1
|
Gutiérrez-Millán E, Rodríguez-Aguilar ED, Rodríguez MH. Molecular antiviral responses, immune priming and inheritance in insects. Virology 2025; 605:110468. [PMID: 40049142 DOI: 10.1016/j.virol.2025.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Viral diseases transmitted by insects to plants cause severe agricultural damage and arboviruses transmitted to humans cause severe disease outbreaks. The interaction between viruses and the insect defences is complex and has evolved into acting-counteracting molecular interplays. Viruses depict complex molecular mechanisms to ensure invasion, replication and exit the insect host cell, to invade other cells. On the other hand, insect cells use molecular strategies to recognize, halt replication and eliminate the invaders. In turn, virus counteract with evasive strategies. The main antiviral defence mechanism RNA interference (RNAi) recognizes and degrades viral RNA, thereby inhibiting viral replication. These in conjunction with other canonical immune pathways, Toll, IMD, JAK/STAT and Akt-ERK developed mainly to combat bacteria, fungi and protozoa, along with mechanisms to eliminate infected cells like apoptosis and phagocytosis comprise a multifactorial system. Insects exposed to an attenuated or sublethal viral infection could respond with faster and enhanced immune responses to the same pathogen (priming), which is like immunological memory in vertebrates. Several mechanisms have been proposed to explain priming, including endoreplication, epigenetic gene modifications by DNA methylation and histone acetylation. Priming could be inherited by the offspring (transgenerational immune priming, TGIP). However, the precise molecular mechanisms underlying TGIP remain to be elucidated. This article reviews the molecular mechanisms employed by insects to combat viral infections, discusses the current information and the outstanding research questions in the area.
Collapse
Affiliation(s)
| | | | - Mario Henry Rodríguez
- Centre for Research in Infectious Diseases, National Institute of Public Health, Mexico.
| |
Collapse
|
2
|
Herz HM, Bergmann A. The histone demethylase Kdm5 controls Hid-induced cell death in Drosophila. FRONTIERS IN CELL DEATH 2024; 3:1471050. [PMID: 40416947 PMCID: PMC12101616 DOI: 10.3389/fceld.2024.1471050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
We conducted an EMS mutagenesis screen on chromosome arm 2L to identify recessive suppressors of GMR-hid-induced apoptosis in the Drosophila eye. Through this screen, we recovered three alleles of the lysine demethylase gene Kdm5. Kdm5, a member of the JmjC-domain-containing protein family, possesses histone demethylase activity towards H3K4me3. Our data suggest that Kdm5 specifically regulates Hid-induced cell death during development, as we did not observe control of Reaper- or Grim-induced cell death by Kdm5. Interestingly, GMR-hid-induced apoptosis is suppressed independently of Kdm5's demethylase activity. Our findings indicate that Rbf and dMyc are necessary for Kdm5 mosaics to suppress GMR-hid-induced cell death. Moreover, Kdm5 mosaics failed to suppress apoptosis induced by a mutant form of Hid that is resistant to inhibition by Erk-type MAPK activity. Additionally, Kdm5 dominantly enhances the wing phenotype of an activated MAPK mutant. These results collectively suggest that Kdm5 controls Hid-induced apoptosis by regulating the Rbf, dMyc, and MAPK pathways.
Collapse
Affiliation(s)
- Hans-Martin Herz
- St. Jude Children’s Research Hospital, Department of Hematology, 262 Danny Thomas Place, Memphis, TN 38105
| | - Andreas Bergmann
- UMass Chan Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Davidson AJ, Heron R, Das J, Overholtzer M, Wood W. Ferroptosis-like cell death promotes and prolongs inflammation in Drosophila. Nat Cell Biol 2024; 26:1535-1544. [PMID: 38918597 PMCID: PMC11392819 DOI: 10.1038/s41556-024-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Ferroptosis is a distinct form of necrotic cell death caused by overwhelming lipid peroxidation, and emerging evidence indicates a major contribution to organ damage in multiple pathologies. However, ferroptosis has not yet been visualized in vivo due to a lack of specific probes, which has severely limited the study of how the immune system interacts with ferroptotic cells and how this process contributes to inflammation. Consequently, whether ferroptosis has a physiological role has remained a key outstanding question. Here we identify a distinct, ferroptotic-like, necrotic cell death occurring in vivo during wounding of the Drosophila embryo using live imaging. We further demonstrate that macrophages rapidly engage these necrotic cells within the embryo but struggle to engulf them, leading to prolonged, frustrated phagocytosis and frequent corpse disintegration. Conversely, suppression of the ferroptotic programme during wounding delays macrophage recruitment to the injury site, pointing to conflicting roles for ferroptosis during inflammation in vivo.
Collapse
Affiliation(s)
- Andrew J Davidson
- Wolfson Wohl Centre for Cancer Research, School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rosalind Heron
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Jyotirekha Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Will Wood
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Garcia-Arias JM, Pinal N, Cristobal-Vargas S, Estella C, Morata G. Lack of apoptosis leads to cellular senescence and tumorigenesis in Drosophila epithelial cells. Cell Death Discov 2023; 9:281. [PMID: 37532716 PMCID: PMC10397273 DOI: 10.1038/s41420-023-01583-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Programmed cell death (apoptosis) is a homeostasis program of animal tissues designed to remove cells that are unwanted or are damaged by physiological insults. To assess the functional role of apoptosis, we have studied the consequences of subjecting Drosophila epithelial cells defective in apoptosis to stress or genetic perturbations that normally cause massive cell death. We find that many of those cells acquire persistent activity of the JNK pathway, which drives them into senescent status, characterized by arrest of cell division, cell hypertrophy, Senescent Associated ß-gal activity (SA-ß-gal), reactive oxygen species (ROS) production, Senescent Associated Secretory Phenotype (SASP) and migratory behaviour. We have identified two classes of senescent cells in the wing disc: 1) those that localize to the appendage part of the disc, express the upd, wg and dpp signalling genes and generate tumour overgrowths, and 2) those located in the thoracic region do not express wg and dpp nor they induce tumour overgrowths. Whether to become tumorigenic or non-tumorigenic depends on the original identity of the cell prior to the transformation. We also find that the p53 gene contributes to senescence by enhancing the activity of JNK.
Collapse
Affiliation(s)
- Juan Manuel Garcia-Arias
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
| | - Noelia Pinal
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
| | - Sara Cristobal-Vargas
- Laboratory of Gene expression control, patterning and growth during appendage development. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Carlos Estella
- Laboratory of Gene expression control, patterning and growth during appendage development. Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| | - Ginés Morata
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| |
Collapse
|
5
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
6
|
Lindblad JL, Tare M, Amcheslavsky A, Shields A, Bergmann A. Non-apoptotic enteroblast-specific role of the initiator caspase Dronc for development and homeostasis of the Drosophila intestine. Sci Rep 2021; 11:2645. [PMID: 33514791 PMCID: PMC7846589 DOI: 10.1038/s41598-021-81261-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc+ in dronc mutant animals, suggesting that proper Dronc function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Dronc do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis.
Collapse
Affiliation(s)
- Jillian L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, 333031, India
| | - Alla Amcheslavsky
- University of Massachusetts Medical School, MassBiologics, 460 Walk Hill Road, Boston, MA, USA
| | - Alicia Shields
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Arthurton L, Nahotko DA, Alonso J, Wendler F, Baena‐Lopez LA. Non-apoptotic caspase activation preserves Drosophila intestinal progenitor cells in quiescence. EMBO Rep 2020; 21:e48892. [PMID: 33135280 PMCID: PMC7726796 DOI: 10.15252/embr.201948892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase-dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase-9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non-apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non-apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase-mediated regulation of Notch signalling. Our findings provide novel insights into the non-apoptotic, caspase-dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.
Collapse
Affiliation(s)
- Lewis Arthurton
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | | - Jana Alonso
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma)Unidad Técnica del IPNA‐CSICSanta Cruz de La PalmaSpain
| | - Franz Wendler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | |
Collapse
|
8
|
Papakyrikos AM, Kim MJ, Wang X. Drosophila PTPMT1 Has a Function in Tracheal Air Filling. iScience 2020; 23:101285. [PMID: 32629421 PMCID: PMC7334580 DOI: 10.1016/j.isci.2020.101285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 01/02/2023] Open
Abstract
The fly trachea is the equivalent of the mammalian lung and is a useful model for human respiratory diseases. However, little is known about the molecular mechanisms underlying tracheal air filling during larval development. In this study, we discover that PTPMT1 has a function in tracheal air filling. PTPMT1 is a widely conserved, ubiquitously expressed mitochondrial phosphatase. To reveal PTPMT1's functions in genetically tractable invertebrates and whether those functions are tissue specific, we generate a Drosophila model of PTPMT1 depletion. We find that fly PTPMT1 mutants show impairments in tracheal air filling and subsequent activation of innate immune responses. On a cellular level, these defects are preceded by aggregation of mitochondria within the tracheal epithelial cells. Our work demonstrates a cell-type-specific role for PTPMT1 in fly tracheal epithelial cells to support air filling and to prevent immune activation. The establishment of this model will facilitate exploration of PTPMT1's physiological functions in vivo.
Collapse
Affiliation(s)
- Amanda M Papakyrikos
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate Program in Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Min Joo Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Li M, Sun S, Priest J, Bi X, Fan Y. Characterization of TNF-induced cell death in Drosophila reveals caspase- and JNK-dependent necrosis and its role in tumor suppression. Cell Death Dis 2019; 10:613. [PMID: 31409797 PMCID: PMC6692325 DOI: 10.1038/s41419-019-1862-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
Abstract
Tumor-necrosis factor (TNF) and its superfamily members are pleiotropic cytokines. Activation of TNF can lead to distinct cellular outcomes including inflammation, cell survival, and different forms of cell death, such as apoptosis and necrosis in a context-dependent manner. However, our understanding of what determines the versatile functions of TNF is far from complete. Here, we examined the molecular mechanisms that distinguish the forms of cell death induced by Eiger (Egr), the sole homolog of TNF in Drosophila. We show that expression of Egr in the developing Drosophila eye simultaneously induces apoptosis and apoptosis-independent developmental defects indicated by cellular disorganization, both of which rely on the c-Jun N-terminal kinase (JNK) signaling activity. Intriguingly, when effector caspases DrICE and Dcp-1 are defective or inhibited, expression of Egr triggers necrosis which is characterized by loss of cell membrane integrity, translucent cytoplasm, and aggregation of cellular organelles. Moreover, such Egr-induced necrosis depends on the catalytic activity of the initiator caspase Dronc and the input from JNK signaling but is independent of their roles in apoptosis. Further mosaic analysis with mutants of scribble (scrib), an evolutionarily conserved tumor suppressor gene regulating cell polarity, suggests that Egr/JNK-mediated apoptosis and necrosis establish a two-layered defense system to inhibit the oncogenic growth of scrib mutant cells. Together, we have identified caspase- and JNK-dependent mechanisms underlying Egr-induced apoptosis versus necrosis and their fail-safe roles in tumor suppression in an intact organism in vivo.
Collapse
Affiliation(s)
- Mingli Li
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Shiyao Sun
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jessica Priest
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Xiaolin Bi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
11
|
HDAC Inhibitors Disrupt Programmed Resistance to Apoptosis During Drosophila Development. G3-GENES GENOMES GENETICS 2017; 7:1985-1993. [PMID: 28455414 PMCID: PMC5473774 DOI: 10.1534/g3.117.041541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously shown that the ability to respond to apoptotic triggers is regulated during Drosophila development, effectively dividing the fly life cycle into stages that are either sensitive or resistant to apoptosis. Here, we show that the developmentally programmed resistance to apoptosis involves transcriptional repression of critical proapoptotic genes by histone deacetylases (HDACs). Administration of HDAC inhibitors (HDACi), like trichostatin A or suberoylanilide hydroxamic acid, increases expression of proapoptotic genes and is sufficient to sensitize otherwise resistant stages. Conversely, reducing levels of proapoptotic genes confers resistance to otherwise sensitive stages. Given that resistance to apoptosis is a hallmark of cancer cells, and that HDACi have been recently added to the repertoire of FDA-approved agents for cancer therapy, our results provide new insights for how HDACi help kill malignant cells and also raise concerns for their potential unintended effects on healthy cells.
Collapse
|
12
|
Caspase-dependent non-apoptotic processes in development. Cell Death Differ 2017; 24:1422-1430. [PMID: 28524858 PMCID: PMC5520453 DOI: 10.1038/cdd.2017.36] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
Caspases are at the core of executing apoptosis by orchestrating cellular destruction with proteolytic cascades. Caspase-mediated proteolysis also controls diverse nonlethal cellular activities such as proliferation, differentiation, cell fate decision, and cytoskeletal reorganization. During the last decade or so, genetic studies of Drosophila have contributed to our understanding of the in vivo mechanism of the non-apoptotic cellular responses in developmental contexts. Furthermore, recent studies using C. elegans suggest that apoptotic signaling may play unexpected roles, which influence ageing and normal development at the organism level. In this review, we describe how the caspase activity is elaborately controlled during vital cellular processes at the level of subcellular localization, the duration and timing to avoid full apoptotic consequences, and also discuss the novel roles of non-apoptotic caspase signaling in adult homeostasis and physiology.
Collapse
|
13
|
Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death Dis 2016; 7:e2566. [PMID: 28032862 PMCID: PMC5261020 DOI: 10.1038/cddis.2016.338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022]
Abstract
In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye.
Collapse
|
14
|
Cheng TC, Akey IV, Yuan S, Yu Z, Ludtke SJ, Akey CW. A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation. Structure 2016; 25:40-52. [PMID: 27916517 DOI: 10.1016/j.str.2016.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/11/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
Abstract
In Drosophila, the Apaf-1-related killer (Dark) forms an apoptosome that activates procaspases. To investigate function, we have determined a near-atomic structure of Dark double rings using cryo-electron microscopy. We then built a nearly complete model of the apoptosome that includes 7- and 8-blade β-propellers. We find that the preference for dATP during Dark assembly may be governed by Ser325, which is in close proximity to the 2' carbon of the deoxyribose ring. Interestingly, β-propellers in V-shaped domains of the Dark apoptosome are more widely separated, relative to these features in the Apaf-1 apoptosome. This wider spacing may be responsible for the lack of cytochrome c binding to β-propellers in the Dark apoptosome. Our structure also highlights the roles of two loss-of-function mutations that may block Dark assembly. Finally, the improved model provides a framework to understand apical procaspase activation in the intrinsic cell death pathway.
Collapse
Affiliation(s)
- Tat Cheung Cheng
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Ildikó V Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Shujun Yuan
- Department of Biologics Research - Protein Sciences, U.S. Innovation Center, Bayer Healthcare, 455 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Zhiheng Yu
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Christopher W Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
15
|
Changes in 30K protein synthesis during delayed degeneration of the silk gland by a caspase-dependent pathway in a Bombyx (silkworm) mutant. J Comp Physiol B 2016; 186:689-700. [DOI: 10.1007/s00360-016-0990-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 12/19/2022]
|
16
|
Melzer J, Broemer M. Nerve-racking - apoptotic and non-apoptotic roles of caspases in the nervous system of Drosophila. Eur J Neurosci 2016; 44:1683-90. [PMID: 26900934 DOI: 10.1111/ejn.13213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 12/28/2022]
Abstract
Studies using Drosophila as a model system have contributed enormously to our knowledge of caspase function and regulation. Caspases are best known as central executioners of apoptosis but also control essential physiological processes in a non-apoptotic manner. The Drosophila genome codes for seven caspases and in this review we provide an overview of current knowledge about caspase function in the nervous system. Caspases regulate neuronal death at all developmental stages and in various neuronal populations. In contrast, non-apoptotic roles are less well understood. The development of new genetically encoded sensors for caspase activity provides unprecedented opportunities to study caspase function in the nervous system in more detail. In light of these new tools we discuss the potential of Drosophila as a model to discover new apoptotic and non-apoptotic neuronal roles of caspases.
Collapse
Affiliation(s)
- Juliane Melzer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
17
|
Abstract
The apoptotic machinery is highly conserved throughout evolution, and central to the regulation of apoptosis is the caspase family of cysteine proteases. Insights into the regulation and function of apoptosis in mammals have come from studies using model organisms. Drosophila provides an exceptional model system for identifying the function of conserved mechanisms regulating apoptosis, especially during development. The characteristic patterns of apoptosis during Drosophila development have been well described, as has the apoptotic response following DNA damage. The focus of this discussion is to introduce methodologies for monitoring apoptosis during Drosophila development and also in Drosophila cell lines.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
18
|
Apoptotic mechanisms during competition of ribosomal protein mutant cells: roles of the initiator caspases Dronc and Dream/Strica. Cell Death Differ 2015; 22:1300-12. [PMID: 25613379 DOI: 10.1038/cdd.2014.218] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/11/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
Abstract
Heterozygosity for mutations in ribosomal protein genes frequently leads to a dominant phenotype of retarded growth and small adult bristles in Drosophila (the Minute phenotype). Cells with Minute genotypes are subject to cell competition, characterized by their selective apoptosis and removal in mosaic tissues that contain wild-type cells. Competitive apoptosis was found to depend on the pro-apoptotic reaper, grim and head involution defective genes but was independent of p53. Rp/+ cells are protected by anti-apoptotic baculovirus p35 expression but lacked the usual hallmarks of 'undead' cells. They lacked Dronc activity, and neither expression of dominant-negative Dronc nor dronc knockdown by dsRNA prevented competitive apoptosis, which also continued in dronc null mutant cells or in the absence of the initiator caspases dredd and dream/strica. Only simultaneous knockdown of dronc and dream/strica by dsRNA was sufficient to protect Rp/+ cells from competition. By contrast, Rp/Rp cells were also protected by baculovirus p35, but Rp/Rp death was dronc-dependent, and undead Rp/Rp cells exhibited typical dronc-dependent expression of Wingless. Independence of p53 and unusual dependence on Dream/Strica distinguish competitive cell death from noncompetitive apoptosis of Rp/Rp cells and from many other examples of cell death.
Collapse
|
19
|
Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration. J Neurosci 2014; 34:2797-812. [PMID: 24553922 DOI: 10.1523/jneurosci.2982-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inherited mutations that lead to misfolding of the visual pigment rhodopsin (Rho) are a prominent cause of photoreceptor neuron (PN) degeneration and blindness. How Rho proteotoxic stress progressively impairs PN viability remains unknown. To identify the pathways that mediate Rho toxicity in PNs, we performed a comprehensive proteomic profiling of retinas from Drosophila transgenics expressing Rh1(P37H), the equivalent of mammalian Rho(P23H), the most common Rho mutation linked to blindness in humans. Profiling of young Rh1(P37H) retinas revealed a coordinated upregulation of energy-producing pathways and attenuation of energy-consuming pathways involving target of rapamycin (TOR) signaling, which was reversed in older retinas at the onset of PN degeneration. We probed the relevance of these metabolic changes to PN survival by using a combination of pharmacological and genetic approaches. Chronic suppression of TOR signaling, using the inhibitor rapamycin, strongly mitigated PN degeneration, indicating that TOR signaling activation by chronic Rh1(P37H) proteotoxic stress is deleterious for PNs. Genetic inactivation of the endoplasmic reticulum stress-induced JNK/TRAF1 axis as well as the APAF-1/caspase-9 axis, activated by damaged mitochondria, dramatically suppressed Rh1(P37H)-induced PN degeneration, identifying the mitochondria as novel mediators of Rh1(P37H) toxicity. We thus propose that chronic Rh1(P37H) proteotoxic stress distorts the energetic profile of PNs leading to metabolic imbalance, mitochondrial failure, and PN degeneration and therapies normalizing metabolic function might be used to alleviate Rh1(P37H) toxicity in the retina. Our study offers a glimpse into the intricate higher order interactions that underlie PN dysfunction and provides a useful resource for identifying other molecular networks that mediate Rho toxicity in PNs.
Collapse
|
20
|
Kuang C, Golden KL, Simon CR, Damrath J, Buttitta L, Gamble CE, Lee CY. A novel fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells. Development 2014; 141:1453-64. [PMID: 24598157 DOI: 10.1242/dev.104786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis.
Collapse
Affiliation(s)
- Chaoyuan Kuang
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway. PLoS Pathog 2014; 10:e1003956. [PMID: 24550732 PMCID: PMC3923752 DOI: 10.1371/journal.ppat.1003956] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/12/2014] [Indexed: 11/19/2022] Open
Abstract
Some symbiotic bacteria cause remarkable reproductive phenotypes like cytoplasmic incompatibility and male-killing in their host insects. Molecular and cellular mechanisms underlying these symbiont-induced reproductive pathologies are of great interest but poorly understood. In this study, Drosophila melanogaster and its native Spiroplasma symbiont strain MSRO were investigated as to how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing during embryogenesis. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, anti-cleaved-Caspase-3 antibody staining, and apoptosis-deficient mutant analysis unequivocally demonstrated that the host's apoptotic pathway is involved in Spiroplasma-induced male-specific embryonic cell death. Double-staining with TUNEL and an antibody recognizing epidermal marker showed that embryonic epithelium is the main target of Spiroplasma-induced male-specific apoptosis. Immunostaining with antibodies against markers of differentiated and precursor neural cells visualized severe neural defects specifically in Spiroplasma-infected male embryos as reported in previous studies. However, few TUNEL signals were detected in the degenerate nervous tissues of male embryos, and the Spiroplasma-induced neural defects in male embryos were not suppressed in an apoptosis-deficient host mutant. These results suggest the possibility that the apoptosis-dependent epidermal cell death and the apoptosis-independent neural malformation may represent different mechanisms underlying the Spiroplasma-induced male-killing. Despite the male-specific progressive embryonic abnormality, Spiroplasma titers remained almost constant throughout the observed stages of embryonic development and across male and female embryos. Strikingly, a few Spiroplasma-infected embryos exhibited gynandromorphism, wherein apoptotic cell death was restricted to male cells. These observations suggest that neither quantity nor proliferation of Spiroplasma cells but some Spiroplasma-derived factor(s) may be responsible for the expression of the male-killing phenotype. Symbiotic bacteria are ubiquitously associated with diverse insects, and affect their host biology in a variety of ways. In Drosophila fruit flies, infection with Spiroplasma symbionts often causes male-specific embryonic mortality, resulting in the production of all-female offspring. This striking phenotype is called “male-killing”, whose underlying mechanisms are of great interest. Here we investigated Drosophila melanogaster and its native Spiroplasma symbiont strain to understand how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing. Specifically in Spiroplasma-infected male embryos, pathogenic phenotypes including massive cell death throughout the body and neural malformation were observed. We unequivocally identified that the male-specific cell death preferentially occurs in the embryonic epithelium via the host's apoptotic pathway. Meanwhile, we found that, unexpectedly, the male-specific neural defects occur independently of host's apoptosis, suggesting that at least two different mechanisms may be involved in the Spiroplasma-induced male-killing. Also unexpected was the finding that Spiroplasma titers are almost constant throughout embryogenesis irrespective of sex despite the male-specific severe apoptosis. We serendipitously found Spiroplasma-infected sexual mosaic embryos, wherein apoptosis was associated with male cells, which suggests that some Spiroplasma-derived factor(s) may selectively act on male cells and cause male-killing.
Collapse
|
22
|
Ming M, Obata F, Kuranaga E, Miura M. Persephone/Spätzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J Biol Chem 2014; 289:7558-68. [PMID: 24492611 DOI: 10.1074/jbc.m113.543884] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is an evolutionarily conserved mechanism that removes damaged or unwanted cells, effectively maintaining cellular homeostasis. It has long been suggested that a deficiency in this type of naturally occurring cell death could potentially lead to necrosis, resulting in the release of endogenous immunogenic molecules such as damage-associated molecular patterns (DAMPs) and a noninfectious inflammatory response. However, the details about how danger signals from apoptosis-deficient cells are detected and translated to an immune response are largely unknown. In this study, we found that Drosophila mutants deficient for Dronc, the key initiator caspase required for apoptosis, produced the active form of the endogenous Toll ligand Spätzle (Spz). We speculated that, as a system for sensing potential DAMPs in the hemolymph, the dronc mutants constitutively activate a proteolytic cascade that leads to Spz proteolytic processing. We demonstrated that Toll signaling activation required the action of Persephone, a CLIP domain serine protease that usually reacts to microbial proteolytic activities. Our findings show that the Persephone proteolytic cascade plays a crucial role in mediating DAMP-induced systemic responses in apoptosis-deficient Drosophila mutants.
Collapse
Affiliation(s)
- Ming Ming
- From the Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
23
|
Fan Y, Wang S, Hernandez J, Yenigun VB, Hertlein G, Fogarty CE, Lindblad JL, Bergmann A. Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genet 2014; 10:e1004131. [PMID: 24497843 PMCID: PMC3907308 DOI: 10.1371/journal.pgen.1004131] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Recent work in several model organisms has revealed that apoptotic cells are able to stimulate neighboring surviving cells to undergo additional proliferation, a phenomenon termed apoptosis-induced proliferation. This process depends critically on apoptotic caspases such as Dronc, the Caspase-9 ortholog in Drosophila, and may have important implications for tumorigenesis. While it is known that Dronc can induce the activity of Jun N-terminal kinase (JNK) for apoptosis-induced proliferation, the mechanistic details of this activation are largely unknown. It is also controversial if JNK activity occurs in dying or in surviving cells. Signaling molecules of the Wnt and BMP families have been implicated in apoptosis-induced proliferation, but it is unclear if they are the only ones. To address these questions, we have developed an efficient assay for screening and identification of genes that regulate or mediate apoptosis-induced proliferation. We have identified a subset of genes acting upstream of JNK activity including Rho1. We also demonstrate that JNK activation occurs both in apoptotic cells as well as in neighboring surviving cells. In a genetic screen, we identified signaling by the EGFR pathway as important for apoptosis-induced proliferation acting downstream of JNK signaling. These data underscore the importance of genetic screening and promise an improved understanding of the mechanisms of apoptosis-induced proliferation. Work in recent years has revealed that apoptotic caspases not only induce apoptosis, but also have non-apoptotic functions. One of these functions is apoptosis-induced proliferation, a relatively recently discovered phenomenon by which apoptotic cells induce proliferation of surviving neighboring cells. This phenomenon may have important implications for stem cell activity, tissue regeneration and tumorigenesis. Here, we describe the development of a genetic model of apoptosis-induced proliferation and the use of this model for convenient and unbiased genetic screening to identify genes involved in the process. We tested mutants of our RNAi transgenic lines targeting the core components of the apoptotic pathway and of JNK signaling, a known mediator of apoptosis-induced proliferation. These assays demonstrate the feasibility of the system for systematic genetic screening and identified several new genes upstream of JNK that are involved in apoptosis-induced proliferation. Finally, we tested the model in a pilot screen for chromosome arm 2L and identified spi, the EGF ligand in flies, as important for apoptosis-induced proliferation. We confirmed the involvement of EGF in a genuine apoptosis-induced regeneration system. These data underscore the importance of genetic screening and promise an improved understanding of the mechanisms of apoptosis-induced proliferation and regeneration.
Collapse
Affiliation(s)
- Yun Fan
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
- * E-mail: (YF); (AB)
| | - Shiuan Wang
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jacob Hernandez
- MD Anderson Cancer Center, Department of Biochemistry & Molecular Biology, Houston, Texas, United States of America
| | - Vildan Betul Yenigun
- MD Anderson Cancer Center, Department of Biochemistry & Molecular Biology, Houston, Texas, United States of America
| | - Gillian Hertlein
- Länderinstitut für Bienenkunde, Humboldt Universität zu Berlin, Hohen Neuendorf, Germany
| | - Caitlin E. Fogarty
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
| | - Jillian L. Lindblad
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- MD Anderson Cancer Center, Department of Biochemistry & Molecular Biology, Houston, Texas, United States of America
- * E-mail: (YF); (AB)
| |
Collapse
|
24
|
Ambrus AM, Islam ABMMK, Holmes KB, Moon NS, Lopez-Bigas N, Benevolenskaya EV, Frolov MV. Loss of dE2F compromises mitochondrial function. Dev Cell 2014; 27:438-51. [PMID: 24286825 DOI: 10.1016/j.devcel.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/06/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
E2F/DP transcription factors regulate cell proliferation and apoptosis. Here, we investigated the mechanism of the resistance of Drosophila dDP mutants to irradiation-induced apoptosis. Contrary to the prevailing view, this is not due to an inability to induce the apoptotic transcriptional program, because we show that this program is induced; rather, this is due to a mitochondrial dysfunction of dDP mutants. We attribute this defect to E2F/DP-dependent control of expression of mitochondria-associated genes. Genetic attenuation of several of these E2F/DP targets mimics the dDP mutant mitochondrial phenotype and protects against irradiation-induced apoptosis. Significantly, the role of E2F/DP in the regulation of mitochondrial function is conserved between flies and humans. Thus, our results uncover a role of E2F/DP in the regulation of mitochondrial function and demonstrate that this aspect of E2F regulation is critical for the normal induction of apoptosis in response to irradiation.
Collapse
Affiliation(s)
- Aaron M Ambrus
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Chai J, Shi Y. Apoptosome and inflammasome: conserved machineries for caspase activation. Natl Sci Rev 2014. [DOI: 10.1093/nsr/nwt025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Apoptosome and inflammasome are multimeric protein complexes that mediate the activation of specific caspases at the onset of apoptosis and inflammation. The central component of apoptosome or inflammasome is a tripartite scaffold protein, exemplified by Apaf-1 and NLRC4, which contains an amino-terminal homotypic interaction motif, a central nucleotide-binding oligomerization domain and a carboxyl-terminal ligand-sensing domain. In the absence of death cue or an inflammatory signal, Apaf-1 or NLRC4 exists in an auto-inhibited, monomeric state, which is stabilized by adenosine diphosphate (ADP). Binding to an apoptosis- or inflammation-inducing ligand, together with replacement of ADP by adenosine triphosphate (ATP), results in the formation of a multimeric apoptosome or inflammasome. The assembled apoptosome and inflammasome serve as dedicated machineries to facilitate the activation of specific caspases. In this review, we describe the structure and functional mechanisms of mammalian inflammasome and apoptosomes from three representative organisms. Emphasis is placed on the molecular mechanism of caspase activation and the shared features of apoptosomes and inflammasomes.
Collapse
Affiliation(s)
- Jijie Chai
- Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
|
27
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
28
|
Singh MD, Raj K, Sarkar S. Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol Dis 2013; 63:48-61. [PMID: 24291519 DOI: 10.1016/j.nbd.2013.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/06/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine or poly(Q) disorders are dominantly inherited neurodegenerative diseases characterised by progressive loss of neurons in cerebellum, basal ganglia and cortex in adult human brain. Overexpression of human form of mutant SCA3 protein with 78 poly(Q) repeats leads to the formation of inclusion bodies and increases the cellular toxicity in Drosophila eye. The present study was directed to identify a genetic modifier of poly(Q) diseases that could be utilised as a potential drug target. The initial screening process was influenced by the fact of lower prevalence of cancer among patients suffering with poly(Q) disorders which appears to be related to the intrinsic biological factors. We investigated if Drosophila Myc (a homologue of human cMyc proto-oncogene) harbours intrinsic property of suppressing cellular toxicity induced by an abnormally long stretch of poly(Q). We show for the first time that targeted overexpression of Drosophila Myc (dMyc) mitigates the poly(Q) toxicity in eye and nervous systems. Upregulation of dMyc results in a significant reduction in accumulation of inclusion bodies with residual poly(Q) aggregates localising into cytoplasm. We demonstrate that dMyc mediated suppression of poly(Q) toxicity is achieved by alleviating the cellular level of CBP and improved histone acetylation, resulting restoration of transcriptional machinery which are otherwise abbreviated due to poly(Q) disease conditions. Moreover, our study also provides a rational justification of the enigma of poly(Q) patients showing resistance to the predisposition of cancer.
Collapse
Affiliation(s)
- M Dhruba Singh
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Kritika Raj
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
29
|
D'Brot A, Chen P, Vaishnav M, Yuan S, Akey CW, Abrams JM. Tango7 directs cellular remodeling by the Drosophila apoptosome. Genes Dev 2013; 27:1650-5. [PMID: 23913920 DOI: 10.1101/gad.219287.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is now well appreciated that the apoptosome, which governs caspase-dependent cell death, also drives nonapoptotic caspase activation to remodel cells. However, the determinants that specify whether the apoptosome acts to kill or remodel have yet to be identified. Here we report that Tango7 collaborates with the Drosophila apoptosome to drive a caspase-dependent remodeling process needed to resolve individual sperm from a syncytium. In these cells, Tango7 is required for caspase activity and localizes to the active apoptosome compartment via its C terminus. Furthermore, Tango7 directly stimulates the activity of this complex in vitro. We propose that Tango7 specifies the Drosophila apoptosome as an effector of cellular remodeling.
Collapse
Affiliation(s)
- Alejandro D'Brot
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
30
|
Cell competition may function either as tumour-suppressing or as tumour-stimulating factor in Drosophila. Oncogene 2013; 33:4377-84. [PMID: 24096487 DOI: 10.1038/onc.2013.407] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 01/17/2023]
Abstract
Drosophila endocytosis-defective cells develop tumour overgrowths in the imaginal discs. We have analysed the tumorigenic potential of cells mutant for Rab5, a gene involved in endocytosis. We found that while a compartment entirely made by Rab5 mutant cells can grow indefinitely, clones of Rab5 cells surrounded by normal cells are eliminated by cell competition. However, when a group of about 400 cells are simultaneously made mutant for Rab5, they form an overgrowing tumour: mutant cells in the periphery are eliminated, but those inside survive and continue proliferating because they are beyond the range of cell competition. These results identify group protection as a mechanism to evade the tumour-suppressing function of cell competition in Drosophila. Furthermore, we find that the growth of the tumour depends to a large extent on the presence of apoptosis inside the tumour: cells doubly mutant for Rab5 and the proapoptotic gene dronc do not form overgrowing tumours. These results suggest that the apoptosis caused by cell competition acts as a tumour-stimulating factor, bringing about high levels of Jun N-terminal kinase and subsequently Wg/Dpp signalling and high proliferation levels in the growing tumour. We conclude that under these circumstances cell competition facilitates the progression of the tumour, thus reversing its normal antitumour role.
Collapse
|
31
|
Ji MM, Liu AQ, Gan LP, Xing R, Wang H, Sima YH, Xu SQ. Functional analysis of 30K proteins during silk gland degeneration by a caspase-dependent pathway in Bombyx. INSECT MOLECULAR BIOLOGY 2013; 22:273-283. [PMID: 23496335 DOI: 10.1111/imb.12019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The 30K proteins are involved with important functions in the growth and development of Bombyx mori. In this study, the synthesis and regulation of 30K proteins were examined during the degeneration of Bombyx silk glands. On day 3 of the fifth instar, the protein level of 30Kc19 was low, whereas the silk proteins were rapidly synthesized. However, synthesis and accumulation of the 30Kc19 protein significantly increased at the prepupal stage and on day 1 of the pupal stage. At this stage, the silk gland cells were filled with 30Kc19 and genomic DNA. Moreover, the transcript levels of the 30K-encoding genes, including 30Kc6, 30Kc12, 30Kc19 and 30Kc23 were up-regulated during the degeneration of the Bombyx silk glands. During the time that the levels of the 30Kc19 protein were significantly up-regulated, it is notable that the transcript levels of the BmAtg8, BmAtg6 and BmDronc genes dramatically increased to regulate the programmed cell death of this gland. On day 1 of the pupal stage, intense fragmentation of genomic DNA occurred in the silk gland cells, and the putative active form of caspase was detected in the cytoplasm, showing the complete degradation of the silk glands in one day. In conclusion, the 30K proteins are synthesized in high concentrations, while proteolysis mediates silk gland degeneration in Bombyx by a caspase-dependent pathway. We propose that the 30K proteins may be nutrients and energy vectors to be absorbed by the developing tissues of pupae or moths.
Collapse
Affiliation(s)
- M-M Ji
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Huang N, Civciristov S, Hawkins CJ, Clem RJ. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:444-454. [PMID: 23474489 PMCID: PMC3640372 DOI: 10.1016/j.ibmb.2013.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/31/2013] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X.
Collapse
Affiliation(s)
- Ning Huang
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66503
| | - Srgjan Civciristov
- Department of Biochemistry, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Christine J. Hawkins
- Department of Biochemistry, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Rollie J. Clem
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66503
| |
Collapse
|
33
|
Yuan S, Akey CW. Apoptosome structure, assembly, and procaspase activation. Structure 2013; 21:501-15. [PMID: 23561633 PMCID: PMC3644875 DOI: 10.1016/j.str.2013.02.024] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 11/22/2022]
Abstract
Apaf-1-like molecules assemble into a ring-like platform known as the apoptosome. This cell death platform then activates procaspases in the intrinsic cell death pathway. In this review, crystal structures of Apaf-1 monomers and CED-4 dimers have been combined with apoptosome structures to provide insights into the assembly of cell death platforms in humans, nematodes, and flies. In humans, the caspase recognition domains (CARDs) of procaspase-9 and Apaf-1 interact with each other to form a CARD-CARD disk, which interacts with the platform to create an asymmetric proteolysis machine. The disk tethers multiple pc-9 catalytic domains to the platform to raise their local concentration, and this leads to zymogen activation. These findings have now set the stage for further studies of this critical activation process on the apoptosome.
Collapse
Affiliation(s)
- Shujun Yuan
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Christopher W. Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
34
|
Yacobi-Sharon K, Namdar Y, Arama E. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell 2013; 25:29-42. [PMID: 23523076 DOI: 10.1016/j.devcel.2013.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/03/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
In both flies and mammals, almost one-third of the newly emerging male germ cells are spontaneously eliminated before entering meiosis. Here, we show that in Drosophila, germ cell death (GCD) involves the initiator caspase Dronc independently of the apoptosome and the main executioner caspases. Electron microscopy of dying germ cells revealed mixed morphologies of apoptosis and necrosis. We further show that the lysosomes and their catabolic enzymes, but not macroautophagy, are involved in the execution of GCD. We then identified, in a screen, the Parkinson's disease-associated mitochondrial protease, HtrA2/Omi, as an important mediator of GCD, acting mainly through its catalytic activity rather than by antagonizing inhibitor of apoptosis proteins. Concomitantly, other mitochondrial-associated factors were also implicated in GCD, including Pink1 (but not Parkin), the Bcl-2-related proteins, and endonuclease G, which establish the mitochondria as central mediators of GCD. These findings uncover an alternative developmental cell death pathway in metazoans.
Collapse
Affiliation(s)
- Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
35
|
Berthelet J, Dubrez L. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2013; 2:163-87. [PMID: 24709650 PMCID: PMC3972657 DOI: 10.3390/cells2010163] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Abstract Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals.
Collapse
Affiliation(s)
- Jean Berthelet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| |
Collapse
|
36
|
Lee G, Sehgal R, Wang Z, Nair S, Kikuno K, Chen CH, Hay B, Park JH. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster. Biol Open 2013; 2:283-94. [PMID: 23519152 PMCID: PMC3603410 DOI: 10.1242/bio.20133384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/10/2012] [Indexed: 11/04/2022] Open
Abstract
In Drosophila melanogaster, combinatorial activities of four death genes, head involution defective (hid), reaper (rpr), grim, and sickle (skl), have been known to play crucial roles in the developmentally regulated programmed cell death (PCD) of various tissues. However, different expression patterns of the death genes also suggest distinct functions played by each. During early metamorphosis, a great number of larval neurons unfit for adult life style are removed by PCD. Among them are eight pairs of corazonin-expressing larval peptidergic neurons in the ventral nerve cord (vCrz). To reveal death genes responsible for the PCD of vCrz neurons, we examined extant and recently available mutations as well as RNA interference that disrupt functions of single or multiple death genes. We found grim as a chief proapoptotic gene and skl and rpr as minor ones. The function of grim is also required for PCD of the mitotic sibling cells of the vCrz neuronal precursors (EW3-sib) during embryonic neurogenesis. An intergenic region between grim and rpr, which, it has been suggested, may enhance expression of three death genes in embryonic neuroblasts, appears to play a role for the vCrz PCD, but not for the EW3-sib cell death. The death of vCrz neurons and EW3-sib is triggered by ecdysone and the Notch signaling pathway, respectively, suggesting distinct regulatory mechanisms of grim expression in a cell- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Gyunghee Lee
- Neurogenetics Laboratory, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, TN 37996 , USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The caspases, a family of cysteine proteases, function as central regulators of cell death. Recently, caspase activity and caspase substrates identified in the absence of cell death have sparked strong interest in caspase functions in nonapoptotic cellular responses; these functions suggest that caspases may be activated without inducing or before apoptosis, thus leading to the cleavage of a specific subset of substrates. This review focuses primarily on the caspase enzymatic activity. Detailed genetic analyses of caspase-deficient Caenorhabditis elegans, Drosophila, and mice have shown that caspases are essential, not only for controlling the number of cells involved in sculpting or deleting structures in developing animals, but also for dynamic, nonapoptotic cell processes, such as innate immune response, tissue regeneration, cell-fate determination, stem-cell differentiation and neural activation. Our understanding of the spatio-temporal caspase activation mechanisms has advanced, primarily through the study of Drosophila developmental processes. This review will discuss current findings regarding caspase functions in cytoskeletal modification, morphogenetic regulation of cell shape, cell migration and the production of mechanical force during embryogenesis.
Collapse
Affiliation(s)
- Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
38
|
Miura M. Apoptotic and nonapoptotic caspase functions in animal development. Cold Spring Harb Perspect Biol 2012; 4:4/10/a008664. [PMID: 23028118 DOI: 10.1101/cshperspect.a008664] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A developing animal is exposed to both intrinsic and extrinsic stresses. One stress response is caspase activation. Caspase activation not only controls apoptosis but also proliferation, differentiation, cell shape, and cell migration. Caspase activation drives development by executing cell death or nonapoptotic functions in a cell-autonomous manner, and by secreting signaling molecules or generating mechanical forces, in a noncell autonomous manner.
Collapse
Affiliation(s)
- Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
39
|
Ryoo HD, Bergmann A. The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 2012; 4:a008797. [PMID: 22855725 DOI: 10.1101/cshperspect.a008797] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genes dedicated to killing cells must have evolved because of their positive effects on organismal survival. Positive functions of apoptotic genes have been well established in a large number of biological contexts, including their role in eliminating damaged and potentially cancerous cells. More recently, evidence has suggested that proapoptotic proteins-mostly caspases-can induce proliferation of neighboring surviving cells to replace dying cells. This process, that we will refer to as "apoptosis-induced proliferation," may be critical for stem cell activity and tissue regeneration. Depending on the caspases involved, at least two distinct types of apoptosis-induced proliferation can be distinguished. One of these types have been studied using a model in which cells have initiated cell death, but are prevented from executing it because of effector caspase inhibition, thereby generating "undead" cells that emit persistent mitogen signaling and overgrowth. Such conditions are likely to contribute to certain forms of cancer. In this review, we summarize the current knowledge of apoptosis-induced proliferation and discuss its relevance for tissue regeneration and cancer.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
40
|
Hippo signalling controls Dronc activity to regulate organ size in Drosophila. Cell Death Differ 2012; 19:1664-76. [PMID: 22555454 DOI: 10.1038/cdd.2012.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Hippo pathway controls organ size by multiple mechanisms that ultimately regulate the transcriptional co-activator Yorkie (Yki). Downregulation of Hippo signalling leads to tissue overgrowths due to Yki-mediated activation of target genes, whereas overexpression of the pathway triggers apoptosis in developing tissues. However, the mechanism underlying cell death induced by Hippo (Hpo)-activation is not understood. We found that overexpression of Hpo leads to induction of Dronc (Drosophila Caspase-9 homologue) expression and downregulation of dronc can suppress/block Hpo-mediated apoptosis. Furthermore, upregulation of Dronc activity strongly suppressed the overgrowth caused by Yki overexpression thereby suggesting that Hippo signalling restricts Dronc activity. Hippo-mediated cell death requires the activity of the initiator caspase Dronc. Loss-of-function of dronc in genetic mosaics leads to cell survival and increased cell proliferation in imaginal discs. dronc is transcriptionally suppressed in Yki overexpressing cells or cells mutant for other Hippo pathway components like warts (wts). We propose that Dronc is a transcriptional target of the Hippo signalling pathway. The Hippo-Dronc connection has implications in control of overall organ size and other growth regulatory mechanisms like compensatory proliferation and cell competition.
Collapse
|
41
|
Florentin A, Arama E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. ACTA ACUST UNITED AC 2012; 196:513-27. [PMID: 22351928 PMCID: PMC3283987 DOI: 10.1083/jcb.201107133] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Differences in expression level of the effector caspases Drice and Dcp-1 and in their intrinsic abilities to induce apoptosis and to control the rate of cell death underlie the differential sensitivities of cells to apoptosis. Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell’s sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
42
|
Chen P, Tu X, Akdemir F, Chew SK, Rothenfluh A, Abrams JM. Effectors of alcohol-induced cell killing in Drosophila. Cell Death Differ 2012; 19:1655-63. [PMID: 22539005 DOI: 10.1038/cdd.2012.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heavy alcohol consumption provokes an array of degenerative pathologies but the signals that couple alcohol exposure to regulated forms of cell death are poorly understood. Using Drosophila as a model, we genetically establish that the severity of ethanol challenge dictates the type of death that occurs. In contrast to responses seen under acute exposure, cytotoxic responses to milder challenges required gene encoding components of the apoptosome, Dronc and Dark. We conducted a genome-wide RNAi screen to capture targets that specifically mediate ethanol-induced cell death. One effector, Drat, encodes a novel protein that contains an ADH domain but lacks essential residues in the catalytic site. In cultured cells and neurons in vivo, depletion of Drat conferred protection from alcohol-induced apoptosis. Adults mutated for Drat showed both improved survival and enhanced propensities toward sedation after alcohol challenge. Together, these findings highlight novel effectors that support regulated cell death incited by alcohol stress in vitro and in vivo.
Collapse
Affiliation(s)
- P Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, USA
| | | | | | | | | | | |
Collapse
|
43
|
Tian L, Liu S, Liu H, Li S. 20-hydroxyecdysone upregulates apoptotic genes and induces apoptosis in the Bombyx fat body. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 79:207-219. [PMID: 22517444 DOI: 10.1002/arch.20457] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During insect metamorphosis, obsolete larval tissues are removed by programed cell death (PCD), mainly apoptosis and autophagy, which is directed by the molting hormone, 20-hydroxyecdysone (20E) and the 20E-triggered transcriptional cascade. Here, we investigated how 20E regulates apoptosis at the transcriptional level in the fat body of the silkworm, Bombyx mori. As detected by TdT-mediated dUTP Nick-End Labeling (TUNEL), apoptosis weakly occurred during the fourth larval molting, decreased to undetected levels during the early fifth instar, and gradually increased from day 4 of fifth instar to the wandering stage to the prepupal stage. Meanwhile, as determined by quantitative real-time PCR, eight genes involved in apoptosis, including Apaf-1, Nedd2 like1, Nedd2 like2, ICE1, ICE3, ICE5, Arp, and IAP, were highly expressed during molting and pupation, when the 20E titer is high. Injection of 20E into day 2 of fifth instar larvae significantly induced apoptosis and upregulated apoptotic genes after 6 h of treatment, and in vitro treatment of larval fat body tissues with 20E upregulated all the eight apoptotic genes. Moreover, RNAi knockdown of USP, a component of the 20E receptor complex EcR-USP, at the early-wandering stage reduced apoptosis and downregulated apoptotic genes after 24 h of treatment. Taken together, we infer that 20E upregulates apoptotic genes and thus induces apoptosis in the Bombyx fat body during larval molting and the larval-pupal transition.
Collapse
Affiliation(s)
- Ling Tian
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | |
Collapse
|
44
|
CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat Cell Biol 2012; 14:409-15. [PMID: 22388889 PMCID: PMC3319494 DOI: 10.1038/ncb2447] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/26/2012] [Indexed: 12/22/2022]
Abstract
Chronic stress in the endoplasmic reticulum (ER) underlies many degenerative and metabolic diseases involving apoptosis of vital cells. A well-established example is autosomal dominant retinitis pigmentosa (ADRP), an age-related retinal degenerative disease caused by mutant rhodopsins. Similar mutant alleles of Drosophila Rhodopsin-1 also impose stress on the ER and cause age-related retinal degeneration in that organism. Well-characterized signalling responses to ER stress, referred to as the unfolded protein response (UPR), induce various ER quality control genes that can suppress such retinal degeneration. However, how cells activate cell death programs after chronic ER stress remains poorly understood. Here, we report the identification of a signalling pathway mediated by cdk5 and mekk1 required for ER-stress-induced apoptosis. Inactivation of these genes specifically suppressed apoptosis, without affecting other protective branches of the UPR. CDK5 phosphorylates MEKK1, and together, they activate the JNK pathway for apoptosis. Moreover, disruption of this pathway can delay the course of age-related retinal degeneration in a Drosophila model of ADRP. These findings establish a previously unrecognized branch of ER-stress response signalling involved in degenerative diseases.
Collapse
|
45
|
Abstract
Programmed cell death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neurodegeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on the regulation, roles, and modes of PCD during animal development. We also discuss the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, and review the nonlethal functions of these proteins in diverse developmental processes, such as cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells, and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing.
Collapse
|
46
|
Drosophila IAP1-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation. PLoS Genet 2011; 7:e1002261. [PMID: 21909282 PMCID: PMC3164697 DOI: 10.1371/journal.pgen.1002261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/06/2011] [Indexed: 02/07/2023] Open
Abstract
Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition (“undead” cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in “undead” cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs. The Drosophila inhibitor of apoptosis 1 (DIAP1) readily promotes ubiquitylation of the CASPASE-9–like initiator caspase DRONC in vitro and in vivo. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by effector caspase inhibition—producing so-called “undead” cells—it has been proposed that DIAP1-mediated ubiquitylation would target full-length DRONC for proteasomal degradation, ensuring survival of normal cells. However, this has never been tested rigorously in vivo. By examining loss and gain of diap1 function, we show that DIAP1-mediated ubiquitylation does not trigger degradation of full-length DRONC. Our analysis demonstrates that DIAP1-mediated ubiquitylation controls DRONC processing and activation in a non-proteolytic manner. Interestingly, once DRONC is processed and activated, it has reduced protein stability. We also demonstrate that “undead” cells induce transcription of dronc, explaining increased protein levels of DRONC in these cells. This study re-defines the mechanism by which IAP-mediated ubiquitylation regulates caspase activity.
Collapse
|
47
|
Liu Q, Clem RJ. Defining the core apoptosis pathway in the mosquito disease vector Aedes aegypti: the roles of iap1, ark, dronc, and effector caspases. Apoptosis 2011; 16:105-13. [PMID: 21107703 DOI: 10.1007/s10495-010-0558-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To date, our knowledge of apoptosis regulation in insects comes almost exclusively from the model organism Drosophila melanogaster. In contrast, despite the identification of numerous genes that are presumed to regulate apoptosis in other insects based on sequence homology, little has been done to examine the molecular pathways that regulate apoptosis in other insects, including medically important disease vectors. In D. melanogaster, the core apoptosis pathway consists of the caspase negative regulator DIAP1, IAP antagonists, the initiator caspase Dronc and its activating protein Ark, and the effector caspase DrICE. Here we have studied the functions of several genes from the mosquito disease vector Aedes aegypti that share homology with the core apoptosis genes in D. melanogaster. Silencing of the iap1 gene in the A. aegypti cell line Aag2 caused spontaneous apoptosis, indicating that IAP1 plays a role in cell survival similar to that of DIAP1. Silencing A. aegypti ark or dronc completely inhibited apoptosis triggered by several different apoptotic stimuli. However, individual silencing of the effector caspases CASPS7 or CASPS8, which are the closest relatives to DrICE, only partially inhibited apoptosis, and silencing both CASPS7 and CASPS8 together did not have a significant additional effect. Our results suggest that the core pathway that regulates apoptosis in A. aegypti is similar to that of D. melanogaster, but that more than one effector caspase is involved in apoptosis in A. aegypti. This is interesting in light of the fact that the caspase family has expanded in mosquitoes compared to D. melanogaster.
Collapse
Affiliation(s)
- Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | |
Collapse
|
48
|
Abstract
The caspases are a family of cysteine proteases that function as central regulators of cell death. Recent investigations in Caenorhabditis elegans, Drosophila, and mice indicate that caspases are essential not only in controlling the number of cells involved in sculpting or deleting structures in developing animals, but also in dynamic cell processes such as cell-fate determination, compensatory proliferation of neighboring cells, and actin cytoskeleton reorganization, in a non-apoptotic context during development. This review focuses primarily on caspase functions involving their enzymatic activity.
Collapse
Affiliation(s)
- Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
| |
Collapse
|
49
|
Ouyang Y, Petritsch C, Wen H, Jan L, Jan YN, Lu B. Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila. Development 2011; 138:2185-96. [PMID: 21558368 DOI: 10.1242/dev.058347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
50
|
Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev 2011; 6:15. [PMID: 21521537 PMCID: PMC3098771 DOI: 10.1186/1749-8104-6-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metamorphosis of Drosophila melanogaster is accompanied by elimination of obsolete neurons via programmed cell death (PCD). Metamorphosis is regulated by ecdysteroids, including 20-hydroxyecdysone (20E), but the roles and modes of action of hormones in regulating neuronal PCD are incompletely understood. RESULTS We used targeted expression of GFP to track the fate of a larval motoneuron, RP2, in ventral ganglia. RP2s in abdominal neuromeres two through seven (A2 to A7) exhibited fragmented DNA by 15 hours after puparium formation (h-APF) and were missing by 20 h-APF. RP2 death began shortly after the 'prepupal pulse' of ecdysteroids, during which time RP2s expressed ecdysteroid receptors (EcRs). Genetic manipulations showed that RP2 death required the function of EcR-B isoforms, the death-activating gene, reaper (but not hid), and the apoptosome component, Dark. PCD was blocked by expression of the caspase inhibitor p35 but unaffected by manipulating Diap1. In contrast, aCC motoneurons in neuromeres A2 to A7, and RP2s in neuromere A1, expressed EcRs during the prepupal pulse but survived into the pupal stage under all conditions tested. To test the hypothesis that ecdysteroids trigger RP2's death directly, we placed abdominal GFP-expressing neurons in cell culture immediately prior to the prepupal pulse, with or without 20E. 20E induced significant PCD in putative RP2s, but not in control neurons, as assessed by morphological criteria and propidium iodide staining. CONCLUSIONS These findings suggest that the rise of ecdysteroids during the prepupal pulse acts directly, via EcR-B isoforms, to activate PCD in RP2 motoneurons in abdominal neuromeres A2 to A7, while sparing RP2s in A1. Genetic manipulations suggest that RP2's death requires Reaper function, apoptosome assembly and Diap1-independent caspase activation. RP2s offer a valuable 'single cell' approach to the molecular understanding of neuronal death during insect metamorphosis and, potentially, of neurodegeneration in other contexts.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, 97403-1254, USA
| | | |
Collapse
|