1
|
Aguilar G, Bauer M, Vigano MA, Schnider ST, Brügger L, Jiménez-Jiménez C, Guerrero I, Affolter M. Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing. Dev Cell 2024; 59:2672-2686.e5. [PMID: 38971155 DOI: 10.1016/j.devcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Milena Bauer
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - M Alessandra Vigano
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Sophie T Schnider
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Lukas Brügger
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Carlos Jiménez-Jiménez
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Sharma S, Chaudhary V. Dissociation of Drosophila Evi-Wg Complex Occurs Post Apical Internalization in the Maturing Acidic Endosomes. Traffic 2024; 25:e12955. [PMID: 39313313 DOI: 10.1111/tra.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024]
Abstract
Signaling pathways activated by secreted Wnt ligands play an essential role in tissue development and the progression of diseases, like cancer. Secretion of the lipid-modified Wnt proteins is tightly regulated by a repertoire of intracellular factors. For instance, a membrane protein, Evi, interacts with the Wnt ligand in the ER, and it is essential for its further trafficking and release in the extracellular space. After dissociating from the Wnt, the Wnt-unbound Evi is recycled back to the ER via Golgi. However, where in this trafficking path Wnt proteins dissociate from Evi remains unclear. Here, we have used the Drosophila wing epithelium to trace the route of the Evi-Wg (Wnt homolog) complex leading up to their separation. In these polarized cells, Wg is first trafficked to the apical surface; however, the secretion of Wg is believed to occurs post-internalization via recycling. Our results show that the Evi-Wg complex is internalized from the apical surface and transported to the retromer-positive endosomes. Furthermore, using antibodies that specifically label the Wnt-unbound Evi, we show that Evi and Wg separation occurs post-internalization in the acidic endosomes. These results refine our understanding of the polarized trafficking of Wg and highlight the importance of Wg endocytosis in its secondary secretion.
Collapse
Affiliation(s)
- Satyam Sharma
- Cell and Developmental Signaling Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Varun Chaudhary
- Cell and Developmental Signaling Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Jiménez-Jiménez C, Grobe K, Guerrero I. Hedgehog on the Move: Glypican-Regulated Transport and Gradient Formation in Drosophila. Cells 2024; 13:418. [PMID: 38474382 PMCID: PMC10930589 DOI: 10.3390/cells13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.
Collapse
Affiliation(s)
- Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| |
Collapse
|
4
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Abstract
Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom;
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
6
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
7
|
Abstract
Hedgehog (Hh) proteins constitute one family of a small number of secreted signaling proteins that together regulate multiple aspects of animal development, tissue homeostasis and regeneration. Originally uncovered through genetic analyses in Drosophila, their subsequent discovery in vertebrates has provided a paradigm for the role of morphogens in positional specification. Most strikingly, the Sonic hedgehog protein was shown to mediate the activity of two classic embryonic organizing centers in vertebrates and subsequent studies have implicated it and its paralogs in a myriad of processes. Moreover, dysfunction of the signaling pathway has been shown to underlie numerous human congenital abnormalities and diseases, especially certain types of cancer. This review focusses on the genetic studies that uncovered the key components of the Hh signaling system and the subsequent, biochemical, cell and structural biology analyses of their functions. These studies have revealed several novel processes and principles, shedding new light on the cellular and molecular mechanisms underlying cell-cell communication. Notable amongst these are the involvement of cholesterol both in modifying the Hh proteins and in activating its transduction pathway, the role of cytonemes, filipodia-like extensions, in conveying Hh signals between cells; and the central importance of the Primary Cilium as a cellular compartment within which the components of the signaling pathway are sequestered and interact.
Collapse
Affiliation(s)
- Philip William Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Gradilla AC, Guerrero I. Hedgehog on track: Long-distant signal transport and transfer through direct cell-to-cell contact. Curr Top Dev Biol 2022; 150:1-24. [DOI: 10.1016/bs.ctdb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Wnt Inhibitory Factor 1 Binds to and Inhibits the Activity of Sonic Hedgehog. Cells 2021; 10:cells10123496. [PMID: 34944004 PMCID: PMC8699845 DOI: 10.3390/cells10123496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
The hedgehog (Hh) and Wnt pathways, crucial for the embryonic development and stem cell proliferation of Metazoa, have long been known to have similarities that argue for their common evolutionary origin. A surprising additional similarity of the two pathways came with the discovery that WIF1 proteins are involved in the regulation of both the Wnt and Hh pathways. Originally, WIF1 (Wnt Inhibitory Factor 1) was identified as a Wnt antagonist of vertebrates, but subsequent studies have shown that in Drosophila, the WIF1 ortholog serves primarily to control the distribution of Hh. In the present, work we have characterized the interaction of the human WIF1 protein with human sonic hedgehog (Shh) using Surface Plasmon Resonance spectroscopy and reporter assays monitoring the signaling activity of human Shh. Our studies have shown that human WIF1 protein binds human Shh with high affinity and inhibits its signaling activity efficiently. Our observation that the human WIF1 protein is a potent antagonist of human Shh suggests that the known tumor suppressor activity of WIF1 may not be ascribed only to its role as a Wnt inhibitor.
Collapse
|
10
|
Li W, Wang L, Wierbowski BM, Lu M, Dong F, Liu W, Li S, Wang P, Salic A, Gong X. Structural insights into proteolytic activation of the human Dispatched1 transporter for Hedgehog morphogen release. Nat Commun 2021; 12:6966. [PMID: 34845226 PMCID: PMC8630017 DOI: 10.1038/s41467-021-27257-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
The membrane protein Dispatched (Disp), which belongs to the RND family of small molecule transporters, is essential for Hedgehog (Hh) signaling, by catalyzing the extracellular release of palmitate- and cholesterol-modified Hh ligands from producing cells. Disp function requires Furin-mediated proteolytic cleavage of its extracellular domain, but how this activates Disp remains obscure. Here, we employ cryo-electron microscopy to determine atomic structures of human Disp1 (hDisp1), before and after cleavage, and in complex with lipid-modified Sonic hedgehog (Shh) ligand. These structures, together with biochemical data, reveal that proteolytic cleavage opens the extracellular domain of hDisp1, removing steric hindrance to Shh binding. Structure-guided functional experiments demonstrate the role of hDisp1-Shh interactions in ligand release. Our results clarify the mechanisms of hDisp1 activation and Shh morphogen release, and highlight how a unique proteolytic cleavage event enabled acquisition of a protein substrate by a member of a family of small molecule transporters.
Collapse
Affiliation(s)
- Wanqiu Li
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China ,grid.263817.90000 0004 1773 1790Present Address: Department of Pharmacology, School of Medicine, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Linlin Wang
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Bradley M. Wierbowski
- grid.38142.3c000000041936754XDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Mo Lu
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Feitong Dong
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Wenchen Liu
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Sisi Li
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China ,grid.508211.f0000 0004 6004 3854Present Address: Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, 518060 Shenzhen, Guangdong China
| | - Peiyi Wang
- grid.263817.90000 0004 1773 1790SUSTech Cryo-EM Facility Center, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xin Gong
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Hatori R, Wood BM, Oliveira Barbosa G, Kornberg TB. Regulated delivery controls Drosophila Hedgehog, Wingless, and Decapentaplegic signaling. eLife 2021; 10:71744. [PMID: 34292155 PMCID: PMC8376250 DOI: 10.7554/elife.71744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogen signaling proteins disperse across tissues to activate signal transduction in target cells. We investigated dispersion of Hedgehog (Hh), Wnt homolog Wingless (Wg), and Bone morphogenic protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc. We discovered that delivery of Hh, Wg, and Dpp to their respective targets is regulated. We found that <5% of Hh and <25% of Wg are taken up by disc cells and activate signaling. The amount of morphogen that is taken up and initiates signaling did not change when the level of morphogen expression was varied between 50 and 200% (Hh) or 50 and 350% (Wg). Similar properties were observed for Dpp. We analyzed an area of 150 μm×150 μm that includes Hh-responding cells of the disc as well as overlying tracheal cells and myoblasts that are also activated by disc-produced Hh. We found that the extent of signaling in the disc was unaffected by the presence or absence of the tracheal and myoblast cells, suggesting that the mechanism that disperses Hh specifies its destinations to particular cells, and that target cells do not take up Hh from a common pool.
Collapse
Affiliation(s)
- Ryo Hatori
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | - Brent M Wood
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | | | - Thomas B Kornberg
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| |
Collapse
|
12
|
Miocene Diversification and High-Altitude Adaptation of Parnassius Butterflies (Lepidoptera: Papilionidae) in Qinghai-Tibet Plateau Revealed by Large-Scale Transcriptomic Data. INSECTS 2020; 11:insects11110754. [PMID: 33153157 PMCID: PMC7693471 DOI: 10.3390/insects11110754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/01/2022]
Abstract
Simple Summary Parnassius butterflies have contributed to fundamental studies in biogeography, insect–plant interactions, and other fields of conservation biology and ecology. However, the early evolutionary pattern and molecular adaptation mechanism of this alpine butterfly group to high altitudes in Qinghai–Tibet Plateau are poorly understood up to now. In this study, we report for the first time, a relatively large-scale transcriptomic dataset of eight Parnassius species and their two closely related papilionid species, a dated phylogeny based on hundreds of gene sequences, and potential genetic mechanisms underlying the high-altitude adaptation by investigating changes in evolutionary rates and positively selected genes. Overall, our findings indicate that the transcriptome data sets reported here can provide some new insights into the spatiotemporally evolutionary pattern and high altitude adaptation of Parnassius butterflies from the extrinsic and intrinsic view, and will support further expressional and functional studies that will help interested researchers to address evolution, biodiversity and conservation questions concerning Parnassius and other butterfly species. Abstract The early evolutionary pattern and molecular adaptation mechanism of alpine Parnassius butterflies to high altitudes in Qinghai–Tibet Plateau are poorly understood up to now, due to difficulties in sampling, limited sequence data, and time calibration issues. Here, we present large-scale transcriptomic datasets of eight representative Parnassius species to reveal the phylogenetic timescale and potential genetic basis for high-altitude adaptation with multiple analytic strategies using 476 orthologous genes. Our phylogenetic results strongly supported that the subgenus Parnassius formed a well-resolved basal clade, and the subgenera Tadumia and Kailasius were closely related in the phylogenetic trees. In addition, molecular dating analyses showed that the Parnassius began to diverge at about 13.0 to 14.3 million years ago (middle Miocene), correlated with their hostplant’s spatiotemporal distributions, as well as geological and palaeoenvironmental changes of the Qinghai–Tibet Plateau. Moreover, the accelerated evolutionary rate, candidate positively selected genes and their potentially functional changes were detected, probably contributed to the high-altitude adaptation of Parnassius species. Overall, our study provided some new insights into the spatiotemporally evolutionary pattern and high altitude adaptation of Parnassius butterflies from the extrinsic and intrinsic view, which will help to address evolution, biodiversity, and conservation questions concerning Parnassius and other butterfly species.
Collapse
|
13
|
Wierbowski BM, Petrov K, Aravena L, Gu G, Xu Y, Salic A. Hedgehog Pathway Activation Requires Coreceptor-Catalyzed, Lipid-Dependent Relay of the Sonic Hedgehog Ligand. Dev Cell 2020; 55:450-467.e8. [PMID: 33038332 DOI: 10.1016/j.devcel.2020.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Hedgehog signaling governs critical processes in embryogenesis, adult stem cell maintenance, and tumorigenesis. The activating ligand, Sonic hedgehog (SHH), is highly hydrophobic because of dual palmitate and cholesterol modification, and thus, its release from cells requires the secreted SCUBE proteins. We demonstrate that the soluble SCUBE-SHH complex, although highly potent in cellular assays, cannot directly signal through the SHH receptor, Patched1 (PTCH1). Rather, signaling by SCUBE-SHH requires a molecular relay mediated by the coreceptors CDON/BOC and GAS1, which relieves SHH inhibition by SCUBE. CDON/BOC bind both SCUBE and SHH, recruiting the complex to the cell surface. SHH is then handed off, in a dual lipid-dependent manner, to GAS1, and from GAS1 to PTCH1, initiating signaling. These results define an essential step in Hedgehog signaling, whereby coreceptors activate SHH by chaperoning it from a latent extracellular complex to its cell-surface receptor, and point to a broader paradigm of coreceptor function.
Collapse
Affiliation(s)
| | - Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Aravena
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Garrick Gu
- Williams College, Williamstown, MA 01267, USA
| | - Yangqing Xu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Matusek T, Marcetteau J, Thérond PP. Functions of Wnt and Hedgehog-containing extracellular vesicles in development and disease. J Cell Sci 2020; 133:133/18/jcs209742. [PMID: 32989011 DOI: 10.1242/jcs.209742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.
Collapse
Affiliation(s)
- Tamás Matusek
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Julien Marcetteau
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Pascal P Thérond
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
15
|
González‐Méndez L, Gradilla A, Sánchez‐Hernández D, González E, Aguirre‐Tamaral A, Jiménez‐Jiménez C, Guerra M, Aguilar G, Andrés G, Falcón‐Pérez JM, Guerrero I. Polarized sorting of Patched enables cytoneme-mediated Hedgehog reception in the Drosophila wing disc. EMBO J 2020; 39:e103629. [PMID: 32311148 PMCID: PMC7265244 DOI: 10.15252/embj.2019103629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (Hh) signal molecules play a fundamental role in development, adult stem cell maintenance and cancer. Hh can signal at a distance, and we have proposed that its graded distribution across Drosophila epithelia is mediated by filopodia-like structures called cytonemes. Hh reception by Patched (Ptc) happens at discrete sites along presenting and receiving cytonemes, reminiscent of synaptic processes. Here, we show that a vesicle fusion mechanism mediated by SNARE proteins is required for Ptc placement at contact sites. Transport of Ptc to these sites requires multivesicular bodies (MVBs) formation via ESCRT machinery, in a manner different to that regulating Ptc/Hh lysosomal degradation after reception. These MVBs include extracellular vesicle (EV) markers and, accordingly, Ptc is detected in the purified exosomal fraction from cultured cells. Blockage of Ptc trafficking and fusion to basolateral membranes result in low levels of Ptc presentation for reception, causing an extended and flattened Hh gradient.
Collapse
Affiliation(s)
- Laura González‐Méndez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Ana‐Citlali Gradilla
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - David Sánchez‐Hernández
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Esperanza González
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
| | - Adrián Aguirre‐Tamaral
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Carlos Jiménez‐Jiménez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Milagros Guerra
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Gustavo Aguilar
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
- Growth and DevelopmentBiozentrumUniversity of BaselBaselSwitzerland
| | - Germán Andrés
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Juan M Falcón‐Pérez
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Isabel Guerrero
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
16
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
17
|
Poggi L, Casarosa S, Carl M. An Eye on the Wnt Inhibitory Factor Wif1. Front Cell Dev Biol 2018; 6:167. [PMID: 30574494 PMCID: PMC6292148 DOI: 10.3389/fcell.2018.00167] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
The coordinated interplay between extrinsic activating and repressing cell signaling molecules is pivotal for embryonic development and subsequent tissue homeostasis. This is well exemplified by studies on the evolutionarily conserved Wnt signaling pathways. Tight temporal and spatial regulation of Wnt signaling activity is required throughout lifetime, from maternal stages before gastrulation until and throughout adulthood. Outside cells, the action of numerous Wnt ligands is counteracted and fine-tuned by only a handful of well characterized secreted inhibitors, such as for instance Dickkopf, secreted Frizzled Related Proteins and Cerberus. Here, we give an overview of our current understanding of another secreted Wnt signaling antagonist, the Wnt inhibitory factor Wif1. Wif1 can directly interact with various Wnt ligands and inhibits their binding to membrane bound receptors. Epigenetic promoter methylation of Wif1, leading to silencing of its transcription and concomitant up-regulation of Wnt signaling, is a common feature during cancer progression. Furthermore, an increasing number of reports describe Wif1 involvement in regulating processes during embryonic development, which so far has not received as much attention. We will summarize our knowledge on Wif1 function and its mode of action with a particular focus on the zebrafish (Danio rerio). In addition, we highlight the potential of Wif1 research to understand and possibly influence mechanisms underlying eye diseases and regeneration.
Collapse
Affiliation(s)
- Lucia Poggi
- Laboratory of Molecular and Cellular Ophthalmology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Matthias Carl
- Laboratory of Translational Neurogenetics, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
18
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
19
|
Abstract
Quantitative genetic variation in morphology is pervasive in all species and is the basis for the evolution of differences among species. The measurement of morphological form in adults is now beginning to be combined with comparable measurements of form during development. Here we compare the shape of the developing wing to its adult form in a holometabolous insect, Drosophila melanogaster. We used protein expression patterns to measure shape in the developing precursors of the final adult wing. Three developmental stages were studied: late larval third instar, post-pupariation and in the adult fly. We studied wild-type animals in addition to mutants of two genes (shf and ds) that have known effects on adult wing shape and size. Despite experimental noise related to the difficulty of comparing developing structures, we found consistent differences in wing shape and size at each developmental stage between genotypes. Quantitative comparisons of variation arising at different developmental stages with the variation in the final structure enable us to determine when variation arises, and to generate hypotheses about the causes of that variation. In addition we provide linear rules allowing us to link wing morphology in the larva, with wing morphology in the pupa. Our approach provides a framework to analyze quantitative morphological variation in the developing fly wing. This framework should help to characterize the natural variation of the larval and pupal wing shape, and to measure the contribution of the processes occurring during these developmental stages to the natural variation in adult wing morphology.
Collapse
|
20
|
Abstract
Spatial organization of membrane domains within cells and cells within tissues is key to the development of organisms and the maintenance of adult tissue. Cell polarization is crucial for correct cell-cell signalling, which, in turn, promotes cell differentiation and tissue patterning. However, the mechanisms linking internal cell polarity to intercellular signalling are just beginning to be unravelled. The Hedgehog (Hh) and Wnt pathways are major directors of development and their malfunction can cause severe disorders like cancer. Here we discuss parallel advances into understanding the mechanism of Hedgehog and Wnt signal dissemination and reception. We hypothesize that cell polarization of the signal-sending and signal-receiving cells is crucial for proper signal spreading and activation of the pathway and, thus, fundamental for development of multicellular organisms.
Collapse
|
21
|
Schürmann S, Steffes G, Manikowski D, Kastl P, Malkus U, Bandari S, Ohlig S, Ortmann C, Rebollido-Rios R, Otto M, Nüsse H, Hoffmann D, Klämbt C, Galic M, Klingauf J, Grobe K. Proteolytic processing of palmitoylated Hedgehog peptides specifies the 3-4 intervein region of the Drosophila wing. eLife 2018. [PMID: 29522397 PMCID: PMC5844694 DOI: 10.7554/elife.33033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell fate determination during development often requires morphogen transport from producing to distant responding cells. Hedgehog (Hh) morphogens present a challenge to this concept, as all Hhs are synthesized as terminally lipidated molecules that form insoluble clusters at the surface of producing cells. While several proposed Hh transport modes tie directly into these unusual properties, the crucial step of Hh relay from producing cells to receptors on remote responding cells remains unresolved. Using wing development in Drosophila melanogaster as a model, we show that Hh relay and direct patterning of the 3–4 intervein region strictly depend on proteolytic removal of lipidated N-terminal membrane anchors. Site-directed modification of the N-terminal Hh processing site selectively eliminated the entire 3–4 intervein region, and additional targeted removal of N-palmitate restored its formation. Hence, palmitoylated membrane anchors restrict morphogen spread until site-specific processing switches membrane-bound Hh into bioactive forms with specific patterning functions. Each cell in a developing embryo receives information that determines what type of body structure it will form. In fruit flies, this information is partly given by a protein called Hedgehog. In the embryo cells that receive it, Hedgehog can trigger a series of events which activate certain genes and thereby regulate structure formation. The Hedgehog proteins are produced by a different organizing group of cells: from there they transport within the embryo, creating a gradient. Depending on where a responding cell is in the embryo, it receives a different amount of Hedgehog, which gives the cell its identity. For example, Hedgehog proteins form a gradient across a fruit fly’s developing wing, which creates a visible vein pattern. How Hedgehog proteins form gradients is enigmatic, however, because once produced, they cling to the cells that created them. The reason for this unusual behavior is that the two ends of the Hedgehog protein are attached to a different fat molecule. In particular, one extremity is linked to a fat molecule called palmitate. These ends’ fatty additions anchor Hedgehog to the cells that produced them. Then, the tethered proteins gather together to form chain-like clusters where they inactivate each other: the extremity with the palmitate ‘hides’ the portion of the neighboring protein that binds to the receiving cells. It is still unclear how Hedgehog can be activated and released to reach these faraway cells. One hypothesis is that an enzyme comes to the clusters and frees the proteins by cutting both of Hedgehog’s fatty anchors. Thanks to how the palmitate tethers Hedgehog to the cell, the protein is positioned in such a way that when the enzyme makes its snip, the binding site on the neighboring Hedgehog gets exposed: this protein is activated and, when also cut by the enzyme, released. Here, Schürmann et al. create an array of mutant Hedgehog proteins – for example some without palmitate, some with palmitate that cannot be removed by the enzyme – and study how they affect the development of the wing’s pattern in the fruit fly. Coupled with the imaging of the clusters, these experiments support the hypothesis that the palmitate anchor is necessary so that Hedgehog proteins can be turned on before diffusing away. The Hedgehog family of proteins is also present in humans, where it presides over the development of the embryo but is also involved in cancer. Understanding how Hedgehog works in the fruit fly could lead to new discoveries in humans too.
Collapse
Affiliation(s)
- Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Georg Steffes
- Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.,Institute of Neurobiology, University of Münster, Münster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Ursula Malkus
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Shyam Bandari
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Stefanie Ohlig
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Corinna Ortmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | | | - Mandy Otto
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
22
|
Hedgehog mediated degradation of Ihog adhesion proteins modulates cell segregation in Drosophila wing imaginal discs. Nat Commun 2017; 8:1275. [PMID: 29097673 PMCID: PMC5668237 DOI: 10.1038/s41467-017-01364-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
The Drosophila Hedgehog receptor functions to regulate the essential downstream pathway component, Smoothened, and to limit the range of signaling by sequestering Hedgehog protein signal within imaginal disc epithelium. Hedgehog receptor function requires both Patched and Ihog activity, the latter interchangeably encoded by interference hedgehog (ihog) or brother of ihog (boi). Here we show that Patched and Ihog activity are mutually required for receptor endocytosis and degradation, triggered by Hedgehog protein binding, and causing reduced levels of Ihog/Boi proteins in a stripe of cells at the anterior/posterior compartment boundary of the wing imaginal disc. This Ihog spatial discontinuity may contribute to classically defined cell segregation and lineage restriction at the anterior/posterior wing disc compartment boundary, as suggested by our observations that Ihog activity mediates aggregation of otherwise non-adherent cultured cells and that loss of Ihog activity disrupts wing disc cell segregation, even with downstream genetic rescue of Hedgehog signal response.
Collapse
|
23
|
Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, Halder G, Hamaratoglu F. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev Cell 2017; 42:667-680.e4. [DOI: 10.1016/j.devcel.2017.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
|
24
|
Abstract
Communication between cells pervades the development and physiology of metazoans. In animals, this process is carried out by a relatively small number of signaling pathways, each consisting of a chain of biochemical events through which extracellular stimuli control the behavior of target cells. One such signaling system is the Hedgehog pathway, which is crucial in embryogenesis and is implicated in many birth defects and cancers. Although Hedgehog pathway components were identified by genetic analysis more than a decade ago, our understanding of the molecular mechanisms of signaling is far from complete. In this review, we focus on the biochemistry and cell biology of the Hedgehog pathway. We examine the unique biosynthesis of the Hedgehog ligand, its specialized release from cells into extracellular space, and the poorly understood mechanisms involved in ligand reception and pathway activation at the surface of target cells. We highlight several critical questions that remain open.
Collapse
Affiliation(s)
- Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Bradley M Wierbowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
25
|
Deshpande G, Barr J, Gerlitz O, Lebedeva L, Shidlovskii Y, Schedl P. Cells on the move: Modulation of guidance cues during germ cell migration. Fly (Austin) 2017; 11:200-207. [PMID: 28300473 DOI: 10.1080/19336934.2017.1304332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In Drosophila melanogaster the progenitors of the germ-line stem cells, the primordial germ cells (PGCs) are formed on the outside surface of the early embryo, while the somatic gonadal precursor cells (SGPs) are specified during mid-embryogenesis. To form the primitive embryonic gonad, the PGCs travel from outside of the embryo, across the mid-gut and then migrate through the mesoderm to the SGPs. The migratory path of PGCs is dictated by a series of attractive and repulsive cues. Studies in our laboratory have shown that one of the key chemoattractants is the Hedgehog (Hh) ligand. Although, Hh is expressed in other cell types, the long-distance transmission of this ligand is specifically potentiated in the SGPs by the hmgcr isoprenoid biosynthetic pathway. The distant transmission of the Hh ligand is gated by restricting expression of hmgcr to the SGPs. This is particularly relevant in light of the recent findings that an ABC transporter, mdr49 also acts in a mesoderm specific manner to release the germ cell attractant. Our studies have demonstrated that mdr49 functions in hh signaling likely via its role in the transport of cholesterol. Given the importance of cholesterol in the processing and long distance transmission of the Hh ligand, this observation has opened up an exciting avenue concerning the possible role of components of the sterol transport machinery in PGC migration.
Collapse
Affiliation(s)
- Girish Deshpande
- a Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Justinn Barr
- a Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Offer Gerlitz
- b Department of Developmental Biology and Cancer Research, IMRIC , The Hebrew University , Jerusalem , Israel
| | - Lyubov Lebedeva
- c Laboratory of Gene Expression Regulation in Development . Institute of Gene Biology , Moscow , Russia
| | - Yulii Shidlovskii
- c Laboratory of Gene Expression Regulation in Development . Institute of Gene Biology , Moscow , Russia
| | - Paul Schedl
- a Department of Molecular Biology , Princeton University , Princeton , NJ , USA.,c Laboratory of Gene Expression Regulation in Development . Institute of Gene Biology , Moscow , Russia
| |
Collapse
|
26
|
Simon E, Aguirre-Tamaral A, Aguilar G, Guerrero I. Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning. J Dev Biol 2016; 4:jdb4040034. [PMID: 29615597 PMCID: PMC5831803 DOI: 10.3390/jdb4040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation.
Collapse
Affiliation(s)
- Eléanor Simon
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Adrián Aguirre-Tamaral
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Gustavo Aguilar
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
27
|
Abstract
In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes – extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling.
Collapse
Affiliation(s)
- Ian John McGough
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Jean-Paul Vincent
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
28
|
Langton PF, Kakugawa S, Vincent JP. Making, Exporting, and Modulating Wnts. Trends Cell Biol 2016; 26:756-765. [PMID: 27325141 DOI: 10.1016/j.tcb.2016.05.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Wnt proteins activate a conserved signalling pathway that controls development and tissue homeostasis in all metazoans. The intensity of Wnt signalling must be tightly controlled to avoid diseases caused by excess or ectopic signalling. Over the years, many proteins dedicated to Wnt function have been identified, including Porcupine, which appends a palmitoleate moiety that is essential for signalling activity. This lipid inevitably affects subcellular trafficking and solubility, as well as providing a target for post-translational modulation. We review here the life history of Wnts, starting with progression through the secretory pathway, continuing with release and spread in the extracellular space, and finishing with the various proteins that dampen or inactivate Wnts in the extracellular space.
Collapse
Affiliation(s)
- Paul F Langton
- The Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Satoshi Kakugawa
- Hakuhodo Medical Inc., 6-1-20 Akasaka Minato-ku, Tokyo 107-0052, Japan
| | - Jean-Paul Vincent
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK.
| |
Collapse
|
29
|
Deshpande G, Manry D, Jourjine N, Mogila V, Mozes H, Bialistoky T, Gerlitz O, Schedl P. Role of the ABC transporter Mdr49 in Hedgehog signaling and germ cell migration. Development 2016; 143:2111-20. [PMID: 27122170 DOI: 10.1242/dev.133587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 01/20/2023]
Abstract
Coalescence of the embryonic gonad in Drosophila melanogaster requires directed migration of primordial germ cells (PGCs) towards somatic gonadal precursor cells (SGPs). It was recently proposed that the ATP-binding cassette (ABC) transporter Mdr49 functions in the embryonic mesoderm to facilitate the transmission of the PGC attractant from the SGPs; however, the precise molecular identity of the Mdr49-dependent guidance signal remained elusive. Employing the loss- and gain-of-function strategies, we show that Mdr49 is a component of the Hedgehog (hh) pathway and it potentiates the signaling activity. This function is direct because in Mdr49 mutant embryos the Hh ligand is inappropriately sequestered in the hh-expressing cells. Our data also suggest that the role of Mdr49 is to provide cholesterol for the correct processing of the Hh precursor protein. Supporting this conclusion, PGC migration defects in Mdr49 embryos are substantially ameliorated by a cholesterol-rich diet.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Diane Manry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Nicholas Jourjine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Henny Mozes
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Tzofia Bialistoky
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Offer Gerlitz
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
30
|
Nakato H, Li JP. Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:275-93. [PMID: 27241223 DOI: 10.1016/bs.ircmb.2016.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are a class of carbohydrate-modified proteins involved in key biological processes, including growth factor signaling, cell adhesion, and enzymatic catalysis. HSPGs serve as coreceptors for a number of ligand molecules to regulate their signaling and distribution. These HS-dependent factors include fibroblast growth factors, bone morphogenetic proteins, Wnt-related factors, hedgehog, and cytokines. Several classes of HSPGs are evolutionarily conserved from humans to the genetically tractable model organism Drosophila. Sophisticated molecular genetic tools available in Drosophila provide for a powerful system to address unanswered questions regarding in vivo functions of HSPGs. These studies have highlighted the functions of HSPGs in the regulation of significant developmental events, such as morphogen gradient formation, nervous system formation, and the stem cell niche. Drosophila genetics has also established HSPGs as key factors in feedback controls that ensure robustness in developmental systems.
Collapse
Affiliation(s)
- H Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - J-P Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Kucerova L, Broz V, Arefin B, Maaroufi HO, Hurychova J, Strnad H, Zurovec M, Theopold U. The Drosophila Chitinase-Like Protein IDGF3 Is Involved in Protection against Nematodes and in Wound Healing. J Innate Immun 2015; 8:199-210. [PMID: 26694862 DOI: 10.1159/000442351] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/10/2015] [Indexed: 01/06/2023] Open
Abstract
Chitinase-like proteins (CLPs) of the 18 glycosyl hydrolase family retain structural similarity to chitinases but lack enzymatic activity. Although CLPs are upregulated in several human disorders that affect regenerative and inflammatory processes, very little is known about their normal physiological function. We show that an insect CLP (Drosophila imaginal disc growth factor 3, IDGF3) plays an immune-protective role during entomopathogenic nematode (EPN) infections. During these infections, nematodes force their entry into the host via border tissues, thus creating wounds. Whole-genome transcriptional analysis of nematode-infected wild-type and Idgf3 mutant larvae have shown that, in addition to the regulation of genes related to immunity and wound closure, IDGF3 represses Jak/STAT and Wingless signaling. Further experiments have confirmed that IDGF3 has multiple roles in innate immunity. It serves as an essential component required for the formation of hemolymph clots that seal wounds, and Idgf3 mutants display an extended developmental delay during wound healing. Altogether, our findings indicate that vertebrate and invertebrate CLP proteins function in analogous settings and have a broad impact on inflammatory reactions and infections. This opens the way to further genetic analysis of Drosophila IDGF3 and will help to elucidate the exact molecular context of CLP function.
Collapse
Affiliation(s)
- Lucie Kucerova
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kakugawa S, Langton PF, Zebisch M, Howell S, Chang TH, Liu Y, Feizi T, Bineva G, O’Reilly N, Snijders AP, Jones EY, Vincent JP. Notum deacylates Wnt proteins to suppress signalling activity. Nature 2015; 519:187-192. [PMID: 25731175 PMCID: PMC4376489 DOI: 10.1038/nature14259] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 01/23/2023]
Abstract
Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.
Collapse
Affiliation(s)
- Satoshi Kakugawa
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul F. Langton
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Matthias Zebisch
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Steve Howell
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Tao-Hsin Chang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yan Liu
- Glycosciences Laboratory, Imperial College London, Department of Medicine Du Cane Road, London, W12 0NN UK
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, Department of Medicine Du Cane Road, London, W12 0NN UK
| | - Ganka Bineva
- Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Nicola O’Reilly
- Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Ambrosius P. Snijders
- Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Hertfordshire. EN6 3LD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jean-Paul Vincent
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
33
|
Guerrero I, Kornberg TB. Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 2014; 33:52-62. [PMID: 24994598 DOI: 10.1016/j.semcdb.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The hedgehog (Hh) signaling protein has essential roles in the growth, development and regulation of many vertebrate and invertebrate organs. The processes that make Hh and prepare it for release from producing cells and that move it to target cells are both diverse and complex. This article reviews the essential features of these processes and highlights recent work that provides a novel framework to understand how these processes contribute to an integrated pathway.
Collapse
Affiliation(s)
- Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain.
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Coexpression of SFRP1 and WIF1 as a prognostic predictor of favorable outcomes in patients with colorectal carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:256723. [PMID: 24949429 PMCID: PMC4053147 DOI: 10.1155/2014/256723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/16/2014] [Accepted: 04/23/2014] [Indexed: 11/29/2022]
Abstract
Colorectal tumorigenesis is ascribed to the activity of Wnt signaling pathway in a ligand-independent manner mainly through APC and CTNNB1 gene mutations and in a ligand-dependent manner through low expression of Wnt inhibitors such as WNT inhibitory factor 1 (WIF1) and secreted frizzled related protein 1 (SFRP1). In this study we found that WIF1 protein expression was increased and SFRP1 was decreased significantly in CRC tissue versus normal tissue, and high expression of WIF1 was associated with big tumor diameters and deep invasion, and loss of SFRP1 expression was associated with the left lesion site, deep invasion, and high TNM stage. Among the four expression patterns (WIF+/SFRP1+, WIF+/SFRP1−, WIF−/SFRP1+, and WIF−/SFRP1−) only coexpression of WIF1 and SFRP1 (WIF+/SFRP1+) was associated with favorable overall survival, together with low TNM stage, as an independent prognostic factor as shown in a multivariate survival model. The results indicated that WIF1 seemed to play an oncogenic role, while SFRP1 seemed to play an oncosuppressive role although both of them are secreted Wnt antagonists. Coexpression of SFRP1 and WIF1, rather than SFRP1 or WIF1 alone, could be used, together with low TNM stage, as a prognostic predictor of favorable outcomes in CRC.
Collapse
|
35
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
36
|
Halford MM, Macheda ML, Parish CL, Takano EA, Fox S, Layton D, Nice E, Stacker SA. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK. PLoS One 2013; 8:e75447. [PMID: 24058687 PMCID: PMC3776778 DOI: 10.1371/journal.pone.0075447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 08/18/2013] [Indexed: 11/19/2022] Open
Abstract
RYK is an unusual member of the receptor tyrosine kinase (RTK) family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF) domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv) phage display library, we identified anti-RYK WIF domain–specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies.
Collapse
Affiliation(s)
- Michael M. Halford
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Maria L. Macheda
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Clare L. Parish
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena A. Takano
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Stephen Fox
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Layton
- Monash Antibody Technologies Facility, Monash University, Clayton, Victoria, Australia
| | - Edouard Nice
- Monash Antibody Technologies Facility, Monash University, Clayton, Victoria, Australia
| | - Steven A. Stacker
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
37
|
The hedgehog pathway gene shifted functions together with the hmgcr-dependent isoprenoid biosynthetic pathway to orchestrate germ cell migration. PLoS Genet 2013; 9:e1003720. [PMID: 24068944 PMCID: PMC3772052 DOI: 10.1371/journal.pgen.1003720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila embryonic gonad is assembled from two distinct cell types, the Primordial Germ Cells (PGCs) and the Somatic Gonadal Precursor cells (SGPs). The PGCs form at the posterior of blastoderm stage embryos and are subsequently carried inside the embryo during gastrulation. To reach the SGPs, the PGCs must traverse the midgut wall and then migrate through the mesoderm. A combination of local repulsive cues and attractive signals emanating from the SGPs guide migration. We have investigated the role of the hedgehog (hh) pathway gene shifted (shf) in directing PGC migration. shf encodes a secreted protein that facilitates the long distance transmission of Hh through the proteoglycan matrix after it is released from basolateral membranes of Hh expressing cells in the wing imaginal disc. shf is expressed in the gonadal mesoderm, and loss- and gain-of-function experiments demonstrate that it is required for PGC migration. Previous studies have established that the hmgcr-dependent isoprenoid biosynthetic pathway plays a pivotal role in generating the PGC attractant both by the SGPs and by other tissues when hmgcr is ectopically expressed. We show that production of this PGC attractant depends upon shf as well as a second hh pathway gene gγ1. Further linking the PGC attractant to Hh, we present evidence indicating that ectopic expression of hmgcr in the nervous system promotes the release/transmission of the Hh ligand from these cells into and through the underlying mesodermal cell layer, where Hh can contact migrating PGCs. Finally, potentiation of Hh by hmgcr appears to depend upon cholesterol modification. The molecular mechanisms underlying directed cell migration have been studied extensively in different biological contexts. Germ cell migration provides an effective model to study the dynamics of in vivo cell migration. The process of germ cell migration in Drosophila melanogaster results in embryonic gonad formation consisting of primordial germ cells (PGCs) and somatic gonadal precursor cells (SGPs). Moreover, it likely involves a complex series of attractive and repulsive cues. Molecular and genetic analysis has been performed to elucidate the nature of the attractive cue(s) and components that guide germ cells to the SGPs in the mesoderm. One current model proposes that 3-Hydroxy-3-Methylglutaryl Coenzyme A reductase (Hmgcr), synthesized in the SGPs, potentiates signaling downstream of Hedgehog (Hh) ligand also emanating from the SGPs. The model pivots on the novel activity of an established morphogen, Hedgehog, to function as a chemoattractant for the migrating germ cells. A variety of ‘loss-’ and ‘gain-of-function’ strategies manipulating different components of this signaling pathway have been successfully employed in support of the proposed model.
Collapse
|
38
|
Gradilla AC, Guerrero I. Hedgehog on the move: a precise spatial control of Hedgehog dispersion shapes the gradient. Curr Opin Genet Dev 2013; 23:363-73. [PMID: 23747033 DOI: 10.1016/j.gde.2013.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/28/2023]
Abstract
Hedgehog (Hh) as morphogen directs cell differentiation during development activating various target genes in a concentration dependent manner. The mechanisms that permit controlled Hh dispersion and gradient formation remain controversial. New research in the Drosophila wing disc epithelium has revealed a crucial role of Hh recycling for its release and transportation from source cells. Lipid modifications on Hh mediate key interactions with different elements of the pathway, which balance the retention and release of the molecule through the basolateral side of the epithelium, allowing its tight spatial control. Dispersion of Hh is also determined by its hydrophobic nature, and the mechanisms that include membrane-tethered transport of Hh are increasingly proposed.
Collapse
Affiliation(s)
- Ana-Citlali Gradilla
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
39
|
Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14:416-29. [DOI: 10.1038/nrm3598] [Citation(s) in RCA: 1338] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Ducuing A, Mollereau B, Axelrod JD, Vincent S. Absolute requirement of cholesterol binding for Hedgehog gradient formation in Drosophila. Biol Open 2013; 2:596-604. [PMID: 23789110 PMCID: PMC3683162 DOI: 10.1242/bio.20134952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022] Open
Abstract
How morphogen gradients are shaped is a major question in developmental biology, but remains poorly understood. Hedgehog (Hh) is a locally secreted ligand that reaches cells at a distance and acts as a morphogen to pattern the Drosophila wing and the vertebrate neural tube. The proper patterning of both structures relies on the precise control over the slope of Hh activity gradient. A number of hypotheses have been proposed to explain Hh movement and hence graded activity of Hh. A crux to all these models is that the covalent binding of cholesterol to Hh N-terminus is essential to achieve the correct slope of the activity gradient. Still, the behavior of cholesterol-free Hh (Hh-N) remains controversial: cholesterol has been shown to either increase or restrict Hh range depending on the experimental setting. Here, in fly embryos and wing imaginal discs, we show that cholesterol-free Hh diffuses at a long-range. This unrestricted diffusion of cholesterol-free Hh leads to an absence of gradient while Hh signaling strength remains uncompromised. These data support a model where cholesterol addition restricts Hh diffusion and can transform a leveled signaling activity into a gradient. In addition, our data indicate that the receptor Patched is not able to sequester cholesterol-free Hh. We propose that a morphogen gradient does not necessarily stem from the active transfer of a poorly diffusing molecule, but can be achieved by the restriction of a highly diffusible ligand.
Collapse
Affiliation(s)
- Antoine Ducuing
- LBMC, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, SFR 128 Biosciences Lyon Gerland, Université de Lyon , 69364 Lyon Cedex 07 , France
| | | | | | | |
Collapse
|
41
|
Bilioni A, Sánchez-Hernández D, Callejo A, Gradilla AC, Ibáñez C, Mollica E, Carmen Rodríguez-Navas M, Simon E, Guerrero I. Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Dev Biol 2012; 376:198-212. [PMID: 23276604 DOI: 10.1016/j.ydbio.2012.12.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Hedgehog can signal both at a short and long-range, and acts as a morphogen during development in various systems. We studied the mechanisms of Hh release and spread using the Drosophila wing imaginal disc as a model system for polarized epithelium. We analyzed the cooperative role of the glypican Dally, the extracellular factor Shifted (Shf, also known as DmWif), and the Immunoglobulin-like (Ig-like) and Fibronectin III (FNNIII) domain-containing transmembrane proteins, Interference hedgehog (Ihog) and its related protein Brother of Ihog (Boi), in the stability, release and spread of Hh. We show that Dally and Boi are required to prevent apical dispersion of Hh; they also aid Hh recycling for its release along the basolateral part of the epithelium to form a long-range gradient. Shf/DmWif on the other hand facilitates Hh movement restrained by Ihog, Boi and Dally, establishing equilibrium between membrane attachment and release of Hh. Furthermore, this protein complex is part of thin filopodia-like structures or cytonemes, suggesting that the interaction between Dally, Ihog, Boi and Shf/DmWif is required for cytoneme-mediated Hh distribution during gradient formation.
Collapse
Affiliation(s)
- Aphrodite Bilioni
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Keil KP, Mehta V, Branam AM, Abler LL, Buresh-Stiemke RA, Joshi PS, Schmitz CT, Marker PC, Vezina CM. Wnt inhibitory factor 1 (Wif1) is regulated by androgens and enhances androgen-dependent prostate development. Endocrinology 2012; 153:6091-103. [PMID: 23087175 PMCID: PMC3512059 DOI: 10.1210/en.2012-1564] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal prostate development from urogenital sinus (UGS) epithelium requires androgen receptor (AR) activation in UGS mesenchyme (UGM). Despite growing awareness of sexually dimorphic gene expression in the UGS, we are still limited in our knowledge of androgen-responsive genes in UGM that initiate prostate ductal development. We found that WNT inhibitory factor 1 (Wif1) mRNA is more abundant in male vs. female mouse UGM in which its expression temporally and spatially overlaps androgen-responsive steroid 5α-reductase 2 (Srd5a2). Wif1 mRNA is also present in prostatic buds during their elongation and branching morphogenesis. Androgens are necessary and sufficient for Wif1 expression in mouse UGS explant mesenchyme, and testicular androgens remain necessary for normal Wif1 expression in adult mouse prostate stroma. WIF1 contributes functionally to prostatic bud formation. In the presence of androgens, exogenous WIF1 protein increases prostatic bud number and UGS basal epithelial cell proliferation without noticeably altering the pattern of WNT/β-catenin-responsive Axin2 or lymphoid enhancer binding factor 1 (Lef1) mRNA. Wif1 mutant male UGSs exhibit increased (Sfrp)2 and (Sfrp)3 expression and form the same number of prostatic buds as the wild-type control males. Collectively our results reveal Wif1 as one of the few known androgen-responsive genes in the fetal mouse UGM and support the hypothesis that androgen-dependent Wif1 expression is linked to the mechanism of androgen-induced prostatic bud formation.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Avanesov A, Blair SS. The Drosophila WIF1 homolog Shifted maintains glypican-independent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi. Development 2012; 140:107-16. [PMID: 23154411 DOI: 10.1242/dev.078444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hedgehog (Hh) family proteins are secreted signaling ligands whose short- and long-range activities transform cellular fates in multiple contexts in organisms ranging from metazoans to humans. In the developing Drosophila wing, extracellular Hh binds to cell-bound glypican heparan sulfate proteoglycans (HSPGs) and the secreted protein Shifted (Shf), a member of Wnt inhibitory factor 1 (WIF1) family. The glypicans and Shf are required for long-range Hh movement and signaling; it has been proposed that Shf promotes long-range Hh signaling by reinforcing binding between Hh and the glypicans, and that much or all of glypican function in Hh signaling requires Shf. However, we will show here that Shf maintains short-range Hh signaling in the wing via a mechanism that does not require the presence of or binding to the Drosophila glypicans Dally and Dally-like protein. Conversely, we demonstrate interactions between Hh and the glypicans that are maintained, and even strengthened, in the absence of Shf. We present evidence that Shf binds to the CDO/BOC family Hh co-receptors Interference hedgehog (Ihog) and Brother of Ihog, suggesting that Shf regulates short-range Hh signaling through interactions with the receptor complex. In support of a functional interaction between Ihog and members of the Shf/WIF1 family, we show that Ihog can increase the Wnt-inhibitory activity of vertebrate WIF1; this result raises the possibility of interactions between WIF1 and vertebrate CDO/BOC family members.
Collapse
Affiliation(s)
- Andrei Avanesov
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
44
|
Sánchez-Hernández D, Sierra J, Ortigão-Farias JR, Guerrero I. The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog. Development 2012; 139:3849-58. [PMID: 22951645 DOI: 10.1242/dev.080028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Hedgehog (Hh) and Wnt signaling pathways are crucial for development as well as for adult stem cell maintenance in all organisms from Drosophila to humans. Aberrant activation of these pathways has been implicated in many types of human cancer. During evolution, organisms have developed numerous ways to fine-tune Wnt and Hh signaling. One way is through extracellular modulators that directly interact with Wnt or Hh, such as the Wnt inhibitory factor (Wif-1) family of secreted factors. Interestingly, Wif-1 family members have divergent functions in the Wnt and Hh pathways in different organisms. Whereas vertebrate Wif-1 blocks Wnt signaling, Drosophila Wif-1 [Shifted (Shf)] regulates only Hh distribution and spreading through the extracellular matrix. Here, we investigate which parts of the Shf and human Wif-1 (WIF1) proteins are responsible for functional divergence. We analyze the behavior of domain-swap (the Drosophila and human WIF domain and EGF repeats) chimeric constructs during wing development. We demonstrate that the WIF domain confers the specificity for Hh or Wg morphogen. The EGF repeats are important for the interaction of Wif-1 proteins with the extracellular matrix; Drosophila EGF repeats preferentially interact with the glypican Dally-like (Dlp) when the WIF domain belongs to human WIF1 and with Dally when the WIF domain comes from Shf. These results are important both from the evolutionary perspective and for understanding the mechanisms of morphogen distribution in a morphogenetic field.
Collapse
Affiliation(s)
- David Sánchez-Hernández
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Surmann-Schmitt C, Sasaki T, Hattori T, Eitzinger N, Schett G, von der Mark K, Stock M. The Wnt antagonist Wif-1 interacts with CTGF and inhibits CTGF activity. J Cell Physiol 2012; 227:2207-16. [PMID: 21928342 DOI: 10.1002/jcp.22957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wnt inhibitory factor 1 (Wif-1) is a secreted antagonist of Wnt signalling. We recently demonstrated that this molecule is expressed predominantly in superficial layers of epiphyseal cartilage but also in bone and tendon. Moreover, we showed that Wif-1 is capable of binding to several cartilage-related Wnt ligands and interferes with Wnt3a-dependent Wnt signalling in chondrogenic cells. Here we provide evidence that the biological function of Wif-1 may not be confined to the modulation of Wnt signalling but appears to include the regulation of other signalling pathways. Thus, we show that Wif-1 physically binds to connective tissue growth factor (CTGF/CCN2) in vitro, predominantly by interaction with the C-terminal cysteine knot domain of CTGF. In vivo such an interaction appears also likely since the expression patterns of these two secreted proteins overlap in peripheral zones of epiphyseal cartilage. In chondrocytes CTGF has been shown to induce the expression of cartilage matrix genes such as aggrecan (Acan) and collagen2a1 (Col2a1). In this study we demonstrate that Wif-1 is capable to interfere with CTGF-dependent induction of Acan and Col2a1 gene expression in primary murine chondrocytes. Conversely, CTGF does not interfere with Wif-1-dependent inhibition of Wnt signalling. These results indicate that Wif-1 may be a multifunctional modulator of signalling pathways in the cartilage compartment.
Collapse
Affiliation(s)
- Cordula Surmann-Schmitt
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Thérond PP. Release and transportation of Hedgehog molecules. Curr Opin Cell Biol 2012; 24:173-80. [PMID: 22366329 DOI: 10.1016/j.ceb.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/19/2012] [Accepted: 02/05/2012] [Indexed: 10/28/2022]
Abstract
Secretion of the Hedgehog morphogen induces different cell fates over the short and long ranges during developmental patterning. Mature Hedgehog carries hydrophobic palmitic acid and cholesterol modifications essential for its correct spread. The long-range activity of Hedgehog raises questions about how a dually lipidated protein can spread in the hydrophilic environment of the extracellular space. There is compelling experimental evidence in favour of the existence of several different carriers for Hedgehog transportation, via very different routes. This suggests that different accessory proteins and cellular machineries may be involved in the specific release of Hedgehog. I suggest that Hh carriers may work in parallel within a given cell and that developmental context may condition the choice of Hh carrier in secreting cells.
Collapse
Affiliation(s)
- Pascal P Thérond
- CNRS UMR 7277, Inserm UMR 1091, Institut de Biologie Valrose - IBV, France.
| |
Collapse
|
47
|
The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling. PLoS Genet 2012; 8:e1002503. [PMID: 22383891 PMCID: PMC3285576 DOI: 10.1371/journal.pgen.1002503] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/11/2011] [Indexed: 01/03/2023] Open
Abstract
Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling. In developing organisms, cells choose between alternative fates in order to make appropriately patterned tissues, and misregulation of those choices can underlie both developmental defects and cancers. Cells often make these decisions because of signals received from neighboring cells, such as those mediated by the secreted signaling proteins of the Wnt and Hedgehog (Hh) families. While signaling can be regulated by the levels of signaling or receptor proteins expressed by cells, another level of control is exerted by proteins that bind signaling proteins outside of cells and either inhibit or promote the signaling process. In the fruitfly Drosophilamelanogaster, the secreted Shifted protein has been shown to bind Hh and to increase Hh signaling, likely by reinforcing interactions between Hh and cell surface proteins of the glypican family. We provide evidence that the vertebrate homolog of Shifted, Wnt Inhibitory Factor-1 (Wif1), inhibits Wnt activity by a similar mechanism, reinforcing interactions between Wnts and glypicans in a manner that sequesters Wnts from their receptors. We also examine the structural basis for the specificities of Wif1 and Shifted for Wnt and Hh signaling, respectively, and provide evidence that Wif1, although a potent inhibitor of Wnt activity, influences D. melanogaster Hh signaling.
Collapse
|
48
|
Christian JL. Morphogen gradients in development: from form to function. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:3-15. [PMID: 23801664 PMCID: PMC3957335 DOI: 10.1002/wdev.2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Morphogens are substances that establish a graded distribution and elicit distinct cellular responses in a dose-dependent manner. They function to provide individual cells within a field with positional information, which is interpreted to give rise to spatial patterns. Morphogens can consist of intracellular factors that set up a concentration gradient by diffusion in the cytoplasm. More commonly, morphogens comprise secreted proteins that form an extracellular gradient across a field of cells. Experimental studies and computational analyses have provided support for a number of diverse strategies by which extracellular morphogen gradients are formed. These include free diffusion in the extracellular space, restricted diffusion aided by interactions with heparan sulfate proteoglycans, transport on lipid-containing carriers or transport aided by soluble binding partners. More specialized modes of transport have also been postulated such as transcytosis, in which repeated rounds of secretion, endocytosis, and intracellular trafficking move morphogens through cells rather than around them, or cytonemes, which consist of filopodial extensions from signal-receiving cells that are hypothesized to reach out to morphogen-sending cells. Once the gradient has formed, cells must distinguish small differences in morphogen concentration and store this information even after the gradient has dissipated. This is often achieved by translating ligand concentration into a proportional increase in numbers of activated cell surface receptors that are internalized and continue to signal from endosomal compartments. Ultimately, this leads to activation of one or a few transcription factors that transduce this information into qualitatively distinct gene responses inside the nucleus.
Collapse
Affiliation(s)
- Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematological Malignancies, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
49
|
Wojcinski A, Nakato H, Soula C, Glise B. DSulfatase-1 fine-tunes Hedgehog patterning activity through a novel regulatory feedback loop. Dev Biol 2011; 358:168-80. [PMID: 21806980 DOI: 10.1016/j.ydbio.2011.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/20/2011] [Accepted: 07/16/2011] [Indexed: 01/25/2023]
Abstract
Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development. DSulf1 activity is required in both Hh source and Hh receiving cells for proper positioning of Hh target gene expression boundaries. As assessed by loss- and gain-of-function experiments in specific compartments, DSulf1 displays dual functions with respect to Hh signalling, acting as a positive regulator in Hh producing cells and a negative regulator in Hh receiving cells. In either domain, DSulf1 modulates Hh distribution by locally lowering the concentration of the morphogen at the apical pole of wing disc cells. Thus, we propose that DSulf1, by its desulfation catalytic activity, lowers Hh/HSPG interaction in both Hh source and target fields, thereby enhancing Hh release from its source of production and reducing Hh signalling activity in responding cells. Finally, we show that Dsulf1 pattern of expression is temporally regulated and depends on EGFR signalling, a Hh-dependent secondary signal in this tissue. Our data reveal a novel Hh regulatory feedback loop, involving DSulf1, which contributes to maintain and stabilise expression domains of Hh target genes during wing disc development.
Collapse
Affiliation(s)
- Alexandre Wojcinski
- Université de Toulouse, UPS, CNRS, Centre de Biologie du Développement, 118. route de Narbonne, F-31062 Toulouse, France
| | | | | | | |
Collapse
|
50
|
Abstract
Extracellular signaling molecules have crucial roles in development and homeostasis, and their incorrect deployment can lead to developmental defects and disease states. Signaling molecules are released from sending cells, travel to target cells, and act over length scales of several orders of magnitude, from morphogen-mediated patterning of small developmental fields to hormonal signaling throughout the organism. We discuss how signals are modified and assembled for transport, which routes they take to reach their targets, and how their range is affected by mobility and stability.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Broad Institute, Center for Brain Science, FAS Center for Systems Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|