to prenatal nicotine (PND 14) was shifted up relative to controls, and notably, did not interact with prepulse stimulus modality, suggesting a generalized increased sensorimotor responsiveness as a function of prenatal nicotine. At PND 18, a shift in the response curve across all ISIs was again noted, but varied as a function of prepulse stimulus modality; the increased sensorimotor responsiveness was specific to the auditory, but not tactile, sensory modality. In adulthood, male and female animals prenatally exposed to nicotine were differentially sensitive to modulation by the ISIs, relative to control male and female animals. Specifically, despite robust PPI, adult females exposed to gestational nicotine were relatively insensitive to changes in ISI from 8 to 120 ms; in contrast, the robust PPI of nicotine-exposed males demonstrated a clear focal point of inhibition at 40 ms. These findings indicate that a low, daily dosing of IV prenatal nicotine produces long-lasting alterations in auditory PPI. An important implication of this research is that "chipping" with smoked-tobacco products during pregnancy may produce enduring changes in sensorimotor processing.
Collapse
Affiliation(s)
- Ryan T Lacy
- Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
20
|
Adams CE, Yonchek JC, Zheng L, Collins AC, Stevens KE. Altered hippocampal circuit function in C3H alpha7 null mutant heterozygous mice. Brain Res 2007; 1194:138-45. [PMID: 18199426 DOI: 10.1016/j.brainres.2007.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/24/2022]
Abstract
The alpha7 subtype of nicotinic receptor is highly expressed in the hippocampus where it is purported to modulate release of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The alpha7 receptor-mediated release of GABA is thought to contribute to hippocampal inhibition (gating) of response to repetitive auditory stimulation. This hypothesis is supported by observations of hippocampal auditory gating deficits in mouse strains with low levels of hippocampal alpha7 receptors compared to strains with high levels of hippocampal alpha7 receptors. The difficulty with comparisons between mouse strains, however, is that different strains have different genetic backgrounds. Thus, the observed interstrain differences in hippocampal auditory gating might result from factors other than interstrain variations in the density of hippocampal alpha7 receptors. To address this issue, hippocampal binding of the alpha7 receptor-selective antagonist alpha-bungarotoxin as well as hippocampal auditory gating characteristics were compared in C3H wild type and C3H alpha7 receptor null mutant heterozygous mice. The C3H alpha7 heterozygous mice exhibited significant reductions in hippocampal alpha7 receptor levels and abnormal hippocampal auditory gating compared to the C3H wild type mice. In addition, a general increase in CA3 pyramidal neuron responsivity was observed in the heterozygous mice compared to the wild type mice. These data suggest that decreasing hippocampal alpha7 receptor density results in a profound alteration in hippocampal circuit function.
Collapse
Affiliation(s)
- C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, USA.
| | | | | | | | | |
Collapse
|
21
|
Miko IJ, Henkemeyer M, Cramer KS. Auditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice. Hear Res 2007; 235:39-46. [PMID: 17967521 DOI: 10.1016/j.heares.2007.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 11/15/2022]
Abstract
The Eph receptor tyrosine kinases and their membrane-anchored ligands, ephrins, are signaling proteins that act as axon guidance molecules during chick auditory brainstem development. We recently showed that Eph proteins also affect patterns of neural activation in the mammalian brainstem. However, functional deficits in the brainstems of mutant mice have not been assessed physiologically. The present study characterizes neural activation in Eph protein deficient mice in the auditory brainstem response (ABR). We recorded the ABR of EphA4 and ephrin-B2 mutant mice, aged postnatal day 18-20, and compared them to wild type controls. The peripheral hearing threshold of EphA4(-/-) mice was 75% higher than that of controls. Waveform amplitudes of peak 1 (P1) were 54% lower in EphA4(-/-) mice than in controls. The peripheral hearing thresholds in ephrin-B2(lacZ/)(+) mice were also elevated, with a mean value 20% higher than that of controls. These ephrin-B2(lacZ/)(+) mice showed a 38% smaller P1 amplitude. Significant differences in latency to waveform peaks were also observed. These elevated thresholds and reduced peak amplitudes provide evidence for hearing deficits in both of these mutant mouse lines, and further emphasize an important role for Eph family proteins in the formation of functional auditory circuitry.
Collapse
Affiliation(s)
- Ilona J Miko
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | |
Collapse
|
22
|
Machaalani R, Waters KA. Postnatal nicotine and/or intermittent hypercapnic hypoxia effects on apoptotic markers in the developing piglet brainstem medulla. Neuroscience 2006; 142:107-17. [PMID: 16905268 DOI: 10.1016/j.neuroscience.2006.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/17/2006] [Accepted: 06/06/2006] [Indexed: 11/15/2022]
Abstract
The most important risk factors currently identified for the sudden infant death syndrome (SIDS) are prone sleeping and cigarette smoke exposure. In this study, we investigated the neuropathological sequelae of these risk factors by exposing piglets to intermittent hypercapnic-hypoxia (IHH) and/or nicotine (nic) in the early postnatal period. Our hypothesis was that either nic or IHH exposure could increase neuronal cell death, and that combined exposure (nic+IHH) would be additive. Four exposure patterns were studied: controls (n=14), IHH (n=10), nic (n=14), and nic+IHH (n=14). All groups had equal gender ratios. Nic exposure via an implanted osmotic minipump commenced within 48 h of birth and continued until age 13-14 days when animals were killed and brains collected. A total of 48 min of hypercapnic-hypoxia was delivered on the day immediately prior to killing in a pattern comprising 6 min of HH (8% O(2), 7% CO(2), balance N(2)) alternating with 6 min of air. Immunohistochemistry was performed to identify neurons positive for active caspase-3 and DNA fragmentation (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, TUNEL) in seven nuclei of the caudal medulla. Staining quantification showed that: 1. IHH induced neuronal death (increased both TUNEL and casapse-3) in more brainstem nuclei than nicotine. 2. Females were more severely affected by IHH than males. 3. Where IHH and nicotine were combined, TUNEL expression was approximately 5% less than IHH alone, but changes in caspase-3 were variable. We conclude that acute exposure to IHH in the postnatal period is more neurotoxic than exposure to nicotine alone. Combined exposure to IHH and nicotine produced variable responses with some results suggesting that nicotine can be neuroprotective. These results indicate that environmental insults attributable to prone sleeping can produce neurotoxic sequelae in SIDS, with some regional specificity in the response. However, no consistent relationship is evident when combining the two insults.
Collapse
Affiliation(s)
- R Machaalani
- Department of Medicine, Room 206, Blackburn Building, D06, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
23
|
Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JM. Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. Pulm Pharmacol Ther 2006; 20:629-41. [PMID: 17015027 DOI: 10.1016/j.pupt.2006.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 06/19/2006] [Accepted: 07/10/2006] [Indexed: 11/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChR) are expressed on non-neuronal cell types, including normal bronchial epithelial cells, and nicotine has been reported to cause Akt activation in cultured normal airway cells. This study documents mRNA and protein expression of subunits known to form a muscle-type nAChR in non-small cell lung cancer (NSCLC) cell lines. In one NSCLC examined, mRNA and protein for a heteropentamer neuronal-type alpha3beta2 nAChR was detected in addition to a muscle-type receptor. Protein for the alpha5 nAChR was also detected in NSCLC cells. Although, mRNA for the alpha7 nAChR subunit was observed in all cell lines, alpha7 protein was not detectable by immunoblot in NSCLC cell extracts. Immunohistochemistry (IHC) of NSCLC primary tissues from 18 patients demonstrated protein expression of nAChR alpha1 and beta1 subunits, but not alpha7 subunit, in lung tumors, indicating preferential expression of the muscle-type receptor. In addition, the beta1 subunit showed significantly increased expression in lung tumors as compared to non-tumor bronchial tissue. The alpha1 subunit also showed evidence of high expression in lung tumors. Nicotine at a concentration of 10 microM caused phosphorylation of mitogen-activated protein kinase (MAPK) (p44/42) that could be inhibited using nAChR antagonists. Inhibition was observed at 100 nM alpha-bungarotoxin (alpha-BTX) or 10 microM hexamethonium (HEX); maximal inhibition was achieved using a combination of alpha-BTX and HEX. Akt was also phosphorylated in NSCLC cells after exposure to nicotine; this effect was inhibited by the PI3K inhibitor LY294002 and antagonists to the neuronal-type nAChR, but not to the muscle-type receptor. Nicotine triggered influx of calcium in the 273T NSCLC cell line, suggesting that L-type calcium channels were activated. 273T cells also showed greater activation of p44/42 MAPK than of Akt in response to nicotine. Cultures treated with nicotine and the EGFR tyrosine kinase inhibitor gefitinib showed a significant increase in the number of surviving cells compared to gefitinib alone. These data indicate that the muscle-type nAChR, rather than the alpha7 type, is highly expressed in NSCLC and leads to downstream activation of the p44/42 MAPK pathway. Neuronal-type receptors are also present and functional, as evidenced by antagonist studies, although, the expression levels are lower than muscle-type nAChR. They also lead to downstream activation of MAPK and Akt. Nicotine may play a role in regulating survival of NSCLC cells and endogenous acetylcholine released locally in the lung and/or chronic nicotine exposure might play a role in NSCLC development. In addition, exposure of NSCLC patients to nicotine through use of nicotine replacement products or use of tobacco products may alter the efficacy of therapy with EGFR inhibitors.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- ErbB Receptors/antagonists & inhibitors
- Ganglionic Stimulants/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Phosphorylation
- Protein Subunits/genetics
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Signal Transduction/drug effects
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- Diane L Carlisle
- Department of Pharmacology, University of Pittsburgh, E1340 Biomedical Science Tower, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
24
|
Morley BJ. Nicotinic cholinergic intercellular communication: implications for the developing auditory system. Hear Res 2005; 206:74-88. [PMID: 16081000 DOI: 10.1016/j.heares.2005.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 02/24/2005] [Indexed: 02/02/2023]
Abstract
In this paper, research on the temporal and spatial distribution of cholinergic-related molecules in the lower auditory brainstem, with an emphasis on nicotinic acetylcholine receptors (nAChRs), is reviewed. The possible functions of acetylcholine (ACh) in driving selective auditory neurons before the onset of hearing, inducing glutamate receptor gene expression, synaptogenesis, differentiation, and cell survival are discussed. Experiments conducted in other neuronal and non-neuronal systems are drawn on extensively to discuss putative functions of ACh and nAChRs. Data from other systems may provide insight into the functions of ACh and nAChRs in auditory processing. The mismatch of presynaptic and postsynaptic markers and novel endogenous agonists of nAChRs are discussed in the context of non-classical interneuronal communication. The molecular mechanism that may underlie the many functions of ACh and its agonists is the regulation of intracellular calcium through nAChRs. The possible reorganization that may take place in the auditory system by the exposure to nicotine during critical developmental periods is also briefly considered.
Collapse
Affiliation(s)
- Barbara J Morley
- Boys Town National Research Hospital, Neurochemistry Laboratory, 555 North 30th Street, Omaha, NE 68131, USA.
| |
Collapse
|