1
|
Effect of Octacalcium Phosphate Crystals on the Osteogenic Differentiation of Tendon Stem/Progenitor Cells In Vitro. Int J Mol Sci 2023; 24:ijms24021235. [PMID: 36674753 PMCID: PMC9866338 DOI: 10.3390/ijms24021235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Synthetic octacalcium phosphate (OCP) activates bone tissue-related cells, such as osteoblasts, osteoclasts, and vascular endothelial cells. However, the effect of OCP on tendon-related cell activation remains unknown. This study examined the response of rat tendon stem/progenitor cells (TSPCs) to OCP and related calcium phosphate crystals in vitro. TSPCs were cultured with OCP and Ca-deficient hydroxyapatite (CDHA) obtained from the original OCP hydrolysis to assess the activity of alkaline phosphatase (ALP) and the expression of osteogenesis-related genes. Compared with CDHA, the effect of OCP on promoting the osteogenic differentiation of TSPCs was apparent: the ALP activity and mRNA expression of RUNX2, Col1a1, OCN, and OPN were higher in OCP than in CDHA. To estimate the changes in the chemical environment caused by OCP and CDHA, we measured the calcium ion (Ca2+) and inorganic phosphate (Pi) ion concentrations and pH values of the TSPCs medium. The results suggest that the difference in the osteogenic differentiation of the TSPCs is related to the ionic environment induced by OCP and CDHA, which could be related to the progress of OCP hydrolysis into CDHA. These results support the previous in vivo observation that OCP has the healing function of rabbit rotator cuff tendon in vivo.
Collapse
|
2
|
Norwitz NG, Mota AS, Misra M, Ackerman KE. LRP5, Bone Density, and Mechanical Stress: A Case Report and Literature Review. Front Endocrinol (Lausanne) 2019; 10:184. [PMID: 30972028 PMCID: PMC6443714 DOI: 10.3389/fendo.2019.00184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/06/2019] [Indexed: 11/17/2022] Open
Abstract
The Wnt-β-catenin pathway receptor, low-density lipoprotein receptor-related protein 5 (LRP5), is a known regulator of bone mineral density. It has been hypothesized that specific human polymorphisms in LRP5 impact bone density, in part, by altering the anabolic response of bone to mechanical loading. Although experiments in animal models support this hypothesis, there is limited evidence that LRP5 polymorphisms can alter the anabolic response of bone to mechanical loading in humans. Herein, we report a young male who harbors a rare LRP5 missense mutation (A745V) and who provides potential proof of principle for this mechanotransduction hypothesis for low bone density. The subject had no history of fractures until age 18, a year into a career in competitive distance running. As he continued to run over the following 2 years, his mileage threshold to fracture steadily and rapidly decreased until he was diagnosed with severe osteoporosis (lumbar spine BMD Z-score of -3.2). By contextualizing this case within the existing LRP5 and mechanical stress literature, we speculate that this represents the first documented case of an individual in whom a genetic mutation altered the anabolic response of bone to mechanical stress in a manner sufficient to contribute to osteoporosis.
Collapse
Affiliation(s)
- Nicholas G. Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Nicholas G. Norwitz
| | - Adrian Soto Mota
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Madhusmita Misra
- Harvard Medical School, Boston, MA, United States
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, United States
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Kathryn E. Ackerman
- Harvard Medical School, Boston, MA, United States
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
- Divisions of Sports Medicine and Endocrinology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res 2018; 6:17. [PMID: 29844946 PMCID: PMC5968037 DOI: 10.1038/s41413-018-0017-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Dysregulated Wnt signaling is associated with the pathogenesis of cancers, fibrosis, and vascular diseases. Inhibition of Wnt signaling has shown efficacy in various pre-clinical models of these disorders. One of the key challenges in developing targeted anti-cancer drugs is to balance efficacy with on-target toxicity. Given the crucial role Wnts play in the differentiation of osteoblasts and osteoclasts, acute inhibition of Wnt signaling is likely to affect bone homeostasis. In this study, we evaluated the skeletal effect of small molecule inhibitor of an o-acyl transferase porcupine (PORCN) that prevents Wnt signaling by blocking the secretion of all Wnts. Micro-computed tomography and histomorphometric evaluation revealed that the bones of mice treated with two structurally distinct PORCN inhibitors LGK974 and ETC-1922159 (ETC-159) had loss-of-bone volume and density within 4 weeks of exposure. This decreased bone mass was associated with a significant increase in adipocytes within the bone marrow. Notably, simultaneous administration of a clinically approved anti-resorptive, alendronate, a member of the bisphosphonate family, mitigated loss-of-bone mass seen upon ETC-159 treatment by regulating activity of osteoclasts and blocking accumulation of bone marrow adipocytes. Our results support the addition of bone protective agents when treating patients with PORCN inhibitors. Mitigation of bone toxicity can extend the therapeutic utility of Wnt pathway inhibitors. Potential bone loss caused by cancer drugs could be mitigated by administering an existing osteoporosis drug. Over-activation of the Wnt signaling pathway, which helps maintain healthy tissues and bone development, is often found in cancer. Scientists are trialing cancer drugs that block a key enzyme PORCN and therefore inhibit Wnt signaling, but these drugs may also adversely affect patients’ bone structure. David Virshup at Duke-NUS Medical School in Singapore and Bart Williams at the Van Andel Research Institute in Michigan, US, and co-workers found that mice treated with PORCN -inhibiting cancer drugs lost bone volume and density within four weeks of exposure. The team then combined the cancer drug with another drug, alendronate, which is already used to treat osteoporosis. This combination targeted aberrant Wnt signaling and limited bone toxicity in the mice.
Collapse
|
4
|
Baicalein Accelerates Tendon-Bone Healing via Activation of Wnt/ β-Catenin Signaling Pathway in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3849760. [PMID: 29693006 PMCID: PMC5859801 DOI: 10.1155/2018/3849760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023]
Abstract
Background Tendon-bone healing is a reconstructive procedure which requires a tendon graft healing to a bone tunnel or to the surface of bone after the junction injury between tendon, ligament, and bone. The surgical reattachment of tendon to bone often fails due to regeneration failure of the specialized tendon-bone junction. Materials and Methods An extra-articular tendon-bone healing rat model was established to discuss the effect of the baicalein 10 mg/(kg·d) in accelerating tendon-bone healing progress. Also, tendon-derived stem cells (TDSCs) were treated with various concentrations of baicalein or dickkopf-1 (DKK-1) to stimulate differentiation for 14 days. Results In vivo, tendon-bone healing strength of experiment group was obviously stronger than the control group in 3 weeks as well as in 6 weeks. And there were more mature fibroblasts, more Sharpey fibers, and larger new bone formation area treated intragastrically with baicalein compared with rats that were treated with vehicle for 3 weeks and 6 weeks. In vitro, after induction for 14 days, the expressions of osteoblast differentiation markers, that is, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osterix (OSX), and collagen I, were upregulated and Wnt/β-catenin signaling pathway was enhanced in TDSCs. The effect of DKK-1 significantly reduced the effect of baicalein on the osteogenic differentiation. Conclusion These data suggest that baicalein may stimulate TDSCs osteogenic differentiation via activation of Wnt/β-catenin signaling pathway to accelerate tendon-bone healing.
Collapse
|
5
|
Wang T, Li J, Zhou GQ, Ma P, Zhao Y, Wang B, Chen D. Specific Deletion of β-Catenin in Col2-Expressing Cells Leads to Defects in Epiphyseal Bone. Int J Biol Sci 2017; 13:1540-1546. [PMID: 29230102 PMCID: PMC5723920 DOI: 10.7150/ijbs.23000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/15/2017] [Indexed: 01/07/2023] Open
Abstract
The role of canonical Wnt/β-catenin signaling in postnatal bone growth has not been fully defined. In the present studies, we generated β-catenin conditional knockout (KO) mice and deleted β-catenin in Col2-expressing chondrocytes and mesenchymal progenitor cells. Findings from analyzing the β-cateninCol2CreER KO mice revealed severe bone destruction and bone loss phenotype in epiphyseal bone, probably due to the increase in osteoclast formation and the accumulation of adipocytes in this area. In addition, we also found bone destruction and bone loss phenotype in vertebral bone in β-cateninCol2CreER KO mice. These findings indicate that β-catenin signaling plays a critical role in postnatal bone remodeling. Our study provides new insights into the regulation of epiphyseal bone homeostasis at postnatal stage.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guang-Qian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peter Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Zhao
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province 310022, China
| | - Baoli Wang
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Abstract
The extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment.
Collapse
Affiliation(s)
- Sally Roberts
- Spinal Studies and ISTM, Keele University, and Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
| | - Pauline Colombier
- INSERM U791-LIOAD, Centre Hospitalo-Universitaire (CHU) de Nantes, Nantes, France
| | - Aneka Sowman
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claire Mennan
- Spinal Studies and ISTM, Keele University, and Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
| | - Jan H D Rölfing
- Orthopaedic Research Laboratory and Departments of Orthopaedics, Aarhus and Aalborg University Hospitals, Aarhus, Denmark
| | - Jérôme Guicheux
- INSERM U791-LIOAD, Centre Hospitalo-Universitaire (CHU) de Nantes, Nantes, France
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK,Correspondence:
| |
Collapse
|
7
|
Shin HR, Islam R, Yoon WJ, Lee T, Cho YD, Bae HS, Kim BS, Woo KM, Baek JH, Ryoo HM. Pin1-mediated Modification Prolongs the Nuclear Retention of β-Catenin in Wnt3a-induced Osteoblast Differentiation. J Biol Chem 2016; 291:5555-5565. [PMID: 26740630 DOI: 10.1074/jbc.m115.698563] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis.
Collapse
Affiliation(s)
- Hye-Rim Shin
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Rabia Islam
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Won-Joon Yoon
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Taegyung Lee
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Young-Dan Cho
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and; Periodontology, School of Dentistry, Seoul National University, Seoul, 110-749, Korea
| | - Han-Sol Bae
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Bong-Su Kim
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Kyung-Mi Woo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Jeong-Hwa Baek
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Hyun-Mo Ryoo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and.
| |
Collapse
|
8
|
Xia B, Di Chen, Zhang J, Hu S, Jin H, Tong P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 2014; 95:495-505. [PMID: 25311420 PMCID: PMC4747051 DOI: 10.1007/s00223-014-9917-9] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA), the most prevalent chronic joint disease, increases in prevalence with age, and affects majority of individuals over the age of 65 and is a leading musculoskeletal cause of impaired mobility in the elderly. Because the precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of OA are poorly understood and there are currently no effective interventions to decelerate the progression of OA or retard the irreversible degradation of cartilage except for total joint replacement surgery. In this paper, the important molecular mechanisms related to OA pathogenesis will be summarized and new insights into potential molecular targets for the prevention and treatment of OA will be provided.
Collapse
Affiliation(s)
- Bingjiang Xia
- Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Kuchler U, Schwarze UY, Dobsak T, Heimel P, Bosshardt DD, Kneissel M, Gruber R. Dental and periodontal phenotype in sclerostin knockout mice. Int J Oral Sci 2014; 6:70-6. [PMID: 24699186 PMCID: PMC5130054 DOI: 10.1038/ijos.2014.12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 12/17/2022] Open
Abstract
Sclerostin is a Wnt signalling antagonist that controls bone metabolism. Sclerostin is expressed by osteocytes and cementocytes; however, its role in the formation of dental structures remains unclear. Here, we analysed the mandibles of sclerostin knockout mice to determine the influence of sclerostin on dental structures and dimensions using histomorphometry and micro-computed tomography (μCT) imaging. μCT and histomorphometric analyses were performed on the first lower molar and its surrounding structures in mice lacking a functional sclerostin gene and in wild-type controls. μCT on six animals in each group revealed that the dimension of the basal bone as well as the coronal and apical part of alveolar part increased in the sclerostin knockout mice. No significant differences were observed for the tooth and pulp chamber volume. Descriptive histomorphometric analyses of four wild-type and three sclerostin knockout mice demonstrated an increased width of the cementum and a concomitant moderate decrease in the periodontal space width. Taken together, these results suggest that the lack of sclerostin mainly alters the bone and cementum phenotypes rather than producing abnormalities in tooth structures such as dentin.
Collapse
Affiliation(s)
- Ulrike Kuchler
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Berne, Switzerland
| | - Uwe Y Schwarze
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Toni Dobsak
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria [4] Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Dieter D Bosshardt
- 1] Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Berne, Switzerland [2] Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Berne, Berne, Switzerland
| | - Michaela Kneissel
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Reinhard Gruber
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Laboratory of Oral Cell Biology, School of Dental Medicine, University of Berne, Berne, Switzerland
| |
Collapse
|
11
|
Lithium chloride enhances cathepsin H expression and BMP-4 degradation in C3H10T1/2 cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:143742. [PMID: 24312905 PMCID: PMC3842059 DOI: 10.1155/2013/143742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
The effect of canonical Wnt/β-catenin signaling on chondrogenic differentiation induced by transfection of BMP4 expressing plasmid was analyzed. Lithium chloride (LiCl) which mimics canonical Wnt/β-catenin signaling was added to cells transfected with BMP4 expressing plasmid. Although BMP4 mRNA expression was not affected by LiCl, LiCl decreased BMP4 protein accumulation. Gene expression analysis exhibited upregulation of cathepsin H by LiCl treatment. Gene silencing of cathepsin H enhanced BMP4 protein accumulation from BMP4 expressing cells. These results suggested that cathepsin H is regulated by Wnt/β-catenin signaling and plays an important role in the regulation of BMP4 biological activity.
Collapse
|
12
|
Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A, Rapinesi C, Brugnoli C, Serata D, Caccia F, Cuomo I, Ambrosi E, Simonetti A, Savoja V, De Chiara L, Danese E, Manfredi G, Janiri D, Motolese M, Nicoletti F, Girardi P, Sani G. Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 2013; 11:535-558. [PMID: 24403877 PMCID: PMC3763761 DOI: 10.2174/1570159x113119990037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/28/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To review the role of Wnt pathways in the neurodevelopment of schizophrenia. METHODS SYSTEMATIC PUBMED SEARCH, USING AS KEYWORDS ALL THE TERMS RELATED TO THE WNT PATHWAYS AND CROSSING THEM WITH EACH OF THE FOLLOWING AREAS: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. RESULTS Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. CONCLUSIONS The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data.
Collapse
Affiliation(s)
- Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alberto Maria Forte
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giorgio D. Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Brugnoli
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Federica Caccia
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Ilaria Cuomo
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Elisa Ambrosi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Valeria Savoja
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Lavinia De Chiara
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Emanuela Danese
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Delfina Janiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | | | - Ferdinando Nicoletti
- NEUROMED, Pozzilli, Isernia, Italy
- Department of Neuropharmacology, Sapienza University, School of Medicine and Pharmacy, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, Rome, Italy
| |
Collapse
|
13
|
Shim JH, Greenblatt MB, Zou W, Huang Z, Wein MN, Brady N, Hu D, Charron J, Brodkin HR, Petsko GA, Zaller D, Zhai B, Gygi S, Glimcher LH, Jones DC. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J Clin Invest 2013; 123:4010-22. [PMID: 23945236 DOI: 10.1172/jci69443] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/21/2013] [Indexed: 11/17/2022] Open
Abstract
Mice deficient in Schnurri-3 (SHN3; also known as HIVEP3) display increased bone formation, but harnessing this observation for therapeutic benefit requires an improved understanding of how SHN3 functions in osteoblasts. Here we identified SHN3 as a dampener of ERK activity that functions in part downstream of WNT signaling in osteoblasts. A D-domain motif within SHN3 mediated the interaction with and inhibition of ERK activity and osteoblast differentiation, and knockin of a mutation in Shn3 that abolishes this interaction resulted in aberrant ERK activation and consequent osteoblast hyperactivity in vivo. Additionally, in vivo genetic interaction studies demonstrated that crossing to Lrp5(-/-) mice partially rescued the osteosclerotic phenotype of Shn3(-/-) mice; mechanistically, this corresponded to the ability of SHN3 to inhibit ERK-mediated suppression of GSK3β. Inducible knockdown of Shn3 in adult mice resulted in a high-bone mass phenotype, providing evidence that transient blockade of these pathways in adults holds promise as a therapy for osteoporosis.
Collapse
Affiliation(s)
- Jae-Hyuck Shim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng Part A 2013; 19:1723-32. [PMID: 23510052 DOI: 10.1089/ten.tea.2013.0064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spontaneous differentiation of human embryonic stem cells (hESCs) is generally inefficient and leads to a heterogeneous population of differentiated and undifferentiated cells, limiting the potential use of hESCs for cell-based therapy and studies of specific differentiation programs. Here, we demonstrate biomaterial-dependent commitment of a mesenchymal cell population derived from hESCs toward the osteogenic lineage in vivo. In skeletal development, bone formation from condensing mesenchymal cells involves two distinct pathways: endochondral and intramembraneous bone formation. In this study, we demonstrate that the hESC-derived mesenchymal cells differentiate and regenerate in vivo bone tissues through two different pathways depending upon the local cues present in a scaffold microenvironment. Hydroxyapatite (HA) was incorporated into biodegradable poly(lactic-co-glycolic acid)/poly(l-lactic acid) (PLGA/PLLA) scaffolds to enhance bone formation. The HA microenvironment stabilized the β-catenin and upregulated Runx2, resulting in faster bone formation through intramembraneous ossification. hESC-derived mesenchymal cells seeded on the PLGA/PLLA scaffold without HA, however, showed minimal levels Runx2, and differentiated via endochondral ossification, as evidenced by formation of cartilaginous tissue, followed by calcification and increased blood vessel invasion. These results indicate that the ossification mechanisms of the hESC-derived mesenchymal stem cells can be regulated by the scaffold-mediated microenvironments, and bone tissue can be formed.
Collapse
Affiliation(s)
- Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processing, Seoul National University, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
15
|
Zhou S, Mizuno S, Glowacki J. Wnt pathway regulation by demineralized bone is approximated by both BMP-2 and TGF-β1 signaling. J Orthop Res 2013; 31:554-60. [PMID: 23239467 DOI: 10.1002/jor.22244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/14/2012] [Indexed: 02/04/2023]
Abstract
Allogeneic demineralized bone is used extensively as a clinical graft material because it has osteo/chondroinductive and osteoconductive properties. Demineralized bone powder (DBP) induces chondrogenic differentiation of human dermal fibroblasts (hDFs) in three-dimensional collagen cultures, but the initiating mechanisms have not been fully characterized nor has it been shown that bone morphogenetic proteins (BMPs) recapitulate DBP's effects on target cells. Among the many signaling pathways regulated in hDFs by DBP prior to in vitro chondrogenesis, there are changes in Wnts and their receptors that may contribute to DBP actions. This study tests the hypothesis that DBP modulation of Wnt signaling entails both BMP and TGF-β pathways. We compared the effects of DBP, TGF-β1, or BMP-2 on Wnt signaling components in hDFs by Wnt signaling macroarray, RT-PCR, in situ hybridization, and Western immunoblot analyses. Many effects of DBP on Wnt signaling components were not shared by BMP-2, and likewise DBP effects on Wnt genes and β-catenin only partially required the TGF-β pathway, as shown by selective inhibition of TGF-β/activin receptor-like kinase. The analyses revealed that 64% (16/25) of the Wnt signaling components regulated by DBP were regulated similarly by the sum of effects by BMP-2 and by TGF-β1. In conclusion, signaling mechanisms of inductive DBP in human dermal fibroblasts involve the modulation of multiple Wnt signals through both BMP and TGF-β pathways.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
16
|
Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008326. [PMID: 23378583 DOI: 10.1101/cshperspect.a008326] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development. These include cartilage and bone, tendons, and connective tissue, as well as neurons, glia, melanocytes, and endocrine and adipose cells; this remarkable lineage potential persists into adult life. Taken together with a limited capacity for self-renewal, neural crest cells bear the hallmarks of stem and progenitor cells and are considered to be synonymous with vertebrate evolution. The neural crest has provided a system for exploring the mechanisms that govern developmental processes such as morphogenetic induction, cell migration, and fate determination. Today, much of the focus on neural crest cells revolves around their stem cell-like characteristics and potential for use in regenerative medicine. A thorough understanding of the signals and switches that govern mammalian neural crest patterning is central to potential therapeutic application of these cells and better appreciation of the role that neural crest cells play in vertebrate evolution, development, and disease.
Collapse
Affiliation(s)
- Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
17
|
Immunohistochemical evidence for sclerostin during cementogenesis in mice. Ann Anat 2012; 194:415-21. [PMID: 22560000 DOI: 10.1016/j.aanat.2012.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate systematically the expression of the glycoprotein sclerostin, the product of the SOST gene, in periodontal tissues, especially in the cementum of mice. Immunolocalization of sclerostin was performed in decalcified histological sections of the maxillary and mandibular jaws of 20 CB56BL/6 mice. For analysis, newborn mice as well as mice at the age of, 1, 2, 4 and 8 weeks were used to detect sclerostin in the cementum, periodontal ligament (PDL) and alveolar bone. For further characterization of the cells within the periodontium, antibodies for Runx2 and S100A4 were also applied. S100A4 as a marker for fibroblasts was used to characterize the fibroblasts, especially in the periodontal ligament. Runx2 as a marker for osteoblast-maturation was used to detect the osteoblasts in the alveolar bone. In addition to the detection in osteocytes, expression of sclerostin was observed in cementocytes of the cellular cementum. With regard to cementogenesis, positive identification of sclerostin could be verified in mice at the age of 4 and 8 weeks but not during the initial stages of cementogenesis. Positive immune reactions for Runx2 were observed in PDL cells, cementoblasts, cementocytes, osteoblasts and osteocytes. PDL cells generally showed positive immunoreactions for the S100A4 antibody. The main findings of this study were: (1) due to the fact that sclerostin was not identified in the initial stages of cementum development, its biological significance seems to be restricted to cementum homeostasis and possibly to regenerative processes; (2) verification of sclerostin only in cementocytes of cellular cementum points to biological similarity of cellular cementum and bone.
Collapse
|
18
|
Shi C, Li J, Wang W, Cao W, Cao X, Wan M. Antagonists of LRP6 regulate PTH-induced cAMP generation. Ann N Y Acad Sci 2012; 1237:39-46. [PMID: 22082363 DOI: 10.1111/j.1749-6632.2011.06226.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
LRP6 is a common coreceoptor for different G protein-coupled seven-transmembrane receptors in production of cAMP. Extracelluar proteins sclerostin and DKK1, initially identified as antagonists for Wnt signaling by binding to LRP6, are negative regulators for bone formation. Here, we show that both sclerostin and DKK1 inhibit PTH-stimulated cAMP production. In addition, PTH suppresses expression of sclerostin in osteocytes in mice. We also found that sclerostin and DKK1 binds to LRP6 as antagonists to increase the availability of LRP6 to facilitate PTH signaling in a positive-feedback fashion. These studies reveal a previously unrecognized function of sclerostin and DKK1, which provides an alternative explanation for the application of sclerostin and DKK1 neutralization on enhancing bone formation as a potential therapy for skeletal diseases.
Collapse
Affiliation(s)
- Chenhui Shi
- Shihezi Medical College, Shihezi University, Xinjiang, China
| | | | | | | | | | | |
Collapse
|
19
|
Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W, Tang D, Harris SE, Mishina Y, O'Keefe RJ, Hilton MJ, Wang Y, Chen D. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci 2011; 124:3428-40. [PMID: 21984813 DOI: 10.1242/jcs.083659] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The BMP signaling pathway has a crucial role in chondrocyte proliferation and maturation during endochondral bone development. To investigate the specific function of the Bmp2 and Bmp4 genes in growth plate chondrocytes during cartilage development, we generated chondrocyte-specific Bmp2 and Bmp4 conditional knockout (cKO) mice and Bmp2,Bmp4 double knockout (dKO) mice. We found that deletion of Bmp2 and Bmp4 genes or the Bmp2 gene alone results in a severe chondrodysplasia phenotype, whereas deletion of the Bmp4 gene alone produces a minor cartilage phenotype. Both dKO and Bmp2 cKO mice exhibit severe disorganization of chondrocytes within the growth plate region and display profound defects in chondrocyte proliferation, differentiation and apoptosis. To understand the mechanism by which BMP2 regulates these processes, we explored the specific relationship between BMP2 and Runx2, a key regulator of chondrocyte differentiation. We found that BMP2 induces Runx2 expression at both the transcriptional and post-transcriptional levels. BMP2 enhances Runx2 protein levels through inhibition of CDK4 and subsequent prevention of Runx2 ubiquitylation and proteasomal degradation. Our studies provide novel insights into the genetic control and molecular mechanism of BMP signaling during cartilage development.
Collapse
Affiliation(s)
- Bing Shu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. DERMATO-ENDOCRINOLOGY 2011; 3:141-65. [PMID: 22110774 PMCID: PMC3219165 DOI: 10.4161/derm.3.3.15331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-γ (PPArγ)- and liver X receptor-α (LXrα)-mediated lipogenesis, β-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin→ATRA→RAR→FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
21
|
Abstract
Current orthopedic practice to treat osteo-degenerative diseases, such as osteoporosis, calls for antiresorptive therapies and anabolic bone medications. In some cases, surgery, in which metal rods are inserted into the bones, brings symptomatic relief. As these treatments may ameliorate the symptoms, but cannot cure the underlying dysregulation of the bone, the orthopedic field seems ripe for regenerative therapies using transplantation of stem cells. Stem cells bring with them the promise of completely curing a disease state, as these are the cells that normally regenerate tissues in a healthy organism. This chapter assembles reports that have successfully used stem cells to generate osteoblasts, osteoclasts, and chondrocytes - the cells that can be found in healthy bone tissue - in culture, and review and collate studies about animal models that were employed to test the function of these in vitro "made" cells. A particular emphasis is placed on embryonic stem cells, the most versatile of all stem cells. Due to their pluripotency, embryonic stem cells represent the probably most challenging stem cells to bring into the clinic, and therefore, the associated problems are discussed to put into perspective where the field currently is and what we can expect for the future.
Collapse
Affiliation(s)
- Nicole I zur Nieden
- Department of Cell Therapy, Applied Stem Cell Technology Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| |
Collapse
|
22
|
Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:97-106. [PMID: 20835984 DOI: 10.1002/wsbm.26] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult stem cells with multi or unipotent differentiation potential are present in almost all tissues of adult organisms. The main function of these stem cells is to support normal repair and rejuvenation of diseased and aging tissues. Mesenchymal stem cells (MSCs) isolated from the bone marrow have the potential to differentiate into multiple connective tissues. Advancements in understanding tissue specific differentiation of MSCs in conjunction with global genomic and proteomic profiling of MSCs have not only provided insights into their biology but also made MSC based clinical trials a reality for treating various debilitating diseases and genetic disorders. The emerging evidence that MSCs are immunosuppressive makes them an even more attractive candidate for regenerative medicine as rejections of transplants by the recipient could be a limiting step for moving the stem cells based therapies from "bedside to bed side." To a large extent the therapeutic potential of MSCs is attributed to their differentiation ability. The fate and commitment of MSCs are regulated by various instructive signals from their immediate vicinity or microenvironment, which comprises many biological molecules (soluble and insoluble) and biomechanical forces. These biochemical and biophysical factors play a pivotal role in determining the efficacy of MSC differentiation and their contribution to the repair process. In this review, we discuss the characteristics of MSCs, their differentiation potential toward different skeletal tissues (cartilage and bone), and their emerging role in regenerative medicine.
Collapse
Affiliation(s)
- Nathaniel S Hwang
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Chao Zhang
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Yong-Sung Hwang
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Shyni Varghese
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| |
Collapse
|
23
|
Inoue Y, Canaff L, Hendy GN, Hisa I, Sugimoto T, Chihara K, Kaji H. Role of Smad3, acting independently of transforming growth factor-beta, in the early induction of Wnt-beta-catenin signaling by parathyroid hormone in mouse osteoblastic cells. J Cell Biochem 2010; 108:285-94. [PMID: 19582775 DOI: 10.1002/jcb.22252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parathyroid hormone (PTH) exerts an anabolic action on bone but the mechanisms are incompletely understood. We showed previously that PTH interacts with the canonical Wnt-beta-catenin signaling pathway via the transforming growth factor (TGF)-beta signaling molecule, Smad3, to modulate osteoblast differentiation and apoptosis. Here, we examined which actions of Smad3 are TGF-beta-independent in stimulating the osteoblast phenotype and PTH-induced Wnt-beta-catenin signaling. For this, the TGF-beta receptor type 1 [activin receptor-like kinase (ALK5)] inhibitor (SB431542), and a Smad3 mutant in which the site normally phosphorylated by ALK5 is mutated from SSVS to AAVA, was used. PTH induced total beta-catenin and reduced phosphorylated beta-catenin levels at 1, 6, and 24 h in mouse osteoblastic MC3T3-E1 cells. Transient transfection of Smad3AAVA inhibited the PTH induction of total beta-catenin and reduction of phosphorylated beta-catenin levels at 6 and 24 h, but not at 1 h, indicating that the early effects occur independently of TGF-beta receptor signaling. On the other hand, MC3T3-E1 cell clones in which Smad3AAVA was stably expressed demonstrated elevated beta-catenin levels, although alkaline phosphatase (ALP) activity and mineralization were unaltered. In contrast, MC3T3-E1 cell clones in which wild-type Smad3 was stably expressed exhibited increased ALP activity and mineralization that were decreased by the ALK5 inhibitor, SB431542, although the beta-catenin levels induced in these cells were not modulated. In conclusion, the present study indicates that PTH induces osteoblast beta-catenin levels via Smad3 independently of, and dependently on, TGF-beta in the early and later induction phases, respectively.
Collapse
Affiliation(s)
- Yoshifumi Inoue
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Jäger A, Götz W, Lossdörfer S, Rath-Deschner B. Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J Periodontal Res 2009; 45:246-54. [PMID: 19778325 DOI: 10.1111/j.1600-0765.2009.01227.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Cementum and bone are rather similar hard tissues, and osteocytes and cementocytes, together with their canalicular network, share many morphological and cell biological characteristics. However, there is no clear evidence that cementocytes have a function in tissue homeostasis of cementum comparable to that of osteocytes in bone. Recent studies have established an important role for the secreted glycoprotein sclerostin, the product of the SOST gene, as an osteocyte-derived signal to control bone remodelling. In this study, we investigated the expression of sclerostin in cementocytes in vivo as well as the expression of SOST and sclerostin in periodontal ligament cell cultures following induction of mineralization. MATERIAL AND METHOD Immunolocalization of sclerostin was performed in decalcified histological sections of mouse and human teeth and alveolar bone. Additionally, periodontal ligament cells from human donors were cultured in osteogenic conditions, namely in the presence of dexamethasone, ascorbic acid and beta-glycerophosphate, for up to 3 wk. The induction of calcified nodules was visualized by von Kossa stain. SOST mRNA was detected by real-time PCR, and the presence of sclerostin was verified using immunohistochemistry and western blots. RESULTS Expression of sclerostin was demonstrated in osteocytes of mouse and human alveolar bone. Distinct immunolocalization in the cementocytes was shown. In periodontal ligament cultures, following mineralization treatment, increasing levels of SOST mRNA as well as of sclerostin protein could be verified. CONCLUSION The identification of SOST/sclerostin in cementocytes and mineralizing periodontal ligament cells adds to our understanding of the biology of the periodontium, but the functional meaning of these findings can only be unravelled after additional in vitro and in vivo studies.
Collapse
Affiliation(s)
- A Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
25
|
Mauney J, Volloch V. Collagen I matrix contributes to determination of adult human stem cell lineage via differential, structural conformation-specific elicitation of cellular stress response. Matrix Biol 2009; 28:251-62. [PMID: 19375506 DOI: 10.1016/j.matbio.2009.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 02/17/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
Abstract
Previously, we reported that the conformational transition of collagen I matrix plays, along with differentiation stimuli, a regulatory role in determination of differentiation lineage of bone marrow stromal sells via distinct signaling pathways specific for the structural state of the matrix. The present study addresses mechanisms underlying differential structural conformation-specific effects of collagen matrices on differentiation into diverse lineages. The results obtained suggest that the pivotal player in the observed matrix conformation-mediated regulation is a differential cellular stress response elicited by the exposure to native but not to denatured collagen I matrix. The stress causing such a response appears to be generated by matrix contraction and mediated by Alpha2Beta1 integrins engaged on native but not on denatured collagen I matrix. The principal facet of the observed phenomenon is not the nature of a stress but general stress response: when cells on denatured collagen I matrix are subjected to thermal stress, osteogenic pathway shifts to that seen on native collagen I matrix. Importantly, cellular stress response might be commonly involved in determination of differentiation lineage. Indeed, distinct components of cellular stress response machinery appear to regulate differentiation into diverse lineages. Thus, augmentation of Hsp90 levels enables the operation of efficient Alpha1Beta1/Alpha2Beta1 integrin-driven ERK activation pathways hence facilitating osteogenesis and suppressing adipogenesis, whereas myogenesis of satellite stem cells appears to be promoted by native collagen I matrix-elicited activation and nuclear translocation of another stress response component, Beta-catenin, shown to be essential for skeletal myogenesis, and chondrogenesis may involve stress-mediated elevation of yet another stress response constituent, Hsp70, shown to be an interactive partner of the chondrogenic transcription factor SOX9. The proposed concept of the integral role of cellular stress response in tissue generation and maintenance suggests new therapeutic approaches and indicates novel tissue engineering strategies.
Collapse
|
26
|
Hays E, Schmidt J, Chandar N. Beta-catenin is not activated by downregulation of PTEN in osteoblasts. In Vitro Cell Dev Biol Anim 2009; 45:361-70. [DOI: 10.1007/s11626-009-9189-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 02/12/2009] [Indexed: 11/24/2022]
|
27
|
[Roles of TGF-b superfamily in the genesis, development and maintenance of cartilage]. YI CHUAN = HEREDITAS 2009; 30:953-9. [PMID: 18779142 DOI: 10.3724/sp.j.1005.2008.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transforming growth factor beta (TGF-beta) superfamily is composed of TGF-beta subfamily and bone morphogenetic protein (BMP) subfamily. The ligands, ligand antagonists, receptors and intracellular transductors that engage in the TGF-beta superfamily signaling pathway play their unique roles during endochondral ossification via regulating the lineage differentiation, proliferation, maturation, apoptosis and mineralization of chondrocytes. BMP signaling dominates chondro-genesis through initiating the chondrocytic commitment of mesenchymal cells and maintaining the chondrocytic phenotype. During the development of growth plate, BMP signaling promotes the maturation of chondrocytes to facilitate ossification, whereas TGF-beta signaling inhibits the hypertrophic differentiation to preserve adequate chondrocytes within the growth plate. Both TGF-beta signaling and BMP signaling are indispensable for the maintenance and repair of articular cartilage. Therefore, it indicates that TGF-beta superfamily may function essentially all throughout the development of skeletons.
Collapse
|
28
|
|
29
|
Alman BA, Wunder JS. Parathyroid hormone-related protein regulates glioma-associated oncogene transcriptional activation: lessons learned from bone development and cartilage neoplasia. Ann N Y Acad Sci 2009; 1144:36-41. [PMID: 19076361 DOI: 10.1196/annals.1418.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hedgehog and parathyroid hormone-related protein (PTHrP) signaling play important roles regulating the differentiation of chondrocytes, which form the template for growing bone. By studying the interaction of the pathways in normal and neoplastic growth-plate chondrocytes (from enchondromas, a benign cartilage tumor), an unexpected direct regulation of hedgehog-mediated transcriptional activation by parathyroid hormone-related protein was uncovered. This regulation acts through the processing of the hedgehog-activated transcription factor, glioma-associated oncogene-three (Gli3). When PTHrP activates its receptor, Gli3 is processed to its repressor form though a protein kinase A (PKA) -dependent mechanism. Thus, activation of a G protein-coupled receptor can negatively regulate hedgehog-mediated transcription independent of hedgehog ligand activity, raising intriguing therapeutic possibilities.
Collapse
Affiliation(s)
- Benjamin A Alman
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
30
|
Chen M, Zhu M, Awad H, Li TF, Sheu TJ, Boyce BF, Chen D, O'Keefe RJ. Inhibition of beta-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 2008; 121:1455-65. [PMID: 18397998 DOI: 10.1242/jcs.020362] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway is essential for normal skeletal development because conditional gain or loss of function of beta-catenin in cartilage results in embryonic or early postnatal death. To address the role of beta-catenin in postnatal skeletal growth and development, Col2a1-ICAT transgenic mice were generated. Mice were viable and had normal size at birth, but became progressively runted. Transgene expression was limited to the chondrocytes in the growth plate and articular cartilages and was associated with decreased beta-catenin signaling. Col2a1-ICAT transgenic mice showed reduced chondrocyte proliferation and differentiation, and an increase in chondrocyte apoptosis, leading to decreased widths of the proliferating and hypertrophic zones, delayed formation of the secondary ossification center, and reduced skeletal growth. Isolated primary Col2a1-ICAT transgenic chondrocytes showed reduced expression of chondrocyte genes associated with maturation, and demonstrated that VEGF gene expression requires cooperative interactions between BMP2 and beta-catenin signaling. Altogether the findings confirm a crucial role for Wnt/beta-catenin in postnatal growth.
Collapse
Affiliation(s)
- Mo Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Silvestrini G, Ballanti P, Sebastiani M, Leopizzi M, Di Vito M, Bonucci E. OPG and RANKL mRNA and protein expressions in the primary and secondary metaphyseal trabecular bone of PTH-treated rats are independent of that of SOST. J Mol Histol 2007; 39:237-42. [PMID: 18158586 DOI: 10.1007/s10735-007-9158-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 12/11/2007] [Indexed: 11/28/2022]
Abstract
Sclerostin, encoded by the SOST gene, is a recently identified protein which seems to affect bone remodeling by inhibiting bone formation via Wnt pathways. A previous study on OPG and RANKL, two cytokines involved in the control of osteoclastogenesis, showed that the anabolic effect produced by intermittent treatment with parathyroid hormone was characterized by an increase in OPG/RANKL mRNA ratio in the primary spongiosa of metaphyseal bone of rat femur, and by its falling in the secondary spongiosa, in comparison to controls (Silvestrini et al. (2007a)). Considering that Wnt pathway components seem to regulate osteoclast formation and bone resorption by repression of RANKL transcription and by positive regulation of OPG gene in osteoblastic cells, we have evaluated, in the same rats, whether and how SOST mRNA and protein in the primary and secondary metaphyseal bone are affected by PTH. SOST mRNA and protein significantly fell in both primary and secondary spongiosa where only a few osteocytes were positive to sclerostin. These data show that in the two metaphyseal areas no relationship does exist between the trends of OPG and RANKL mRNA and that of SOST, suggesting that there are no direct links between the effects induced by PTH on these molecules, at least in terms of gene expression.
Collapse
Affiliation(s)
- Giuliana Silvestrini
- Dipartimento di Medicina Sperimentale, Sezione di Anatomia Patologica, "Sapienza" University of Rome, Azienda Policlinico Umberto I, Viale Regina Elena, 324, Roma, 00161, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Brugmann SA, Goodnough LH, Gregorieff A, Leucht P, ten Berge D, Fuerer C, Clevers H, Nusse R, Helms JA. Wnt signaling mediates regional specification in the vertebrate face. Development 2007; 134:3283-95. [PMID: 17699607 DOI: 10.1242/dev.005132] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At early stages of development, the faces of vertebrate embryos look remarkably similar, yet within a very short timeframe they adopt species-specific facial characteristics. What are the mechanisms underlying this regional specification of the vertebrate face? Using transgenic Wnt reporter embryos we found a highly conserved pattern of Wnt responsiveness in the developing mouse face that later corresponded to derivatives of the frontonasal and maxillary prominences. We explored the consequences of disrupting Wnt signaling, first using a genetic approach. Mice carrying compound null mutations in the nuclear mediators Lef1 and Tcf4 exhibited radically altered facial features that culminated in a hyperteloric appearance and a foreshortened midface. We also used a biochemical approach to perturb Wnt signaling and found that in utero delivery of a Wnt antagonist, Dkk1,produced similar midfacial malformations. We tested the hypothesis that Wnt signaling is an evolutionarily conserved mechanism controlling facial morphogenesis by determining the pattern of Wnt responsiveness in avian faces,and then by evaluating the consequences of Wnt inhibition in the chick face. Collectively, these data elucidate a new role for Wnt signaling in regional specification of the vertebrate face, and suggest possible mechanisms whereby species-specific facial features are generated.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li ZG, Yang J, Vazquez ES, Rose D, Vakar-Lopez F, Mathew P, Lopez A, Logothetis CJ, Lin SH, Navone NM. Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone. Oncogene 2007; 27:596-603. [PMID: 17700537 DOI: 10.1038/sj.onc.1210694] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tendency of prostate cancer to produce osteoblastic bone metastases suggests that cancer cells and osteoblasts interact in ways that contribute to cancer progression. To identify factors that mediate these interactions, we compared gene expression patterns between two bone-derived prostate cancer cell lines that produce osteoblastic (MDA PCa 2b) or osteolytic lesions (PC-3). Both cell lines expressed Wnt ligands, including WNT7b, a canonical Wnt implicated in osteogenesis. PC-3 cells expressed 50 times more Dickkopf-1 (DKK1), an inhibitor of Wnt pathways, than did MDA PCa 2b cells. Evaluation of the functional role of these factors (in cocultures of prostate cancer cells with primary mouse osteoblasts (PMOs) or in bone organ cultures) showed that MDA PCa 2b cells activated Wnt canonical signaling in PMOs and that DKK1 blocked osteoblast proliferation and new bone formation induced by MDA PCa 2b cells. MDA PCa 2b cells did not induce bone formation in calvaria from mice lacking the Wnt co-receptor Lrp5. In human specimens, WNT7b was not expressed in normal prostate but was expressed in areas of high-grade prostate intraepithelial neoplasia, in three of nine primary prostate tumor specimens and in 16 of 38 samples of bone metastases from prostate cancer. DKK1 was not expressed in normal or cancerous tissue but was expressed in two of three specimens of osteolytic bone metastases (P=0.0119). We conclude that MDA PCa 2b induces new bone formation through Wnt canonical signaling, that LRP5 mediates this effect, and that DKK1 is involved in the balance between bone formation and resorption that determines lesion phenotype.
Collapse
Affiliation(s)
- Z G Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230-1439, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Manolagas SC, Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 2007; 21:2605-14. [PMID: 17622581 DOI: 10.1210/me.2007-0259] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway affects several biological processes ranging from embryonic development, patterning, and postembryonic stem cell fate, to bone formation and insulin secretion in adulthood. beta-Catenin mediates canonical Wnt signaling by binding to and activating members of the T-cell factor (TCF) transcription factor family. Similar to the Wnt/beta-catenin pathway, oxidative stress influences fundamental cellular processes including stem cell fate and has been linked to aging and the development of age-related diseases. However, the molecular details of the pathogenetic effects of oxidative stress on the homeostasis of many different tissues remain unclear. beta-Catenin has been recently implicated as a pivotal molecule in defense against oxidative stress by serving as a cofactor of the forkhead box O (FOXO) transcription factors. In addition, it has been shown that oxidative stress is a pivotal pathogenetic factor of age-related bone loss and strength in mice, leading to, among other changes, a decrease in osteoblast number and bone formation. These particular cellular changes evidently result from diversion of the limited pool of beta-catenin from TCF- to FOXO-mediated transcription in osteoblastic cells. Fascinatingly, attenuation of Wnt-mediated transcription, resulting from an autosomal-dominant missense mutation in LRP6, a coreceptor for the Wnt-signaling pathway, has been linked recently genetically not only to premature osteoporosis, but also to coronary artery disease as well as several features of the metabolic syndrome including hyperlipidemia, hypertension, and diabetes, but not obesity. In this minireview, we highlight evidence linking the age-associated oxidative stress with FOXOs, Wnt/beta-catenin signaling, osteoblastogenesis, adipogenesis, osteoporosis, and several features of the metabolic syndrome. We hypothesize that antagonism of Wnt signaling by oxidative stress with increasing age may be a common molecular mechanism contributing to the development not only of involutional osteoporosis, but several pathologies such as atherosclerosis, insulin resistance, and hyperlipidemia, all of which become more prevalent with advancing age.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Department of Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205-7199, USA.
| | | |
Collapse
|
35
|
Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, Di Vito M, Bonucci E. Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Mol Histol 2007; 38:261-9. [PMID: 17549589 DOI: 10.1007/s10735-007-9096-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
Sclerostin, the secreted protein product of the SOST gene, which is mainly expressed by osteocytes, has recently been proposed as a negative regulator of bone osteoblastogenesis. Chronic elevation of PTH reduces SOST expression by osteocytes, while controversial results have been obtained by intermittent PTH administration. We have investigated the effects of intermittently administered PTH on SOST expression and sclerostin localization, comparing them with those of controls, as they appeared in three different bone segments of rat tibia: secondary trabecular metaphyseal and epiphyseal bone, and cortical diaphyseal bone. The histomorphometric results demonstrate that PTH enhances bone turnover through anabolic effects, as shown by the association of increased bone resorption variables with a significant rise in BV/TV, Tb.Th and Tb.N and a fall in Tb.Sp. PTH induces a SOST mRNA and protein fall in secondary metaphyseal trabeculae, diaphyseal bone and in epiphyseal trabeculae. Numbers of sclerostin immunopositive osteocytes/mm(2) show no change, compared with controls; there are fewer sclerostin-positive osteocytes in secondary metaphyseal trabeculae than in the other two bone areas, both in the control and PTH groups. The low numbers of sclerostin-positive osteocytes in the metaphyseal trabecular bone seem to be directly related to the fact that this area displays a high remodeling rate. The anabolic effects of PTH are in line with the fall of SOST mRNA and protein in all the three bone segments examined; the rise of bone turnover supports a negative role of SOST in bone formation.
Collapse
Affiliation(s)
- G Silvestrini
- Dipartimento di Medicina Sperimentale e Patologia, Sezioni di Anatomia Patologica, Università degli Studi di Roma La Sapienza, Azienda Policlinico Umberto I, Viale Regina Elena, 324, 00161 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Emami KH, Corey E. When prostate cancer meets bone: control by wnts. Cancer Lett 2007; 253:170-9. [PMID: 17462819 DOI: 10.1016/j.canlet.2006.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 11/05/2006] [Accepted: 12/07/2006] [Indexed: 11/19/2022]
Abstract
Morbidity and mortality of advanced prostate cancer (CaP) are associated with bone metastases. Bone metastases of prostate cancer stimulate new bone formation, resulting in osteoblastic metastases. Very little is known about how migrating CaP cells settle in the bone tissues and induce bone lesions, but recent studies have suggested that factors known as Wnts, which are expressed by CaP, can promote establishment of CaP cells in the bone microenvironment and stimulate bone formation. Signaling via the Wnt pathway is important in embryogenesis and development, and has also been shown to be important in cancer development and progression. CaP cells exhibit increased Wnt signaling vs. normal prostate epithelium, and Wnt has recently been shown to play a central role in bone development, regulating factors critical in control of osteoblast and osteoclast differentiation. In this review we have focused on the roles of Wnt signaling in CaP, bone, and CaP bone metastases.
Collapse
Affiliation(s)
- Katayoon H Emami
- CGEN Discovery Inc., 600 Broadway STE580, Seattle, WA 98122, USA
| | | |
Collapse
|
37
|
Chen Y, Whetstone HC, Youn A, Nadesan P, Chow ECY, Lin AC, Alman BA. β-Catenin Signaling Pathway Is Crucial for Bone Morphogenetic Protein 2 to Induce New Bone Formation. J Biol Chem 2007; 282:526-33. [PMID: 17085452 DOI: 10.1074/jbc.m602700200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endochondral ossification is recapitulated during bone morphogenetic protein (BMP)-induced ectopic bone formation. Although BMP and beta-catenin have been investigated in bone development and in mesenchymal cells, how they interact in this process is not clear. We implanted recombinant BMP-2 into the muscle of mice to investigate the effect of beta-catenin signaling on BMP-induced in vivo endochondral bone formation. BMP-2 induced expression of several Wnt ligands and their receptors and also activated beta-catenin-mediated T cell factor-dependent transcriptional activity. An adenovirus expressing Dickkopf-1 (Dkk-1, an inhibitor of canonical Wnt pathway) inhibited beta-catenin signaling and endochondral bone formation. Interestingly, Dkk-1 inhibited both chondrogenesis and osteogenesis. Likewise, mice expressing conditional beta-catenin null alleles also displayed an inhibition of BMP-induced chondrogenesis and osteogenesis. This is in contrast to studies of embryonic skeletogenesis, which demonstrate that beta-catenin is required for osteogenesis but is dispensable for chondrogenesis. These findings suggest that embryonic development pathways are not always recapitulated during post-natal regenerative processes, and the biochemical pathways utilized to regulate cell differentiation may be different. During in vivo ectopic bone formation, BMP-2 induces beta-catenin-mediated signaling through Wnt ligands, and beta-catenin is required for both chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Yan Chen
- Program in Developmental Biology, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu B, Yu HMI, Hsu W. Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of beta-catenin in proliferation and differentiation. Dev Biol 2006; 301:298-308. [PMID: 17113065 PMCID: PMC1821096 DOI: 10.1016/j.ydbio.2006.10.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/16/2006] [Accepted: 10/17/2006] [Indexed: 12/19/2022]
Abstract
Targeted disruption of Axin2 in mice induces skeletal defects, a phenotype resembling craniosynostosis in humans. Premature fusion of cranial sutures, caused by deficiency in intramembranous ossification, occurs at early postnatal stages. Axin2 negatively regulates both expansion of osteoprogenitors and maturation of osteoblasts through its modulation on Wnt/beta-catenin signaling. We investigate the dual role of beta-catenin to gain further insights into the skull morphogenetic circuitry. We show that as a transcriptional co-activator, beta-catenin promotes cell division by stimulating its target cyclin D1 in osteoprogenitors. Upon differentiation of osteoprogenitors, BMP signaling is elevated to accelerate the process in a positive feedback mechanism. This Wnt-dependent BMP signal dictates cellular distribution of beta-catenin. As an adhesion molecule, beta-catenin promotes cell-cell interaction mediated by adherens junctions in mature osteoblasts. Finally, haploid deficiency of beta-catenin alleviates the Axin2-null skeletal phenotypes. These findings support a model for disparate roles of beta-catenin in osteoblast proliferation and differentiation.
Collapse
Affiliation(s)
| | | | - Wei Hsu
- * Corresponding author: Fax: +1 585 276 0190. E-mail address: (W. Hsu)
| |
Collapse
|
39
|
Manolagas SC. Choreography from the tomb: An emerging role of dying osteocytes in the purposeful, and perhaps not so purposeful, targeting of bone remodeling. ACTA ACUST UNITED AC 2006. [DOI: 10.1138/20060193] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Wein MN, Jones DC, Glimcher LH. Turning down the system: counter-regulatory mechanisms in bone and adaptive immunity. Immunol Rev 2005; 208:66-79. [PMID: 16313341 DOI: 10.1111/j.0105-2896.2005.00322.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Major advances have been made in recent years toward the identification of transcription factors that control cell-type-specific gene expression in the skeletal and adaptive immune systems. However, the identification of factors necessary and sufficient to drive production of effector cell proteins such as matrix components and cytokines represents the first step toward understanding how cells in bone and the adaptive system achieve their highly specialized functions. Here, we provide selected examples of counter-regulatory mechanisms that serve to turn down cells involved in extracellular matrix biosynthesis and adaptive immunity at the level of the transcription factors Runx2 and nuclear factor for the activation of T cells.
Collapse
Affiliation(s)
- Marc N Wein
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Bonaventure J, Silve C. Dysplasies osseuses héréditaires et voies de signalisation associées aux récepteurs FGFR3 et PTHR1. Med Sci (Paris) 2005; 21:954-61. [PMID: 16274647 DOI: 10.1051/medsci/20052111954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Skeletal development is a highly sophisticated process involving, as a first step, migration and condensation of mesenchymal cells into osteoprogenitor cells. These cells further differentiate into chondrocytes and osteoblasts through multiple differentiation stages requiring a set of specific transcriptional factors. Defective endochondral ossification in human is associated with a large number of inherited skeletal dysplasias caused by mutations in genes encoding extracellular matrix components, growth factors and their receptors, signaling molecules and transcription factors. This review summarizes some of the recent findings on a series of chondrodysplasias caused by mutations in FGFR3 and PTHR1, two receptors expressed in the cartilage growth plate and mediating two main signaling pathways. Data from human diseases and relevant animal models provide new clues for understanding how signaling molecules and their interaction with key transcription factors control and regulate the development and growth of long bones.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Chondrogenesis/genetics
- Chondrogenesis/physiology
- Fibroblast Growth Factor 3/physiology
- Growth Plate/pathology
- Humans
- Mesoderm/cytology
- Models, Animal
- Models, Genetic
- Mutation
- Osteochondrodysplasias/genetics
- Osteochondrodysplasias/physiopathology
- Osteogenesis/genetics
- Osteogenesis/physiology
- Parathyroid Hormone/physiology
- Receptor, Fibroblast Growth Factor, Type 3/deficiency
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Parathyroid Hormone, Type 1
- Receptors, Parathyroid Hormone/deficiency
- Receptors, Parathyroid Hormone/genetics
- Receptors, Parathyroid Hormone/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Jacky Bonaventure
- CNRS UMR 146, Institut Curie, Bâtiment 110, Centre Universitaire Paris Sud, 91405 Orsay, France
| | | |
Collapse
|
42
|
Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O'Brien CA, Manolagas SC, Jilka RL. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 2005; 146:4577-83. [PMID: 16081646 DOI: 10.1210/en.2005-0239] [Citation(s) in RCA: 431] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both chronic excess of PTH, as in hyperparathyroidism, and intermittent elevation of PTH (by daily injections) increase the number of osteoblasts; albeit, the former is associated with bone catabolism and the later with bone anabolism. Intermittent PTH increases osteoblast number by attenuating osteoblast apoptosis, an effect that requires the transcription factor Runx2. However, chronic elevation of PTH does not affect osteoblast apoptosis because it stimulates the proteasomal degradation of Runx2. Here, we studied the effects of PTH on Sost, a Runx2 target gene expressed in osteocytes (former osteoblasts embedded in the bone matrix), which antagonizes the pro-osteoblastogenic actions of bone morphogenetic proteins and Wnts. We report that continuous infusion of PTH to mice for 4 d decreased Sost mRNA expression in vertebral bone by 80-90%. This effect was accompanied by a comparable reduction of sclerostin, the product of Sost, in osteocytes, as determined by quantitative immunoblot analysis of bone extracts and by immunostaining. In contrast, a single injection of PTH caused a transient 50% reduction in Sost mRNA at 2 h, but four daily injections had no effect on Sost mRNA or sclerostin. PTH strongly decreased Sost expression in osteocytes formed in primary cultures of neonatal murine calvaria cells as well as in osteocytic MLO-A5 cells, demonstrating a direct effect of PTH on this cell type. These results, together with evidence that sclerostin antagonizes bone morphogenetic proteins and Wnts, strongly suggest that suppression of Sost by PTH represents a novel mechanism for hormonal control of osteoblastogenesis mediated by osteocytes.
Collapse
Affiliation(s)
- T Bellido
- Division of Endocrinology and Metabolism, and Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ryoo HM, Yoon WJ. Role of Transcription Factors in Bone and Vascular Mineralization. ACTA ACUST UNITED AC 2005. [DOI: 10.3803/jkes.2005.20.6.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyun-Mo Ryoo
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Korea
| | - Won-Joon Yoon
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Korea
| |
Collapse
|