1
|
Uygur E, Uzun H, Tuncdemir M, Oz AB, Polat E, Yilmaz A, Yaman E, Seymen HO. Darbepoetin alpha has neuroprotective effects in the hippocampus against long-term intermittent ethanol administration. Exp Brain Res 2025; 243:128. [PMID: 40278889 DOI: 10.1007/s00221-025-07073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
The consumption of ethanol has detrimental effects on several organs, including the brain. One of the most important targets of ethanol toxicity in the brain is the hippocampus. The aim of our study was to investigate the neuroprotective effects of darbepoetin alpha against neuronal damage caused by long-term intermittent ethanol exposure in the hippocampus. Forty male Wistar albino rats were divided into four groups: control (C), ethanol (E), darbepoetin alpha (DA), and ethanol + darbepoetin alpha (E + DA). In this study, oxidative stress and antioxidant markers, S100-β and neuron specific enolase (NSE) were investigated in both brain tissue and serum. Additionally, brain tissues were examined using histopathological methods. S100-β and NSE levels were significantly elevated in the E group compared to the C group in both the brain tissue and serum. Furthermore, catalase (CAT) and glutathione reductase (GR) levels, glutathione peroxidase (GPx) enzyme activities were significantly lower in both brain tissue and serum, while superoxide dismutase (SOD) enzyme activity in brain tissue was significantly reduced, and malondialdehyde (MDA) levels in brain tissue were markedly elevated in the E group. In the E + DA group, S100-β levels in both brain tissue and serum, NSE levels in serum, and MDA levels in brain tissue were significantly lower. Additionally, GPx activity in brain tissue and CAT levels in serum were significantly higher in the E + DA group compared to the E group. Histopathologically, the E group showed moderate neurodegeneration in the dentate gyrus, while the E + DA group exhibited mild neurodegeneration. In conclusion, DA reversed the degenerative effects of long-term intermittent ethanol exposure on the hippocampus by improving oxidative stress parameters and reducing neuronal injury.
Collapse
Affiliation(s)
- Emine Uygur
- Department of Physiology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, 59030, Turkey.
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Atlas University, Istanbul, 34408, Turkey
| | - Matem Tuncdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Istanbul, 34098, Turkey
| | - Aysim Buge Oz
- Department of Medical Pathology, Co-Founder, Chair of Scientific and Medical Advisory Board, Pathern Laboratories, Istanbul, 34140, Turkey
| | - Elif Polat
- Department of Histology and Embryology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, 59030, Turkey
| | - Ahsen Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, 59030, Turkey
| | - Elif Yaman
- Department of Physiology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Istanbul, 34098, Turkey
| | - Hakki Oktay Seymen
- Department of Physiology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Istanbul, 34098, Turkey
| |
Collapse
|
2
|
Juul SE, Wood TR. Pipeline to Neonatal Clinical Transformation: The Importance of Preclinical Data. Clin Perinatol 2024; 51:735-748. [PMID: 39095107 DOI: 10.1016/j.clp.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Historically, neonatal neuroscience boasted a robust and successful preclinical pipeline for therapeutic interventions, in particular for the treatment of hypoxic-ischemic encephalopathy (HIE). However, since the successful translation of therapeutic hypothermia (TH), several high-profile failures of promising adjunctive therapies, in addition to the lack of benefit of TH in lower resource settings, have brought to light critical issues in that same pipeline. Using recent data from clinical trials of erythropoietin as an example, the authors highlight several key challenges facing preclinical neonatal neuroscience for HIE therapeutic development and propose key areas where model development and collaboration across the field in general can ensure ongoing success in treatment development for HIE worldwide.
Collapse
Affiliation(s)
- Sandra E Juul
- Institute on Human Development and Disability, University of Washington, Box 357920, 1701 Northeast Columbia Road, Seattle, WA 98195-7920, USA; Division of Neonatology, Department of Pediatrics, University of Washington, Box 356320, 1959 Northeast Pacific Street, RR451 HSB, Seattle, WA 98195-6320, USA
| | - Thomas R Wood
- Institute on Human Development and Disability, University of Washington, Box 357920, 1701 Northeast Columbia Road, Seattle, WA 98195-7920, USA; Division of Neonatology, Department of Pediatrics, University of Washington, Box 356320, 1959 Northeast Pacific Street, RR451 HSB, Seattle, WA 98195-6320, USA.
| |
Collapse
|
3
|
Boskabadi SJ, Heydari F, Mohammadnejad F, Gholipour Baradari A, Moosazadeh M, Dashti A. Effect of erythropoietin on SOFA score, Glasgow Coma Scale and mortality in traumatic brain injury patients: a randomized-double-blind controlled trial. Ann Med Surg (Lond) 2024; 86:3990-3997. [PMID: 38989196 PMCID: PMC11230820 DOI: 10.1097/ms9.0000000000002143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Background Recent studies suggest that erythropoietin has an anti-inflammatory effect on the central nervous system. The authors aimed to investigate the effect of erythropoietin on Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA) scores, and the mortality rate of traumatic brain injury (TBI) patients. Methods Sixty-eight patients with available inclusion criteria were randomly allocated to the control or intervention groups. In the intervention group, erythropoietin (4000 units) was administrated on days 1, 3, and 5. In the control group, normal saline on the same days was used. The primary outcomes were the GCS and SOFA score changes during the intervention. The secondary outcomes were the ventilation period during the first 2 weeks and the 3-month mortality rate. Results Erythropoietin administration significantly affected SOFA score over time (P=0.008), but no significant effect on the GCS, and duration of ventilation between the two groups was observed. Finally, erythropoietin had no significant effect on the three-month mortality (23.5% vs. 38.2% in the erythropoietin and control group, respectively). However, the mortality rate in the intervention group was lower than in the control group. Conclusion Our finding showed that erythropoietin administration in TBI may improve SOFA score. Therefore, erythropoietin may have beneficial effects on early morbidity and clinical improvement in TBI patients.
Collapse
Affiliation(s)
| | - Fatemeh Heydari
- Department of Anesthesiology, School of Medicine, Sari Imam Khomeini Hospital
| | | | | | - Mahmood Moosazadeh
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayat Dashti
- Pharmacology and Toxicology, Faculty of Pharmacy
| |
Collapse
|
4
|
Li J, Liu Y, Chen X, Luo M, Yin M, Xie X, Ai Y, Zhang X, He J. Therapeutic potential of Lingjiao Gouteng decoction in acute alcohol intoxication and alcohol-induced brain injury involving the RhoA/ROCK2/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118114. [PMID: 38552993 DOI: 10.1016/j.jep.2024.118114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcohol misuse persists as a prevalent societal concern and precipitates diverse deleterious consequences, entailing significant associated health hazards including acute alcohol intoxication (AAI). Binge drinking, a commonplace pattern of alcohol consumption, may incite neurodegeneration and neuronal dysfunction. Clinicians tasked with managing AAI confront a dearth of pharmaceutical intervention alternatives. In contrast, natural products have garnered interest due to their compatibility with the human body and fewer side effects. Lingjiao Gouteng decoction (LGD), a classical traditional Chinese medicine decoction, represents a frequently employed prescription in cases of encephalopathy, although its efficacy in addressing acute alcoholism and alcohol-induced brain injury remains inadequately investigated. AIM OF THE STUDY To investigate the conceivable therapeutic benefits of LGD in AAI and alcohol-induced brain injury, while delving into the underlying fundamental mechanisms involved. MATERIALS AND METHODS We established an AAI mouse model through alcohol gavage, and LGD was administered to the mice twice at the 2 h preceding and 30 min subsequent to alcohol exposure. The study encompassed the utilization of the loss of righting reflex assay, histopathological analysis, enzyme-linked immunosorbent assays, and cerebral tissue biochemical assays to investigate the impact of LGD on AAI and alcohol-induced brain injury. These assessments included a comprehensive evaluation of various biomarkers associated with the inflammatory response and oxidative stress. Finally, RT-qPCR, Western blot, and immunofluorescence staining were carried out to explore the underlying mechanisms through which LGD exerts its therapeutic influence, potentially through the regulation of the RhoA/ROCK2/NF-κB signaling pathway. RESULTS Our investigation underscores the therapeutic efficacy of LGD in ameliorating AAI, as evidenced by discernible alterations in the loss of righting reflex assay, pathological analysis, and assessment of inflammatory and oxidative stress biomarkers. Furthermore, the results of RT-qPCR, Western blot, and immunofluorescence staining manifest a noteworthy regulatory effect of LGD on the RhoA/ROCK2/NF-κB signaling pathway. CONCLUSIONS The present study confirmed the therapeutic potential of LGD in AAI and alcohol-induced brain injury, and the protective effects of LGD against alcohol-induced brain injury may be intricately linked to the RhoA/ROCK2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yatian Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingyu Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyuan Xie
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Molloy EJ, El-Dib M, Soul J, Juul S, Gunn AJ, Bender M, Gonzalez F, Bearer C, Wu Y, Robertson NJ, Cotton M, Branagan A, Hurley T, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Wintermark P, Bonifacio SL. Neuroprotective therapies in the NICU in preterm infants: present and future (Neonatal Neurocritical Care Series). Pediatr Res 2024; 95:1224-1236. [PMID: 38114609 PMCID: PMC11035150 DOI: 10.1038/s41390-023-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.
- Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manon Bender
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California, San Francisco, California, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yvonne Wu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mike Cotton
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
| | - Sidhartha Tan
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK
- Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Pia Wintermark
- Division of Neonatology, Montreal Children's Hospital, Montreal, Quebec, Canada
- McGill University Health Centre - Research Institute, Montreal, Quebec, Canada
| | - Sonia Lomeli Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Corley C, McElroy T, Sridharan B, Trujillo M, Simmons P, Kandel S, Sykes DJ, Robeson MS, Allen AR. Physiological and cognitive changes after treatments of cyclophosphamide, methotrexate, and fluorouracil: implications of the gut microbiome and depressive-like behavior. Front Neurosci 2023; 17:1212791. [PMID: 37869506 PMCID: PMC10587567 DOI: 10.3389/fnins.2023.1212791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Chemotherapy-induced cognitive impairment colloquially referred to as chemobrain is a poorly understood phenomenon affecting a highly variable proportion of patients with breast cancer. Here we investigate the association between anxiety and despair-like behaviors in mice treated with cyclophosphamide, methotrexate, and fluorouracil (CMF) along with host histological, proteomic, gene expression, and gut microbial responses. Methods Forced swim and sociability tests were used to evaluate depression and despair-like behaviors. The tandem mass tag (TMT) proteomics approach was used to assess changes in the neural protein network of the amygdala and hippocampus. The composition of gut microbiota was assessed through 16S rRNA gene sequencing. Finally, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate changes in intestinal gap junction markers. Results and discussion We observed that CMF induced social and despair-like behavior in mice 96 hours following treatment. Proteomic analysis identified changes in various proteins related to progressive neurological disease, working memory deficit, primary anxiety disorder, and gene expression revealing increases in NMDA and AMPA receptors in both the hippocampus and the amygdala because of CMF treatment. These changes finally, we observed immediate changes in the microbial population after chemotherapy treatment, with a notable abundance of Muribaculaceae and Romboutsia which may contribute to changes seen in the gut.
Collapse
Affiliation(s)
- Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bhavana Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sangam Kandel
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Michael S. Robeson
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
7
|
Martens GA, Folkow LP, Burmester T, Geßner C. Elevated antioxidant defence in the brain of deep-diving pinnipeds. Front Physiol 2022; 13:1064476. [PMID: 36589435 PMCID: PMC9800987 DOI: 10.3389/fphys.2022.1064476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
While foraging, marine mammals undertake repetitive diving bouts. When the animal surfaces, reperfusion makes oxygen readily available for the electron transport chain, which leads to increased production of reactive oxygen species and risk of oxidative damage. In blood and several tissues, such as heart, lung, muscle and kidney, marine mammals generally exhibit an elevated antioxidant defence. However, the brain, whose functional integrity is critical to survival, has received little attention. We previously observed an enhanced expression of several antioxidant genes in cortical neurons of hooded seals (Cystophora cristata). Here, we studied antioxidant gene expression and enzymatic activity in the visual cortex, cerebellum and hippocampus of harp seals (Pagophilus groenlandicus) and hooded seals. Moreover, we tested several genes for positive selection. We found that antioxidants in the first line of defence, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione (GSH) were constitutively enhanced in the seal brain compared to mice (Mus musculus), whereas the glutaredoxin and thioredoxin systems were not. Possibly, the activity of the latter systems is stress-induced rather than constitutively elevated. Further, some, but not all members, of the glutathione-s-transferase (GST) family appear more highly expressed. We found no signatures of positive selection, indicating that sequence and function of the studied antioxidants are conserved in pinnipeds.
Collapse
Affiliation(s)
- Gerrit A. Martens
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Lars P. Folkow
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Thorsten Burmester
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Cornelia Geßner
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany,*Correspondence: Cornelia Geßner,
| |
Collapse
|
8
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Li X, Tong J, Liu J, Wang Y. Down-regulation of ROCK2 alleviates ethanol-induced cerebral nerve injury partly by the suppression of the NF-κB signaling pathway. Bioengineered 2021; 11:779-790. [PMID: 32684089 PMCID: PMC8291877 DOI: 10.1080/21655979.2020.1795404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol consumption leads to hippocampal neuronal impairment, which related to neuronal death, oxidative stress, and inflammatory response. Rho-associated protein kinase 2 (ROCK2) is a major regulator in the central nervous system injury. However, the effects of ROCK2 in ethanol-induced brain injury have not been explored. In this work, we investigated the neuroprotective effects and the mechanism of ROCK2 inhibition in vivo. Wistar rats were exposed to 37% ethanol for 8 weeks to establish brain injury models. Morris water maze test was performed to evaluate cognitive function, and we found that the down-regulation of ROCK2 reduced the escape latency and increased the passing times and percentage of time spent in the target quadrant of rats. The results of H&E staining and Nissl staining showed that ROCK2 inhibition alleviated the pathological injury induced by ethanol. PI staining and Western blot confirmed that inhibiting ROCK2 attenuated the neuronal death and apoptosis as reflected by the reduced PI-positive neurons and the decreased expression of cleaved-caspase-3 and cleaved-caspase-9. Furthermore, the down-regulation of ROCK2 ameliorated the oxidative stress and inflammatory response induced by ethanol in rats as reflected by the up-regulation of IL-10, SOD, and GSH and reduction of TNF-α, IL-6, and MDA respectively. Additionally, Western blot and EMSA analysis revealed that the down-regulation of ROCK2 suppressed the nuclear transfer of NF-κB p65. In conclusion, our data suggested that ROCK2 inhibition ameliorated ethanol-mediated hippocampal neuronal impairment by anti-apoptotic, anti-inflammatory, anti-oxidative effects at least partially through the suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Xinguo Li
- Department of Neurosurgery, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Jing Tong
- Department of Gastroenterology, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Jihui Liu
- Department of Neurosurgery, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Yibao Wang
- Department of Neurosurgery, The First Hospital of China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
10
|
Qin N, Qin H. Efficacy and safety of high and low dose recombinant human erythropoietin on neurodevelopment of premature infants: A meta-analysis. Medicine (Baltimore) 2021; 100:e25805. [PMID: 33950982 PMCID: PMC8104141 DOI: 10.1097/md.0000000000025805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To evaluate the effect of recombinant human erythropoietin (rhEPO) in nervous system of premature infants including different dosage. METHODS The multiple databases like Pubmed, Embase, Cochrane databases and China National Knowledge Database were used to search for the relevant studies, and full-text articles involved in the evaluation on effect of rhEPO for neurodevelopment among premature infants. Review Manager 5.2 was adopted to estimate the effects of the results among selected articles. Forest plots, sensitivity analysis and bias analysis for the articles included were also conducted. RESULTS Finally, 10 eligible studies were eventually satisfied the included criteria. The results showed that rhEPO was much higher than placebo group in composite cognitive score (MD = 5.89, 95% confidential interval {CI} [1.95, 9.82], P = .003; I2 = 89%), there was no significant difference between rhEPO and placebo groups (RR = 0.93, 95% CI [0.60, 1.43], P = .74; I2 = 51%) and no difference in neurodevelopmental impairment between rhEPO and placebo was insignificant (RR = 0.55 95% CI [0.30, 1.02], P = .06). Composite cognitive score in high dose rhEPO was much higher than placebo group (MD = 10.39, 95% CI [8.84, 11.93], P < .0001, I2 = 0%) and low dose rhEPO also had higher composite cognitive score than placebo group (MD = 2.58, 95% CI [0.80, 4.37], P = .004, I2 = 11%). Limited publication bias was observed in this study. CONCLUSION Recombinant human erythropoietin might be a promotor for neurodevelopment among premature infants with limited adverse events.
Collapse
|
11
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
12
|
Rolfes S, Munro DAD, Lyras EM, Matute E, Ouk K, Harms C, Böttcher C, Priller J. Lentiviral delivery of human erythropoietin attenuates hippocampal atrophy and improves cognition in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2020; 144:105024. [PMID: 32702387 DOI: 10.1016/j.nbd.2020.105024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a trinucleotide (CAG) repeat expansion in the huntingtin gene (HTT). The R6/2 transgenic mouse model of HD expresses exon 1 of the human HTT gene with approximately 150 CAG repeats. R6/2 mice develop progressive behavioural abnormalities, impaired neurogenesis, and atrophy of several brain regions. In recent years, erythropoietin (EPO) has been shown to confer neuroprotection and enhance neurogenesis, rendering it a promising molecule to attenuate HD symptoms. In this study, the therapeutic potential of EPO was evaluated in female R6/2 transgenic mice. A single bilateral injection of a lentivirus encoding human EPO (LV-hEPO) was performed into the lateral ventricles of R6/2 mice at disease onset (8 weeks of age). Control groups were either untreated or injected with a lentivirus encoding green fluorescent protein (LV-GFP). Thirty days after virus administration, hEPO mRNA and protein were present in injected R6/2 brains. Compared to control R6/2 mice, LV-hEPO-treated R6/2 mice exhibited reduced hippocampal atrophy, increased neuroblast branching towards the dentate granular cell layer, and improved spatial cognition. Our results suggest that LV-hEPO administration may be a promising strategy to reduce cognitive impairment in HD.
Collapse
Affiliation(s)
- Simone Rolfes
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Ekaterini-Maria Lyras
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eduardo Matute
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Koliane Ouk
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; DZNE Berlin, 10117 Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK; DZNE Berlin, 10117 Berlin, Germany.
| |
Collapse
|
13
|
Klapproth AP, Shevtsov M, Stangl S, Li WB, Multhoff G. A New Pharmacokinetic Model Describing the Biodistribution of Intravenously and Intratumorally Administered Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in a GL261 Xenograft Glioblastoma Model. Int J Nanomedicine 2020; 15:4677-4689. [PMID: 32669844 PMCID: PMC7335747 DOI: 10.2147/ijn.s254745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background Superparamagnetic iron oxide nanoparticles (SPIONs) have displayed multifunctional applications in cancer theranostics following systemic delivery. In an effort to increase the therapeutic potential of local therapies (including focal hyperthermia), nanoparticles can also be administered intratumorally. Therefore, the development of a reliable pharmacokinetic model for the prediction of nanoparticle distribution for both clinically relevant routes of delivery is of high importance. Materials and Methods The biodistribution of SPIONs (of two different sizes – 130 nm and 60 nm) radiolabeled with zirconium-89 or technetium-99m following intratumoral or intravenous injection was investigated in C57/Bl6 mice bearing subcutaneous GL261 glioblastomas. Based on PET/CT biodistribution data, a novel pharmacokinetic model was established for a better understanding of the pharmacokinetics of the SPIONs after both administration routes. Results The PET image analysis of the nanoparticles (confirmed by histology) demonstrated the presence of radiolabeled nanoparticles within the glioma site (with low amounts in the liver and spleen) at all investigated time points following intratumoral injection. The mathematical model confirmed the dynamic nanoparticle redistribution in the organism over a period of 72 h with an equilibrium reached after 100 h. Intravenous injection of nanoparticles demonstrated a different distribution pattern with a rapid particle retention in all organs (particularly in liver and spleen) and a subsequent slow release rate. Conclusion The mathematical model demonstrated good agreement with experimental data derived from tumor mouse models suggesting the value of this tool to predict the real-time pharmacokinetic features of SPIONs in vivo. In the future, it is planned to adapt our model to other nanoparticle formulations to more precisely describe their biodistribution in in vivo model systems.
Collapse
Affiliation(s)
- Alexander P Klapproth
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum Rechts Der Isar, Munich, Germany.,Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Maxim Shevtsov
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum Rechts Der Isar, Munich, Germany.,Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Department of Biotechnology, First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia.,Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, St. Petersburg, Russia.,National Center for Neurosurgery, Nur-Sultan, Kazakhstan.,Department of Biomedical Cell Technologies, Far Eastern Federal University, Vladivostok, Russia
| | - Stefan Stangl
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum Rechts Der Isar, Munich, Germany
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum Rechts Der Isar, Munich, Germany
| |
Collapse
|
14
|
Dara T, Vatanara A, Sharifzadeh M, Khani S, Vakilinezhad MA, Vakhshiteh F, Nabi Meybodi M, Sadegh Malvajerd S, Hassani S, Mosaddegh MH. Improvement of memory deficits in the rat model of Alzheimer's disease by erythropoietin-loaded solid lipid nanoparticles. Neurobiol Learn Mem 2019; 166:107082. [PMID: 31493483 DOI: 10.1016/j.nlm.2019.107082] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/18/2019] [Accepted: 08/29/2019] [Indexed: 01/14/2023]
Abstract
Erythropoietin (EPO), a hematopoietic factor, is one of the promising neuroprotective candidates in neurodegenerative disorders such as Alzheimer's disease (AD). Due to the high molecular weight, hydrophilicity and rapid clearance from circulation, EPO could not completely pass the blood-brain barrier in the case of systemic administration. To overcome this limitation, EPO-loaded Solid Lipid Nanoparticle (EPO-SLN) was developed in this study using a double emulsion solvent evaporation method (W1/O/W2). Glycerin monostearate (GMS), span®80/span®60, Dichloromethane (DCM) and tween®80 were chosen as lipid, internal phase surfactants, solvent, and external aqueous phase surfactant, respectively. After physicochemical evaluations, the effect of EPO-SLN on the beta-amyloid-induced AD-like animal model was investigated. In vivo evaluations, it was demonstrated that the memory was significantly restored in cognitive deficit rats treated with EPO-SLN compared to the rats treated with native drug using the Morris water maze test. In addition, EPO-SLN reduced the oxidative stress, ADP/ATP ratio, and beta-amyloid plaque deposition in the hippocampus more effectively than the free EPO. Hence, the designed SLN can be regarded as a promising system for safe and effective delivery of EPO in the AD.
Collapse
Affiliation(s)
- Tahereh Dara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Samira Khani
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Faezeh Vakhshiteh
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabi Meybodi
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Soroor Sadegh Malvajerd
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
15
|
Effects of neonatal ethanol on cerebral cortex development through adolescence. Brain Struct Funct 2019; 224:1871-1884. [PMID: 31049690 DOI: 10.1007/s00429-019-01881-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/19/2019] [Indexed: 02/03/2023]
Abstract
Neonatal brain lesions cause deficits in structure and function of the cerebral cortex that sometimes are not fully expressed until adolescence. To better understand the onset and persistence of changes caused by postnatal day 7 (P7) ethanol treatment, we examined neocortical cell numbers, volume, surface area and thickness from neonatal to post-adolescent ages. In control mice, total neuron number decreased from P8 to reach approximately stable levels at about P30, as expected from normal programmed cell death. Cortical thickness reached adult levels by P14, but cortical volume and surface area continued to increase from juvenile (P20-30) to post-adolescent (P54-93) ages. P7 ethanol caused a reduction of total neurons by P14, but this deficit was transient, with later ages having only small and non-significant reductions. Previous studies also reported transient neuron loss after neonatal lesions that might be partially explained by an acute acceleration of normally occurring programmed cell death. GABAergic neurons expressing parvalbumin, calretinin, or somatostatin were reduced by P14, but unlike total neurons the reductions persisted or increased in later ages. Cortical volume, surface area and thickness were also reduced by P7 ethanol. Cortical volume showed evidence of a transient reduction at P14, and then was reduced again in post-adolescent ages. The results show a developmental sequence of neonatal ethanol effects. By juvenile ages the cortex overcomes the P14 deficit of total neurons, whereas P14 GABA cell deficits persist. Cortical volume reductions were present at P14, and again in post-adolescent ages.
Collapse
|
16
|
Wang H, Wang X, Li Y, Yu H, Wang C, Feng C, Xu G, Chen J, You J, Wang P, Wu X, Zhao R, Zhang G. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium. Exp Ther Med 2018; 15:3791-3800. [PMID: 29581737 PMCID: PMC5863573 DOI: 10.3892/etm.2018.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 01/26/2023] Open
Abstract
It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yan Li
- No.1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
17
|
Wei S, Luo C, Yu S, Gao J, Liu C, Wei Z, Zhang Z, Wei L, Yi B. Erythropoietin ameliorates early brain injury after subarachnoid haemorrhage by modulating microglia polarization via the EPOR/JAK2-STAT3 pathway. Exp Cell Res 2017; 361:342-352. [DOI: 10.1016/j.yexcr.2017.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
18
|
Memisoglu A, Kolgazi M, Yaman A, Bahadir E, Sirvanci S, Yeğen BÇ, Ozek E. Neuroprotective Effect of Erythropoietin on Phenylhydrazine-Induced Hemolytic Hyperbilirubinemia in Neonatal Rats. Neurochem Res 2016; 42:1026-1037. [PMID: 27995496 DOI: 10.1007/s11064-016-2135-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/04/2023]
Abstract
Neonatal unconjugated hyperbilirubinemia might cause severe bilirubin neurotoxicity in especially hemolytic conditions. The study aimed to elucidate the potential neuroprotective effects of erythropoietin (EPO) in hemolysis-induced hyperbilirubinemia. In newborn rats, hyperbilirubinemia secondary to hemolysis was induced by injecting with phenylhydrazine hydrochloride (PHZ) and rats were injected with either vehicle or EPO. At 54th hour of the PHZ injection, rats were decapitated. Serum levels of TNF-α, IL-1β, IL-10, brain-derived neurotrophic factor (BDNF) and S100-B and brain malondialdehyde, glutathione levels and myeloperoxidase activities were measured. TUNEL staining and NF-κB expression were evaluated. As compared to control pups, in vehicle-treated PHZ group, TNF-α and IL-1β levels, malondialdehyde level and myeloperoxidase activity were increased with concomitant decreases in IL-10 and glutathione. All EPO regimens reversed PHZ-induced alterations in IL-10, TNF-α, malondialdehyde and glutathione levels. Three-day-treatment abolished increases in myeloperoxidase activity and IL-1β levels, while BDNF and S100-B were elevated. Increased TUNEL (+) cells and NF-κB expressions in the brain of PHZ group were reduced in the 3-day-treated group. EPO exerted anti-inflammatory effects on PHZ-induced neural damage in newborn rats, while the neuroprotection was more obvious when the treatments were repeated successively. The results suggest that EPO treatment may have a therapeutic potential in supporting neuroplasticity in the hyperbilirubinemic neonates.
Collapse
Affiliation(s)
- Asli Memisoglu
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Akan Yaman
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Elif Bahadir
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey.
| | - Eren Ozek
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
19
|
Tunc Ata M, Turgut G, Akbulut M, Kocyigit A, Karabulut A, Senol H, Turgut S. Effect of Erythropoietin and Stem Cells on Traumatic Brain Injury. World Neurosurg 2016; 89:355-61. [PMID: 26850972 DOI: 10.1016/j.wneu.2016.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To investigate the healing effects of erythropoietin (EPO) and stem cells (SCs) in traumatic brain injury (TBI). METHODS Twenty-nine Wistar albino rats were used and separated into the following groups: control (C), EPO, SC, and SC+EPO. Group C received a TBI only, with no treatment. In the EPO group, 1000 U/kg EPO was given intraperitoneally at 30 minutes after TBI. In SC group, immediately after formation of TBI, 3 × 10,000 CD34(+) stem cells were injected into the affected area. In the SC+EPO group, half an hour after TBI and the injection of stem cells, 1000 U/kg EPO was injected. Before and after injury, trauma coordination performance was measured by the rotarod and inclined plane tests. RESULTS Seven weeks after trauma, rat brains were examined by radiology and histology. Rotarod performance test did not change remarkably, even after the injury. Compared with group C, the SC+EPO group was found to have significant differences in the inclined plane test results. CONCLUSIONS Separately given, SCs and EPO have a positive effect on TBI, and our findings suggest that their coadministration is even more powerful.
Collapse
Affiliation(s)
- Melek Tunc Ata
- Department of Physiology, Pamukkale University, Denizli, Turkey.
| | - Günfer Turgut
- Department of Physiology, Pamukkale University, Denizli, Turkey
| | - Metin Akbulut
- Department of Pathology, Pamukkale University, Denizli, Turkey
| | - Ali Kocyigit
- Department of Radiology, Pamukkale University, Denizli, Turkey
| | - Aysun Karabulut
- Department of Obstetrics and Gynecology, Pamukkale University, Denizli, Turkey
| | - Hande Senol
- Department of Biostatistics, Pamukkale University, Denizli, Turkey
| | - Sebahat Turgut
- Department of Physiology, Pamukkale University, Denizli, Turkey
| |
Collapse
|
20
|
Stragier E, Martin V, Davenas E, Poilbout C, Mongeau R, Corradetti R, Lanfumey L. Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice. Transl Psychiatry 2015; 5:e696. [PMID: 26670281 PMCID: PMC5068583 DOI: 10.1038/tp.2015.183] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
Acute or chronic administrations of high doses of ethanol in mice are known to produce severe cognitive deficits linked to hippocampal damage. However, we recently reported that chronic and moderate ethanol intake in C57BL/6J mice induced chromatin remodeling within the Bdnf promoters, leading to both enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal neurogenesis under free-choice protocol. We performed here a series of cellular and behavioral studies to analyze the consequences of these modifications. We showed that a 3-week chronic free-choice ethanol consumption in C57BL/6J mice led to a decrease in DNA methylation of the Bdnf gene within the CA1 and CA3 subfields of the hippocampus, and upregulated hippocampal BDNF signaling pathways mediated by ERK, AKT and CREB. However, this activation did not affect long-term potentiation in the CA1. Conversely, ethanol intake impaired learning and memory capacities analyzed in the contextual fear conditioning test and the novel object recognition task. In addition, ethanol increased behavioral perseveration in the Barnes maze test but did not alter the mouse overall spatial capacities. These data suggested that in conditions of chronic and moderate ethanol intake, the chromatin remodeling leading to BDNF signaling upregulation is probably an adaptive process, engaged via epigenetic regulations, to counteract the cognitive deficits induced by ethanol.
Collapse
Affiliation(s)
- E Stragier
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - V Martin
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - E Davenas
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - C Poilbout
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - R Mongeau
- Université Paris Descartes, UMR S894, Paris, France
- Pharmacologie de la circulation cérébrale EA 4475, Faculté de pharmacie Université Paris Descartes, Paris, France
| | - R Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - L Lanfumey
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| |
Collapse
|
21
|
Jia Z, Xue R, Ma S, Xu J, Guo S, Li S, Zhang E, Wang J, Yang J. Erythropoietin Attenuates the Memory Deficits in Aging Rats by Rescuing the Oxidative Stress and Inflammation and Promoting BDNF Releasing. Mol Neurobiol 2015; 53:5664-70. [DOI: 10.1007/s12035-015-9438-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
|
22
|
Brolese G, Lunardi P, de Souza DF, Lopes FM, Leite MC, Gonçalves CA. Pre- and postnatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal glutamate uptake in adolescent offspring. PLoS One 2015; 10:e0127845. [PMID: 25978644 PMCID: PMC4433332 DOI: 10.1371/journal.pone.0127845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
The developing brain is vulnerable to the effects of ethanol. Glutamate is the main mediator of excitatory signals in the brain and is probably involved in most aspects of normal brain function during development. The aim of this study was to investigate vulnerability to and the impact of ethanol toxicity on glutamate uptake signaling in adolescent rats after moderate pre and postnatal ethanol exposure. Pregnant female rats were divided into three groups and treated only with water (control), non-alcoholic beer (vehicle) or 10% (v/v) beer solution (moderate prenatal alcohol exposure—MPAE). Thirty days after birth, adolescent male offspring were submitted to hippocampal acute slice procedure. We assayed glutamate uptake and measured glutathione content and also quantified glial glutamate transporters (EAAT 1 and EAAT 2). The glutamate system vulnerability was tested with different acute ethanol doses in naïve rats and compared with the MPAE group. We also performed a (lipopolysaccharide-challenge (LPS-challenge) with all groups to test the glutamate uptake response after an insult. The MPAE group presented a decrease in glutamate uptake corroborating a decrease in glutathione (GSH) content. The reduction in GSH content suggests oxidative damage after acute ethanol exposure. The glial glutamate transporters were also altered after prenatal ethanol treatment, suggesting a disturbance in glutamate signaling. This study indicates that impairment of glutamate uptake can be dose-dependent and the glutamate system has a higher vulnerability to ethanol toxicity after moderate ethanol exposure In utero. The effects of pre- and postnatal ethanol exposure can have long-lasting impacts on the glutamate system in adolescence and potentially into adulthood.
Collapse
Affiliation(s)
- Giovana Brolese
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Paula Lunardi
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniela F. de Souza
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda M. Lopes
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina C. Leite
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Wu YW, Gonzalez FF. Erythropoietin: a novel therapy for hypoxic-ischaemic encephalopathy? Dev Med Child Neurol 2015; 57 Suppl 3:34-9. [PMID: 25800490 DOI: 10.1111/dmcn.12730] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 11/27/2022]
Abstract
Perinatal hypoxic-ischaemic encephalopathy (HIE) occurs in 1 to 3 per 1000 term births. HIE is not preventable in most cases, and therapies are limited. Hypothermia improves outcomes and is the current standard of care. Yet, clinical trials suggest that 44-53% of infants who receive hypothermia will die or suffer moderate to severe neurological disability. In this article, we review the preclinical and clinical evidence for erythropoietin (EPO) as a potential novel neuroprotective agent for the treatment of HIE. EPO is a novel neuroprotective agent, with remarkable neuroprotective and neuroregenerative effects in animals. Rodent and primate models of neonatal brain injury support the safety and efficacy of multiple EPO doses for improving histological and functional outcomes after hypoxia-ischaemia. Small clinical trials of EPO in neonates with HIE have also provided evidence supporting safety and preliminary efficacy in humans. There is currently insufficient evidence to support the use of high-dose EPO in newborns with HIE. However, several on-going trials will provide much needed data regarding the safety and efficacy of this potential new therapy when given in conjunction with hypothermia for HIE. Novel neuroprotective therapies are needed to further reduce the rate and severity of neurodevelopmental disabilities resulting from HIE. High-dose EPO is a promising therapy that can be administered in conjunction with hypothermia. However, additional data are needed to determine the safety and efficacy of this adjuvant therapy for HIE.
Collapse
Affiliation(s)
- Yvonne W Wu
- Department of Neurology, University of California, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | | |
Collapse
|
24
|
Bond WS, Rex TS. Evidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, Astrocytes, and Microglia. Front Immunol 2014; 5:523. [PMID: 25374571 PMCID: PMC4205853 DOI: 10.3389/fimmu.2014.00523] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a normal and healthy response to neuronal damage. However, excessive or chronic neuroinflammation exacerbates neurodegeneration after trauma and in progressive diseases such as Alzheimer’s, Parkinson’s, age-related macular degeneration, and glaucoma. Therefore, molecules that modulate neuroinflammation are candidates as neuroprotective agents. Erythropoietin (EPO) is a known neuroprotective agent that indirectly attenuates neuroinflammation, in part, by inhibiting neuronal apoptosis. In this review, we provide evidence that EPO also modulates neuroinflammation upstream of apoptosis by acting directly on glia. Further, the signaling induced by EPO may differ depending on cell type and context possibly as a result of activation of different receptors. While significant progress has been made in our understanding of EPO signaling, this review also identifies areas for future study in terms of the role of EPO in modulating neuroinflammation.
Collapse
Affiliation(s)
- Wesley S Bond
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| | - Tonia S Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| |
Collapse
|
25
|
Nguyen AQ, Cherry BH, Scott GF, Ryou MG, Mallet RT. Erythropoietin: powerful protection of ischemic and post-ischemic brain. Exp Biol Med (Maywood) 2014; 239:1461-75. [PMID: 24595981 DOI: 10.1177/1535370214523703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10-15 min of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side-effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO's membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain's resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the prospects for induction of EPO production within the brain by the intermediary metabolite, pyruvate.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Brandon H Cherry
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Gary F Scott
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Myoung-Gwi Ryou
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Robert T Mallet
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| |
Collapse
|
26
|
Abstract
This article explains the mechanisms underlying choices of pharmacotherapy for hypoxic-ischemic insults of both preterm and term babies. Some preclinical data are strong enough that clinical trials are now underway. Challenges remain in deciding the best combination therapies for each age and insult.
Collapse
Affiliation(s)
- Sandra E. Juul
- University of Washington, Department of Pediatrics, 1959 NE Pacific St, Box 356320, Seattle, Washington 98195, Telephone: (206) 221-6814; Fax: (206) 543-8926
| | - Donna M. Ferriero
- Neonatal Brain Disorders Laboratory, University of California, San Francisco, 675 Nelson Rising Lane, Room 494, Box 0663, San Francisco, California 94143, Phone: (415) 502-7319, Fax: (415) 486-2297
| |
Collapse
|
27
|
Zhang J, Wang Q, Xiang H, Xin Y, Chang M, Lu H. Neuroprotection with erythropoietin in preterm and/or low birth weight infants. J Clin Neurosci 2014; 21:1283-7. [PMID: 24650681 DOI: 10.1016/j.jocn.2013.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/13/2013] [Accepted: 10/27/2013] [Indexed: 12/01/2022]
Abstract
Neonatal brain injury caused by extreme prematurity remains a great challenge for prevention. Erythropoietin (EPO) has shown neuroprotective effects in a series of neonatal experimental models and recent clinical trials of premature infants. In this meta-analysis of seven clinical trials, EPO was associated with a highly reproducible reduction in the risk of neurodevelopmental disability in preterm infants. However, there was no difference in the risk for morbidity, cerebral palsy, visual deficit, severe hearing deficit, necrotizing enterocolitis, intracranial hemorrhage and patent ductus arteriosus. The use of EPO, to some extent, is associated with reduction in neurodevelopmental disability in preterm infants. More double blind randomized controlled trials are needed to establish the best therapeutic approach for neuroprotection in preterm infants.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Qiuxia Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Hong Xiang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Yue Xin
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Ming Chang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China.
| |
Collapse
|
28
|
Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2014; 2:144. [PMID: 25642419 PMCID: PMC4294124 DOI: 10.3389/fped.2014.00144] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia - the so-called "brain macrophages," infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds.
Collapse
Affiliation(s)
- Utpal S Bhalala
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Raymond C Koehler
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Sujatha Kannan
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
29
|
Hayley S, Litteljohn D. Neuroplasticity and the next wave of antidepressant strategies. Front Cell Neurosci 2013; 7:218. [PMID: 24312008 PMCID: PMC3834236 DOI: 10.3389/fncel.2013.00218] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/29/2013] [Indexed: 12/13/2022] Open
Abstract
Depression is a common chronic psychiatric disorder that is also often co-morbid with numerous neurological and immune diseases. Accumulating evidence indicates that disturbances of neuroplasticity occur with depression, including reductions of hippocampal neurogenesis and cortical synaptogenesis. Improper trophic support stemming from stressor-induced reductions of growth factors, most notably brain derived neurotrophic factor (BDNF), likely drives such aberrant neuroplasticity. We posit that psychological and immune stressors can interact upon a vulnerable genetic background to promote depression by disturbing BDNF and neuroplastic processes. Furthermore, the chronic and commonly relapsing nature of depression is suggested to stem from "faulty wiring" of emotional circuits driven by neuroplastic aberrations. The present review considers depression in such terms and attempts to integrate the available evidence indicating that the efficacy of current and "next wave" antidepressant treatments, whether used alone or in combination, is at least partially tied to their ability to modulate neuroplasticity. We particularly focus on the N-methyl-D-aspartate (NMDA) antagonist, ketamine, which already has well documented rapid antidepressant effects, and the trophic cytokine, erythropoietin (EPO), which we propose as a potential adjunctive antidepressant agent.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | | |
Collapse
|
30
|
Singh HJ, Syeda TU, Kakalij RM, Prasad VV, Diwan PV. Erythropoietin protects polychlorinated biphenyl (Aroclor 1254) induced neurotoxicity in mice. Eur J Pharmacol 2013; 707:54-60. [DOI: 10.1016/j.ejphar.2013.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/02/2013] [Accepted: 03/08/2013] [Indexed: 12/20/2022]
|
31
|
Seymen P, Aytac E, Esen F, Tel C, Demir F, Genc H, Uzun H, Oz B, Altug T, Seymen HO. Darbepoetin α ameliorates neuronal damage in a rat model of acute ethanol intoxication. Int J Neurosci 2012; 123:99-103. [PMID: 23057801 DOI: 10.3109/00207454.2012.738732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Acute ethanol intoxication has been shown to cause oxidative damage in many organ systems including the brain. Erythropoietin has antioxidant effects and prevents neuronal damage in the animal model of ischemic brain injury. In this study, we aimed to investigate the effects of darbepoetin alpha, an analog of erythropoietin with a longer half-life and higher in vivo activity, on ethanol-induced acute brain injury. METHODS Forty-eight Wistar albino rats were allocated to four groups. The first group received ethanol treatment (E), the second group was treated with ethanol and darbepoetin (ED), the third group received only saline treatment (S), and the fourth group received both saline and darbepoetin treatment (SD). Plasma S100-β and neuron-specific enolase (NSE) levels were measured. Histopathological evaluation of the brains was performed. RESULTS The plasma S100-β and NSE levels were significantly lower in group ED compared with group E. In group E, we have observed focal red-neuron formation at the granular layer of the dentate gyrus. We did not observe any histopathological changes in the other groups (ED, S, and SD). CONCLUSION Our findings suggest that darbepoetin alpha has neuroprotective effect in acute ethanol intoxication, possibly through its antioxidant effect.
Collapse
Affiliation(s)
- Pinar Seymen
- T.C. Ministry of Health Haydarpasa Numune Research and Training Hospital, Internal Medicine Clinic, Hemodialysis Unit, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Drever N, Yin H, Kechichian T, Costantine M, Longo M, Saade GR, Bytautiene E. The expression of antioxidant enzymes in a mouse model of fetal alcohol syndrome. Am J Obstet Gynecol 2012; 206:358.e19-22. [PMID: 22365038 DOI: 10.1016/j.ajog.2012.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/08/2011] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Superoxide dismutase, glutathione peroxidase, and catalase prevent cellular damage produced by free radicals. Our objective was to evaluate if prenatal alcohol exposure decreased the expression of antioxidant enzymes in the brain, liver, or placenta of fetal mice. STUDY DESIGN Timed, pregnant C57BL6/J mice were treated on gestational day 8 with intraperitoneal injection of alcohol (0.03 mL/g) or saline (control). Fetuses were harvested on gestational day 18. Fetal brain, liver, and placenta were analyzed for mRNA expression of superoxide dismutase, glutathione peroxidase, and catalase by real-time polymerase chain reaction, with 18S RNA used as reference. RESULTS Superoxide dismutase, glutathione peroxidase, and catalase expression was lower in fetal brains exposed to alcohol with no differences detected in the liver or placenta between the 2 groups. CONCLUSION Maternal alcohol consumption causes a decrease in superoxide dismutase, glutathione peroxidase, and catalase expression in the fetal brain. This may explain the long-term neurologic findings in fetal alcohol syndrome.
Collapse
|
33
|
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011; 82:1291-303. [DOI: 10.1016/j.bcp.2011.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
|
34
|
Erythropoietin in neonatal brain protection: the past, the present and the future. Brain Dev 2011; 33:632-43. [PMID: 21109375 DOI: 10.1016/j.braindev.2010.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022]
Abstract
Over the last decade, neuroprotective effects of erythropoietin (Epo) and its underlying mechanisms in terms of signal transduction pathways have been defined and there is a growing interest in the potential therapeutic use of Epo for neuroprotection. Several mechanisms by which Epo provides neuroprotection are recognized. In this review, we focused on the neuroprotective mechanisms of Epo and provide a short overview on both experimental and clinical studies, testing Epo as a neuroprotective agent in the neonatal brain injury, and the safety concerns with the clinical use of Epo treatment in neonates.
Collapse
|
35
|
Brocardo PS, Gil-Mohapel J, Christie BR. The role of oxidative stress in fetal alcohol spectrum disorders. ACTA ACUST UNITED AC 2011; 67:209-25. [PMID: 21315761 DOI: 10.1016/j.brainresrev.2011.02.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
The ingestion of alcohol/ethanol during pregnancy can result in abnormal fetal development in both humans and a variety of experimental animal models. Depending on the pattern of consumption, the dose, and the period of exposure to ethanol, a myriad of structural and functional deficits can be observed. These teratogenic effects are thought to result from the ethanol-induced dysregulation of a variety of intracellular pathways ultimately culminating in toxicity and cell death. For instance, ethanol exposure can lead to the generation of reactive oxygen species (ROS) and produce an imbalance in the intracellular redox state, leading to an overall increase in oxidative stress. In the present review we will provide an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on the levels of oxidative stress in the central nervous system (CNS) of experimental models of fetal alcohol spectrum disorders (FASD). We will also review the evidence for the use of antioxidants as potential therapeutic strategies for the treatment of some of the neuropathological deficits characteristic of both rodent models of FASD and children afflicted with these disorders. We conclude that an imbalance in the intracellular redox state contributes to the deficits seen in FASD and suggest that antioxidants are potential candidates for the development of novel therapeutic strategies for the treatment of these developmental disorders.
Collapse
Affiliation(s)
- Patricia S Brocardo
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | | | | |
Collapse
|
36
|
Xiong T, Qu Y, Mu D, Ferriero D. Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci 2011; 29:583-91. [DOI: 10.1016/j.ijdevneu.2010.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/03/2010] [Accepted: 12/30/2010] [Indexed: 02/04/2023] Open
Affiliation(s)
- Tao Xiong
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
- Department of Newborn MedicineAffiliated Hospital of Luzhou Medical CollegeLuzhouChina
| | - Yi Qu
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
| | - Dezhi Mu
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
- Department of NeurologyNewborn Brain Research InstituteUniversity of CaliforniaSan FranciscoCAUSA
| | - Donna Ferriero
- Department of NeurologyNewborn Brain Research InstituteUniversity of CaliforniaSan FranciscoCAUSA
- Department of PediatricsUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
37
|
Sargin D, Friedrichs H, El-Kordi A, Ehrenreich H. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol 2010; 24:573-94. [PMID: 21619868 DOI: 10.1016/j.bpa.2010.10.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/11/2010] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO), originally discovered as hematopoietic growth factor, has direct effects on cells of the nervous system that make it a highly attractive candidate drug for neuroprotection/neuroregeneration. Hardly any other compound has led to so much preclinical work in the field of translational neuroscience than EPO. Almost all of the >180 preclinical studies performed by many independent research groups from all over the world in the last 12 years have yielded positive results on EPO as a neuroprotective drug. The fact that EPO was approved for the treatment of anemia >20 years ago and found to be well tolerated and safe, facilitated the first steps of translation from preclinical findings to the clinic. On the other hand, the same fact, naturally associated with loss of patent protection, hindered to develop EPO as a highly promising therapeutic strategy for application in human brain disease. Therefore, only few clinical neuroprotection studies have been concluded, all with essentially positive and stimulating results, but no further development towards the clinic has occurred thus far. This article reviews the preclinical and clinical work on EPO for the indications neuroprotection/neuroregeneration and cognition, and hopefully will stimulate new endeavours promoting development of EPO for the treatment of human brain diseases.
Collapse
Affiliation(s)
- Derya Sargin
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
38
|
Taranukhin AG, Taranukhina EY, Saransaari P, Podkletnova IM, Pelto-Huikko M, Oja SS. Neuroprotection by taurine in ethanol-induced apoptosis in the developing cerebellum. J Biomed Sci 2010; 17 Suppl 1:S12. [PMID: 20804586 PMCID: PMC2994388 DOI: 10.1186/1423-0127-17-s1-s12] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Acute ethanol administration leads to massive apoptotic neurodegeneration in the developing central nervous system. We studied whether taurine is neuroprotective in ethanol-induced apoptosis in the mouse cerebellum during the postnatal period. METHODS The mice were divided into three groups: ethanol-treated, ethanol+taurine-treated and controls. Ethanol (20% solution) was administered subcutaneously at a total dose of 5 g/kg (2.5 g/kg at time 1 h and 2.5 g/kg at 3 h) to the ethanol and ethanol+taurine groups. The ethanol+taurine group also received two injections of taurine (1 g/kg each, at time zero and at 4 h). To estimate apoptosis, immunostaining for activated caspase-3 and TUNEL staining were made in the mid-sagittal sections containing lobules I-X of the cerebellar vermis at 12 or 8 hours after the first taurine injection. Changes in the blood taurine level were monitored at each hour by reverse-phase high-performance liquid chromatography (HPLC). RESULTS Ethanol administration induced apoptosis of Purkinje cells on P4 in all cerebellar lobules, most extensively in lobules IX and X, and on P7 increased the number of activated caspase-3-immunoreactive and TUNEL-positive cells in the internal layer of the cerebellum. Administration of taurine significantly decreased the number of activated caspase-3-immunoreactive and TUNEL-positive cells in the internal layer of the cerebellum on P7, but had no effect on Purkinje cells in P4 mice. The high initial taurine concentration in blood of the ethanol+taurine group diminished dramatically during the experiment, not being different at 13 h from that in the controls. CONCLUSIONS We conclude that the neuroprotective action of taurine is not straightforward and seems to be different in different types of neurons and/or requires prolonged maintenance of the high taurine concentration in blood plasma.
Collapse
Affiliation(s)
- Andrey G Taranukhin
- Brain Research Center, University of Tampere Medical School, Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
39
|
Taurine Protects Immature Cerebellar Granullar Neurons against Acute Alcohol Administration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:159-67. [DOI: 10.1007/978-0-387-75681-3_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
40
|
Breggia AC, Wojchowski DM, Himmelfarb J. JAK2/Y343/STAT5 signaling axis is required for erythropoietin-mediated protection against ischemic injury in primary renal tubular epithelial cells. Am J Physiol Renal Physiol 2008; 295:F1689-95. [PMID: 18815218 DOI: 10.1152/ajprenal.90333.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin has emerged as a potential therapy for the treatment of ischemic tissue injury. In erythroid cells, the JAK2/Y343/STAT5 signaling axis has been shown to be necessary for stress but not steady-state erythropoiesis. The requirement for STAT5 activation in erythropoietin-mediated protection from ischemic injury has not been well-studied. To answer this question, we induced reproducible necrotic ischemic injury in primary mouse renal tubular epithelial cells (RTEC) in vitro. Using RTEC from erythropoietin receptor mutant mice with differential STAT5 signaling capabilities, we demonstrated first, that EPO administration either before or during injury significantly protects against mild-moderate but not severe necrotic cell death; and second, the JAK2/Y343/STAT5 signaling axis is required for protection against ischemic injury in primary mouse RTEC. In addition, we identified Pim-3, a prosurvival STAT5 target gene, as responsive to EPO in the noninjured kidney both in vitro and in vivo.
Collapse
Affiliation(s)
- A C Breggia
- Division of Nephrology and Transplantation, Maine Medical Center, 22 Bramhall St., Portland, ME 04102, USA
| | | | | |
Collapse
|
41
|
Li G, Ma R, Huang C, Tang Q, Fu Q, Liu H, Hu B, Xiang J. Protective effect of erythropoietin on beta-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci Lett 2008; 442:143-7. [PMID: 18634846 DOI: 10.1016/j.neulet.2008.07.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/25/2008] [Accepted: 07/02/2008] [Indexed: 01/28/2023]
Abstract
Erythropoietin (EPO), a haematopoietic growth factor has been reported to display neuroprotective properties in different animal models. In the present study, we investigated the neuroprotective effects of EPO on Abeta(25-35)-induced neuronal toxicity and its potential mechanisms in PC12 cells. Abeta(25-35) significantly reduced cell viability and increased the number of apoptotic-like cells. In addition, increased ROS production and decreased mitochondrial membrane potential were also found after Abeta(25-35) exposure. All of these phenotypes induced by Abeta(25-35) were markedly reversed by EPO. Pretreatment with EPO prior to Abeta(25-35) exposure significantly elevated cell viability, reduced Abeta(25-35)-induced apoptosis, decreased ROS production, and stabilized mitochondrial membrane potential. Furthermore, EPO also attenuated the downstream cascade following ROS, including Bcl-2/Bax, and caspase-3 activation. Our results suggest that EPO holds potential for neuroprotection and therefore, may be promising for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Paschos N, Lykissas MG, Beris AE. The role of erythropoietin as an inhibitor of tissue ischemia. Int J Biol Sci 2008; 4:161-8. [PMID: 18566695 PMCID: PMC2430987 DOI: 10.7150/ijbs.4.161] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/09/2008] [Indexed: 01/09/2023] Open
Abstract
Erythropoietin is a hypoxia-induced cytokine that stimulates erythropoiesis through the promotion of erythroid precursor cell proliferation and differentiation. Recent evidence supports that erythropoietin has a broad spectrum of tissue protecting actions affecting other systems than hemopoietic. Lately, research has focused on the nonhemopoietic effects of erythropoietin against tissue ischemia due to the unexpected observations of erythropoietin receptor expression by various cells, such as endothelial cells, neuronal cells, cardiac myocytes, and vascular smooth muscle cells. It has been shown that erythropoietin exerts its cardioprotective action during cardiac ischemic injury through reducing the infract size and enhancing new vessel formation over a longer time frame. Erythropoietin plays a crucial role in neuroprotection in many types of ischemic injury in the central and the peripheral nervous system. It is also strongly believed that erythropoietin exhibits a critical role in many other disorders that are pathogenetically related to acute tissue ischemia. This article reviews the proposed implications of erythropoietin in tissue ischemia and discusses the possible mechanisms for this action along with its potential therapeutic applications.
Collapse
Affiliation(s)
- Nikolaos Paschos
- Department of Orthopaedic Surgery, University of Ioannina School of Medicine, Ioannina, P.O. Box 45110, Greece
| | | | | |
Collapse
|
43
|
Ergur BU, Kiray M, Pekcetin C, Bagriyanik HA, Erbil G. Protective effect of erythropoietin pretreatment in testicular ischemia-reperfusion injury in rats. J Pediatr Surg 2008; 43:722-8. [PMID: 18405722 DOI: 10.1016/j.jpedsurg.2007.11.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND/PURPOSE This study was designed to investigate the effects of recombinant erythropoietin (EPO), a hormone widely used for treatment of uremic anemia, in rats subjected to testicular ischemia and reperfusion (I/R). METHODS Thirty-five male rats were divided into the following: control, sham operated, ischemia (I), I/R, and I/R + EPO groups. In the I group, 2 hours of left unilateral testicular torsion were performed, and in the I/R and I/R + EPO groups, an additional 2 hours of testicular detorsions were performed. The I/R + EPO group was pretreated intraperitoneally with EPO (500 IU/kg) before reperfusion. Testicular tissue samples were examined for biochemical and histopathologic parameters. Apoptotic cells in all testes were detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling technique and caspase 3 immunohistochemistry. RESULTS At histopathologic examination, ischemic changes in primary spermatocytes were noted in all torted testes. Cellular damage and apoptosis were more severe in ischemic groups than the EPO-pretreated group. There were statistically significant differences in tissue biochemical parameters in the I and I/R groups compared with the I/R + EPO group. CONCLUSIONS The results of the present study suggest that EPO exerts protective effects against I/R injury via the modulation of free radical scavenger's activities, which decreases lipid peroxidation levels and attenuation of apoptosis.
Collapse
Affiliation(s)
- Bekir Ugur Ergur
- Department of Histology and Embryology, Dokuz Eylul University Medical School, Balcova, Izmir 35340, Turkey.
| | | | | | | | | |
Collapse
|
44
|
Chen G, Ma C, Bower KA, Shi X, Ke Z, Luo J. Ethanol promotes endoplasmic reticulum stress-induced neuronal death: involvement of oxidative stress. J Neurosci Res 2008; 86:937-46. [PMID: 17941056 PMCID: PMC3097119 DOI: 10.1002/jnr.21540] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the most devastating effects of ethanol exposure during development is the loss of neurons in selected brain areas. The underlying cellular/molecular mechanisms remain unclear. The endoplasmic reticulum (ER) is involved in posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress, which is characterized by translational attenuation, synthesis of ER chaperone proteins such as GRP78, and activation of transcription factors such as ATF4, ATF6, and CHOP. Sustained ER stress ultimately leads to cell death. ER stress response can be induced experimentally by treatment with tunicamycin and thapsigargin. Using SH-SY5Y neuroblastoma cells and primary cerebellar granule neurons as in vitro models, we demonstrated that exposure to ethanol alone had little effect on the expression of markers for ER stress; however, ethanol drastically enhanced the expression of GRP78, CHOP, ATF4, ATF6, and phosphorylated PERK and eIF2 alpha when induced by tunicamycin and thapsigargin. Consistently, ethanol promoted tunicamycin- and thapsigargin-induced cell death. Ethanol rapidly caused oxidative stress in cultured neuronal cells; antioxidants blocked ethanol's potentiation of ER stress and cell death, suggesting that the ethanol-promoted ER stress response is mediated by oxidative stress. CHOP is a proapoptotic transcription factor. We further demonstrated that CHOP played an important role in ethanol-promoted cell death. Thus, the effect of ethanol may be mediated by the interaction between oxidative stress and ER stress.
Collapse
Affiliation(s)
- Gang Chen
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia
| | - Cuiling Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia
| | - Kimberly A. Bower
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia
| | - Xianglin Shi
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky
| | - Zunji Ke
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jia Luo
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
45
|
Malá H, Rodriguez Castro M, Dall Jørgensen K, Mogensen J. Effects of erythropoietin on posttraumatic place learning in fimbria-fornix transected rats after a 30-day postoperative pause. J Neurotrauma 2007; 24:1647-57. [PMID: 17970627 DOI: 10.1089/neu.2007.0292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human recombinant erythropoietin (EPO) has been shown to exert neuroprotective effects following both vascular and mechanical brain injury. Previously, we showed that behavioral symptoms associated with mechanical lesions of the hippocampus are nearly abolished due to EPO treatment. In these studies, the EPO administration took place simultaneously with the infliction of brain injury and the rehabilitation training started 6-7 days postoperatively. In the present study, we tested whether the therapeutic effect of EPO on the acquisition of an allocentric eight-arm radial maze spatial task also manifests itself if the rehabilitative training is postponed. Postoperatively, the animals were left without any specific stimulation for 30 days. The current results show an improved behavioral performance of the EPO-treated lesioned group relative to the saline-treated lesioned group, and confirm EPO's therapeutic effect even in case of postponed rehabilitation. However, compared to the control group, the EPO-treated lesioned group demonstrated an impaired task acquisition. All subjects eventually recovered functionally. Subsequently, the animals were given behavioral challenges during which the cue constellation in the room was changed. The challenges revealed that, although the EPO-treated lesion group had achieved the same level of task proficiency as the control group, the cognitive mechanisms mediating the task performance in the EPO-treated lesion group (as well as in the saline-treated lesion group) were dissimilar from those mediating the task in the control group. Both the EPO-treated and the saline-treated lesion group demonstrated an increased dependency on the original cue configuration.
Collapse
Affiliation(s)
- Hana Malá
- Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
46
|
Guneli E, Cavdar Z, Islekel H, Sarioglu S, Erbayraktar S, Kiray M, Sokmen S, Yilmaz O, Gokmen N. Erythropoietin protects the intestine against ischemia/ reperfusion injury in rats. Mol Med 2007; 13:509-17. [PMID: 17873970 PMCID: PMC1976860 DOI: 10.2119/2007-00032.guneli] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/17/2007] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that erythropoietin (EPO) has protective effects against ischemia/reperfusion (I/R) injury in several tissues. The aim of this study was to determine whether EPO could prevent intestinal tissue injury induced by I/R. Wistar rats were subjected to intestinal ischemia (30 min) and reperfusion (60 min). A single dose of EPO (5000 U/kg) was administered intraperitoneally at two different time points: either at five minutes before the onset of ischemia or at the onset of reperfusion. At the end of the reperfusion period, jejunum was removed for examinations. Myeloperoxidase (MPO), malondialdehyde (MDA), and antioxidant defense system were assessed by biochemical analyses. Histological evaluation was performed according to the Chiu scoring method. Endothelial nitric oxide synthase (eNOS) was demonstrated by immunohistochemistry. Apoptotic cells were determined by TUNEL staining. Compared with the sham, I/R caused intestinal tissue injury (Chiu score, 3+/-0.36 vs 0.4+/-0.24, P<0.01) and was accompanied by increases in MDA levels (0.747+/-0.076 vs 0.492+/-0.033, P<0.05), MPO activity (10.51+/-1.87 vs 4.3+/-0.45, P<0.05), intensity of eNOS immunolabelling (3+/-0.4 vs 1.3+/-0.33, P<0.05), the number of TUNEL-positive cells (20.4+/-2.6 vs 4.6+/-1.2, P<0.001), and a decrease in catalase activity (16.83+/-2.6 vs 43.15+/-4.7, P<0.01). Compared with the vehicle-treated I/R, EPO improved tissue injury; decreased the intensity of eNOS immunolabelling (1.6+/-0.24 vs 3+/-0.4, P<0.05), the number of TUNEL-positive cells (9.2+/-2.7 vs 20.4+/-2.6, P<0.01), and the high histological scores (1+/-0.51 vs 3+/-0.36, P<0.01), and increased catalase activity (42.85+/-6 vs 16.83+/-2.6, P<0.01) when given before ischemia, while it was found to have decreased the levels of MDA (0.483+/-0.025 vs 0.747+/-0.076, P<0.05) and MPO activity (3.86+/-0.76 vs 10.51+/-1.87, P<0.05), intensity of eNOS immunolabelling (1.4+/-0.24 vs 3+/-0.4, P<0.01), the number of TUNEL-positive cells (9.1+/-3 vs 20.4+/-2.6, P<0.01), and the number of high histological scores (1.16+/-0.4 vs 3+/-0.36, P<0.05) when given at the onset of reperfusion. These results demonstrate that EPO protects against intestinal I/R injury in rats by reducing oxidative stress and apoptosis. We attributed this beneficial effect to the antioxidative properties of EPO.
Collapse
Affiliation(s)
- Ensari Guneli
- Department of Laboratory Animal Sciences, Health Sciences Institute, Dokuz Eylul, University, Izmir, Turkey
| | - Zahide Cavdar
- Department of Biochemistry, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Huray Islekel
- Department of Biochemistry, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Sulen Sarioglu
- Department of Pathology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Serhat Erbayraktar
- Department of Neurosurgery, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Address correspondence and reprint requests to Serhat Erbayraktar, Department of Neurosurgery, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey. Phone: + 90 232 4123333; Fax: + 90 232 2590541; E-mail: .
| | - Muge Kiray
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Selman Sokmen
- Department of Surgery, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Sciences, Health Sciences Institute, Dokuz Eylul, University, Izmir, Turkey
| | - Necati Gokmen
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dokuz Eylul, University, Izmir, Turkey
| |
Collapse
|
47
|
Wu Y, Shang Y, Sun SG, Liu RG, Yang WQ. Protective effect of erythropoietin against 1-methyl-4-phenylpyridinium-induced neurodegenaration in PC12 cells. Neurosci Bull 2007; 23:156-64. [PMID: 17612594 PMCID: PMC5550630 DOI: 10.1007/s12264-007-0023-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE The neuroprotective effect of erythropoietin (EPO) against 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative stress in cultured PC12 cells, as well as the underlying mechanism, were investigated. METHODS PC12 cells impaired by MPP(+) were used as the cell model of Parkinson's disease. Methyl thiazolyl tetrazolium (MTT) was used to assay the viability of the PC12 cells exposed to gradient concentrations of EPO, and the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay was used to analyze the apoptosis ratio of PC12 cells. The expression of Bcl-2 and Bax in PC12 cells were examined by Western blot, and the reactive oxygen species (ROS), the mitochondrial transmembrane potential and the activity of caspase-3 in each group were detected by spectrofluorometer. RESULTS Treatment of PC12 cells with MPP(+) caused the loss of cell viability, which may be associated with the elevation in apoptotic rate, the formation of ROS and the disruption of mitochondrial transmembrane potential. It was also shown that MPP(+) significantly induced the upregulation of Bax/Bcl-2 ratio and the activation of caspase-3. In contrast, EPO significantly reversed these responses and had the maximum protective effect at 1 U/mL. CONCLUSION The inhibitive effect of EPO on the MPP(+)-induced cytotoxicity may be ascribed to its anti-oxidative property and anti-apoptotic activity, and EPO may provide a useful therapeutic strategy for treatment of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurology, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - You Shang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Sheng-Gang Sun
- Department of Neurology, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Ren-Gang Liu
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wen-Qiong Yang
- Department of Neurology, Dongfeng Hospital, Yunyang Medical College, Shiyan, 442008 China
| |
Collapse
|
48
|
Saito M, Mao RF, Wang R, Vadasz C, Saito M. Effects of gangliosides on ethanol-induced neurodegeneration in the developing mouse brain. Alcohol Clin Exp Res 2007; 31:665-74. [PMID: 17374046 DOI: 10.1111/j.1530-0277.2007.00351.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Ethanol exposure induces apoptotic neurodegeneration in the developing rodent brain during synaptogenesis. This process has been studied as a model for fetal alcohol syndrome. Previously, we have shown that gangliosides and LIGA20 (a semisynthetic derivative of GM1 ganglioside) attenuate ethanol-induced apoptosis in cultured neurons. In the present study, the effects of GM1 and LIGA20 on ethanol-induced apoptotic neurodegeneration were examined using an in vivo neonatal mouse model. METHODS Seven-day-old C57BL/6By (B6By) mice were pretreated twice with intraperitoneal administration of GM1 (30 mg/kg), LIGA20 (2.5 mg/kg), or saline, followed by subcutaneous injection of either saline or ethanol (2.5 g/kg) twice with a 2 hours interval. Then the brains were: (1) perfusion-fixed 24 hours after the first ethanol injection, and the extent of neurodegeneration was assessed by cupric silver staining of the brain sections, or (2) perfusion-fixed 8 hours after the first ethanol injection, and the sections were immunostained with anti-cleaved (activated) caspase-3 antibody to evaluate caspase-3 activation. RESULTS The comparison of cupric silver stained coronal sections indicates that ethanol-induced widespread neurodegeneration in the forebrains of B6By mice was reduced overall by GM1 and LIGA20 pretreatments. The extent of neurodegeneration detected by silver impregnation and activated caspase-3 immunostaining was quantified in the cingulate and retrosplenial cortices, which were the regions most severely affected by ethanol. The results indicate that GM1 and LIGA20 pretreatments induced statistically significant reductions-approximately 50% of the ethanol-treated samples-in silver impregnation and activated caspase-3 immunostaining. No significant differences were observed between saline controls and samples treated with GM1 or LIGA20 alone. CONCLUSIONS These results indicate that GM1 and LIGA20, which have been shown to be neuroprotective against insults caused by various agents, partially attenuate ethanol-induced apoptotic neurodegeneration in the developing mouse brain.
Collapse
Affiliation(s)
- Mariko Saito
- Laboratory of Neurobehavior Genetics, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA.
| | | | | | | | | |
Collapse
|
49
|
Wu Y, Shang Y, Sun S, Liu R. Antioxidant effect of erythropoietin on 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells. Eur J Pharmacol 2007; 564:47-56. [PMID: 17362920 DOI: 10.1016/j.ejphar.2007.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 01/20/2007] [Accepted: 02/02/2007] [Indexed: 01/29/2023]
Abstract
The neuroprotective effects of erythropoietin on 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative stress and apoptosis in cultured PC12 cells as well as the underlying mechanism were investigated. Treatment of PC12 cells with MPP(+) caused the loss of cell viability, which was associated with the elevation in apoptotic rate, the formation of reactive oxygen species and the disruption of mitochondrial transmembrane potential. It was also shown that MPP(+) significantly induced upregulation of Bax/Bcl-2 ratio and activation of caspase-3. In contrast, erythropoietin reversed these phenotypes and had its maximum protective effect at 1 U/ml. The effect of erythropoietin was mediated by the phosphatidylinositol 3-kinase (PI3K) signaling pathway since erythropoietin failed to rescue cells from MPP(+) insult in the presence of the PI3K inhibitor, LY 294002. In addition, the downstream effector of PI3K, Akt, was activated by erythropoietin, and Akt activation was inhibited by LY 294002. Furthermore, the effect of erythropoietin on reactive oxygen species levels was also blocked by LY 294002. These results show that erythropoietin may provide a useful therapeutic strategy for the treatment of oxidative stress-induced neurodegenerative diseases such as Parkinson disease.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | | | | | | |
Collapse
|
50
|
Bahcekapili N, Uzüm G, Gökkusu C, Kuru A, Ziylan YZ. The relationship between erythropoietin pretreatment with blood-brain barrier and lipid peroxidation after ischemia/reperfusion in rats. Life Sci 2007; 80:1245-51. [PMID: 17300815 DOI: 10.1016/j.lfs.2006.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/04/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Blood-brain barrier (BBB) leakage plays a role in the pathogenesis of many pathological states of the brain including ischemia and some neurodegenerative disorders. In recent years, erythropoietin (EPO) has been shown to exert neuroprotection in many pathological conditions including ischemia in the brain. This study aimed to investigate the effects of EPO on BBB integrity, infarct size and lipid peroxidation following global brain ischemia/reperfusion in rats. Wistar male rats were divided into four groups (each group n=8); Group I; control group (sham-operated), Group II; ischemia/reperfusion group, Group III; EPO treated group (24 h before decapitation--000 U/kg r-Hu EPO i.p.), Group IV; EPO+ ischemia/reperfusion group (24 h before ischemia/reperfusion--3000 U/kg r-Hu EPO i.p.). Global brain ischemia was produced by the combination of bilateral common carotid arteries occlusion and hemorrhagic hypotension. Macroscopical and spectrophotometrical measurement of Evans Blue (EB) leakage was observed for BBB integrity. Infarct size was calculated based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Lipid peroxidation in the brain tissue was determined as the concentration of thiobarbituric acid-reactive substances (TBARS) for each group. Ischemic insult caused bilateral and regional BBB breakdown (hippocampus, cortex, corpus striatum, midbrain, brain stem and thalamus). EPO pretreatment reduced BBB disruption, infarct size and lipid peroxide levels in brain tissue with 20 min ischemia and 20 min reperfusion. These results suggest that EPO plays an important role in protecting against brain ischemia/reperfusion through inhibiting lipid peroxidation and decreasing BBB disruption.
Collapse
Affiliation(s)
- Nesrin Bahcekapili
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, 34093, Capa Istanbul, Turkey
| | | | | | | | | |
Collapse
|