1
|
Li XG, Zhu GS, Cao PJ, Huang H, Chen YH, Chen C, Chen PJ, Wu D, Ding C, Zhang ZH, Zhang RH, Hu ZX, Zhao WH, Liu MH, Li YW, Liu HY, Chen J. Genome-wide CRISPR-Cas9 screening identifies ITGA8 responsible for abivertinib sensitivity in lung adenocarcinoma. Acta Pharmacol Sin 2025; 46:1419-1432. [PMID: 39809840 PMCID: PMC12032371 DOI: 10.1038/s41401-024-01451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance. In this study we developed a novel approach by using CRISPR-Cas9 whole-genome library screening to identify the genes that enhance the sensitivity of lung adenocarcinoma cells to EGFR-TKIs. Through this screening, we revealed integrin subunit alpha 8 (ITGA8) as the key gene that enhanced sensitivity to abivertinib in lung adenocarcinoma. Notably, ITGA8 expression was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal tissues. Bioinformatics analyses revealed that ITGA8 was positively correlated with the sensitivity of lung adenocarcinoma to abivertinib. We showed that knockdown of ITGA8 significantly enhanced the proliferation, migration and invasion of H1975 cells. Conversely, overexpression of ITGA8 reduced the proliferation migration and invasion of H1975/ABIR cells. Furthermore, we demonstrated that ITGA8 sensitized lung adenocarcinoma cells to EGFR-TKIs by attenuating the downstream FAK/SRC/AKT/MAPK signaling pathway. In H1975 cell xenograft mouse models, knockdown of ITGA8 significantly increased tumor growth and reduced the sensitivity to abivertinib, whereas overexpression of ITGA8 markedly suppressed tumor proliferation and enhanced sensitivity to the drug. This study demonstrates that ITGA8 inhibits the proliferation, invasion and migration of lung adenocarcinoma cells, enhances the sensitivity to EGFR-TKIs, improves treatment efficacy, and delays the progression of acquired resistance. Thus, ITGA8 presents a potential therapeutic candidate for addressing acquired resistance to EGFR-TKIs from a novel perspective.
Collapse
Affiliation(s)
- Xuan-Guang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guang-Sheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pei-Jun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu-Hao Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pei-Jie Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Di Wu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chen Ding
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zi-He Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rui-Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zi-Xuan Hu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen-Hao Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ming-Hui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong-Wen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hong-Yu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Zhang Y, Long J, Xu J, Zhong P, Wang B. Single-cell RNA sequencing reveals ECM remodeling-tumor stiffness-FAK as a key driver of vestibular schwannoma progression. Prog Neurobiol 2025; 247:102730. [PMID: 39988022 DOI: 10.1016/j.pneurobio.2025.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/17/2024] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Vestibular schwannoma (VS), characterized by the absence of merlin expression, is the most prevalent benign tumor located at the cerebellopontine angle, lacking approved pharmaceutical interventions except for off-label utilization of bevacizumab. The role of Tumor stiffness-Focal adhesion kinase (FAK) activation in fueling tumor progression is well-established, with merlin deficiency serving as a biomarker for tumor sensitivity to FAK inhibitors. In this context, we investigated whether Tumor stiffness-FAK contributes to VS progression. Single-cell RNA sequencing revealed associations between VS progression and gene sets related to "Response to mechanical stimulus" and "Neurotrophin signaling pathway". Histological studies indicated a potential involvement of neurotrophins in early stages of VS tumorigenesis, while enhanced Extracellular matrix (ECM) remodeling-Tumor stiffness-FAK signaling accompanies later stages of VS progression. In vitro experiments demonstrated that elevated matrix stiffness induces cytoskeletal remodeling, cell proliferation, and metalloproteinase expression in VS cells by activating FAK. Conversely, FAK inhibition diminishes these effects. Collectively, this study suggests that ECM remodeling-Tumor stiffness contributes to VS progression via FAK activation, positioning FAK as a promising therapeutic target in treating VS.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Zhang Y, Fu Q, Sun W, Yue Q, He P, Niu D, Zhang M. Mechanical forces in the tumor microenvironment: roles, pathways, and therapeutic approaches. J Transl Med 2025; 23:313. [PMID: 40075523 PMCID: PMC11899831 DOI: 10.1186/s12967-025-06306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors often exhibit greater stiffness compared to normal tissues, primarily due to increased deposition within the tumor stroma. Collagen, proteoglycans, laminin, and fibronectin are key components of the extracellular matrix (ECM), interacting to facilitate ECM assembly. Enhanced fiber density and cross-linking within the ECM result in elevated matrix stiffness and interstitial fluid pressure, subjecting tumors to significant physical stress during growth. This mechanical stress is transduced intracellularly via integrins, the Rho signaling pathway, and the Hippo signaling pathway, thereby promoting tumor invasion. Additionally, mechanical pressure fosters glycolysis in tumor cells, boosting energy production to support metastasis. Mechanical cues also regulate macrophage polarization, maintaining an inflammatory microenvironment conducive to tumor survival. In summary, mechanical signals within tumors play a crucial role in tumor growth and invasion. Understanding these signals and their involvement in tumor progression is essential for advancing our knowledge of tumor biology and enhancing therapeutic approaches.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| | - Qi Fu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Wenyue Sun
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Qiujuan Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Ping He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| |
Collapse
|
4
|
Tchakal-Mesbahi A, He J, Zhu S, Huang M, Fukushima K, Bouley R, Brown D, Lu HAJ. Focal Adhesion Kinase (FAK) inhibition induces membrane accumulation of aquaporin2 (AQP2) through endocytosis inhibition and actin depolymerization in renal epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617300. [PMID: 39416213 PMCID: PMC11482834 DOI: 10.1101/2024.10.08.617300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cellular trafficking of the water channel aquaporin 2 (AQP2) is regulated by the actin cytoskeleton in collecting duct principal cells (PC) to maintain proper water balance in animals. Critical actin depolymerization/polymerization events are involved in both constitutive AQP2 recycling, and the pathway stimulated by vasopressin receptor signaling. Focal adhesion kinase (FAK) plays an important role in modulating the actin cytoskeleton through inhibiting small GTPases, and multiple studies have shown the involvement of FAK in insulin and cholesterol trafficking through actin regulation. To understand whether FAK contributes to water reabsorption by the kidney, we performed a series of in vitro experiments to examine the involvement of FAK and its signaling in mediating AQP2 trafficking in cultured renal epithelial cells. Our data showed that FAK inhibition by specific inhibitors caused membrane accumulation of AQP2 in AQP2expressing LLCPK1 cells by immunofluorescence staining. AQP2 membrane accumulation induced by FAK inhibition is associated with significantly reduced endocytosis of AQP2 via the clathrin-mediated endocytosis pathway. Moreover, AQP2 membrane accumulation induced by FAK inhibition also occurred in cells expressing the constitutive dephosphorylation mutant of AQP2, S256A. This was confirmed by immunoblotting using a specific antibody against phospho-serine 256 AQP2, supporting a phosphorylation independent mechanism. Finally, we demonstrated that inhibition of FAK caused reduced RhoA signaling and promoted F-actin depolymerization. In conclusion, our study identifies FAK signaling as a pathway that could provide a novel therapeutical avenue for AQP2 trafficking regulation in water balance disorders.
Collapse
|
5
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
6
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
7
|
Kang SU, Kim HJ, Ma S, Oh DY, Jang JY, Seo C, Lee YS, Kim CH. Liquid plasma promotes angiogenesis through upregulation of endothelial nitric oxide synthase-induced extracellular matrix metabolism: potential applications of liquid plasma for vascular injuries. Cell Commun Signal 2024; 22:138. [PMID: 38374138 PMCID: PMC10875778 DOI: 10.1186/s12964-023-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Sukhwal Ma
- Medical Accelerator Research Team, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowonro, Nowon-gu, Seoul, 01812, South Korea
| | - Doo-Yi Oh
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chorong Seo
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea.
| |
Collapse
|
8
|
Wu HM, Chen LH, Chiu WJ, Tsai CL. Kisspeptin Regulates Cell Invasion and Migration in Endometrial Cancer. J Endocr Soc 2024; 8:bvae001. [PMID: 38264268 PMCID: PMC10805434 DOI: 10.1210/jendso/bvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 01/25/2024] Open
Abstract
Kisspeptin (a product of the KISS1 gene and its receptor) plays an important role in obstetrics, gynecology, and cancer cell metastasis and behavior. In hypothalamic-pituitary-gonadal axis and placentation, Kisspeptin/Kisspeptin receptor affects hormone release and represses trophoblast invasion into maternal deciduae. Endometrial cancer is one of the common gynecological cancers and is usually accompanied by metastasis, the risk factor that causes death. Recently, research has demonstrated that Kisspeptin/Kisspeptin receptor expression in aggressive-stage endometrial cancer tissues. However, the detailed mechanism of Kisspeptin/Kisspeptin receptor in regulating the motility of endometrial cancers is not well understood. In this study, we use endometrial cancer cell lines RL95-2, Ishikawa, HEC-1-A, and HEC-1-B as models to explore the molecular mechanism of Kisspeptin on cell motility. First, we discovered that Kisspeptin/Kisspeptin receptor was expressed in endometrial cancer cells, and Kisspeptin significantly regulated the migration and invasion of endometrial cancer cells. Furthermore, we explored the epithelial-mesenchymal transition marker expression and the underlying signals were regulated on Kisspeptin treatment. In conclusion, we suggest that Kisspeptin regulates endometrial cancer cell motility via FAK and Src expression and the ERK1/2, N-Cadherin, E-Cadherin, beta-Catenin, Twist, and matrix metalloproteinase signaling pathways. We expect these molecules could be candidates for the development of new approaches and therapeutic targets.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Wei-Jung Chiu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Chia-Lung Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| |
Collapse
|
9
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
10
|
Zheng X, Liu L, Liu J, Zhang C, Zhang J, Qi Y, Xie L, Zhang C, Yao G, Bu P. Fibulin7 Mediated Pathological Cardiac Remodeling through EGFR Binding and EGFR-Dependent FAK/AKT Signaling Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207631. [PMID: 37344348 PMCID: PMC10460860 DOI: 10.1002/advs.202207631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Adverse remodeling after myocardial infarction (MI) result in heart failure and sudden cardiac death. Fibulin7 (FBLN7) is an adhesion protein excreted into the extracellular matrix that functions in multiple biological processes. However, whether and how FBLN7 affects post-MI cardiac remodeling remains unclear. Here, the authors identify FBLN7 as a critical profibrotic regulator of adverse cardiac remodeling. They observe significantly upregulated serum FBLN7 levels in MI patients with left ventricular remodeling compared to those without MI. Microarray dataset analysis reveal FBLN7 is upregulated in human heart samples from patients with dilated and hypertrophic cardiomyopathy compared with non-failing hearts. The authors demonstrate that FBLN7 deletion attenuated post-MI cardiac remodeling, leading to better cardiac function and reduced myocardial fibrosis, whereas overexpression of FBLN7 results in the opposite effects. Mechanistically, FBLN7 binds to the epidermal growth factor receptor (EGFR) through its EGF-like domain, together with the EGF-like calcium-binding domain, and induces EGFR autophosphorylation at tyrosine (Y) 1068 and Y1173, which activates downstream focal adhesion kinase/AKT signaling, thereby leading to fibroblast-to-myofibroblast transdifferentiation. In addition, FBLN7-EGFR mediates this signal transduction, and the fibrotic response is effectively suppressed by the inhibition of EGFR activity. Taken together, FBLN7 plays an important role in cardiac remodeling and fibrosis after MI.
Collapse
Affiliation(s)
- Xuehui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Lingxin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jing Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
- Department of CardiologyHeze Municipal HospitalHeze274000China
| | - Chen Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yan Qi
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Lin Xie
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Guoqing Yao
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| |
Collapse
|
11
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
12
|
Mai X, Shang J, Chen Q, Gu S, Hong Y, Zhou J, Zhang M. Endophilin A2 protects against renal fibrosis by targeting TGF-β/Smad signaling. FASEB J 2022; 36:e22603. [PMID: 36259445 DOI: 10.1096/fj.202101769r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Renal fibrosis underlies all forms of end-stage kidney disease. Endophilin A2 (EndoA2) plays a role in nephrotic syndrome; however, its effect on renal fibrosis remains unknown. Here, we demonstrate that EndoA2 protects against kidney interstitial fibrosis via the transforming growth factor-β (TGF-β)/Smad signaling pathway. Mouse kidneys with fibrosis or kidney biopsy specimens from patients with fibrotic nephropathy had lower levels of EndoA2 protein expression than that in kidneys without fibrosis. In vivo overexpression of EndoA2 with the endophilin A2 transgene (EndoA2Tg ) notably prevented renal fibrosis, decreased the protein expression of profibrotic molecules, suppressed tubular injury, and reduced apoptotic tubular cells in the obstructed kidney cortex of mice with unilateral ureteral obstruction (UUO). In vivo and in vitro overexpression of EndoA2 markedly inhibited UUO- or TGF-β1-induced phosphorylation of Smad2/3 and tubular epithelial cells dedifferentiation. Furthermore, EndoA2 was co-immunoprecipitated with the type II TGF-β receptor (TβRII), thus inhibiting the binding of the type I TGF-β receptor (TβRI) to TβRII. These findings indicate that EndoA2 mitigates renal fibrosis, at least partially, via modulating the TGF-β/Smad signaling. Targeting EndoA2 may be a new potential therapeutic strategy for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyi Mai
- Intensive Care Research Team of Traditional Chinese Medicine & AMI Key Lab of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qiuyuan Chen
- Department of Organ Transplantation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Gu
- Department of Organ Transplantation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Minzhou Zhang
- Intensive Care Research Team of Traditional Chinese Medicine & AMI Key Lab of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Liu XY, Li P, Li XS, Simoncini T, Cheng Y. 17β-Estradiol nongenomically induces vasodilation is enhanced by promoting phosphorylation of endophilin A2. Gynecol Endocrinol 2022; 38:644-650. [PMID: 35730594 DOI: 10.1080/09513590.2022.2088731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
ObjectiveA previous study found that the tyrosine phosphorylation of endophilin A2 (Endo II) was responsible for increase surface expression of MT1-MMP and ECM degradation; however, there is little information about whether Endo II could influence membrane estrogen receptors (mERs) and its functions.Materials and methodsIn the present study, Human umbilical vein endothelial cells (HUVECs) were treated with E2, PPT, DPN, ICI 182780, Endo siRNA or negative control siRNA, and the biological behavior of the treated cells was observed. The mice were randomly divided into AAV-control-shRNA + Ach, AAV-Endo II-shRNA + Ach, AAV-control-shRNA + E2, AAV-Endo II-shRNA + E2 groups and the thoracic aorta were isolated, cut into 2-mm rings, then the wall tension was detected.ResultsWe found that 17β-Estradiol (E2) enhanced mERα protein level, which was further increased after knocking down Endo II, the mechanism maybe involved in E2-induced tyrosine phosphorylation of Endo II. In addition, we also observed that Endo II blocked the activation of Akt, ERK1/2 and eNOS signaling in HUVECs treated with E2. E2 induced vasodilation was significantly increased by silencing of Endo II expression.ConclusionOur study provided a sound basis to selective modulate Endo II for E2's nongenomic pathway, which can be benefit for cardiovascular system.
Collapse
Affiliation(s)
- Xiao-Yun Liu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Clinical Pharmacy (School of Integrative Pharmacy, Institute of Integrative Pharmaceutical Research), Guangdong Pharmaceutical University, Guangzhou, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ping Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Sa Li
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Guangzhou First People's Hospital, South China University of Technology, Guang zhou, Guangdong, China
| |
Collapse
|
14
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
15
|
Ferreira APA, Casamento A, Carrillo Roas S, Halff EF, Panambalana J, Subramaniam S, Schützenhofer K, Chan Wah Hak L, McGourty K, Thalassinos K, Kittler JT, Martinvalet D, Boucrot E. Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nat Commun 2021; 12:2424. [PMID: 33893293 PMCID: PMC8065113 DOI: 10.1038/s41467-021-22603-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Fast Endophilin-mediated endocytosis, FEME, is not constitutively active but triggered upon receptor activation. High levels of growth factors induce spontaneous FEME, which can be suppressed upon serum starvation. This suggested a role for protein kinases in this growth factor receptor-mediated regulation. Using chemical and genetic inhibition, we find that Cdk5 and GSK3β are negative regulators of FEME. They antagonize the binding of Endophilin to Dynamin-1 and to CRMP4, a Plexin A1 adaptor. This control is required for proper axon elongation, branching and growth cone formation in hippocampal neurons. The kinases also block the recruitment of Dynein onto FEME carriers by Bin1. As GSK3β binds to Endophilin, it imposes a local regulation of FEME. Thus, Cdk5 and GSK3β are key regulators of FEME, licensing cells for rapid uptake by the pathway only when their activity is low.
Collapse
Affiliation(s)
- Antonio P A Ferreira
- Institute of Structural and Molecular Biology, University College London, London, UK
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sara Carrillo Roas
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Els F Halff
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James Panambalana
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Shaan Subramaniam
- Institute of Structural and Molecular Biology, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Kira Schützenhofer
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Laura Chan Wah Hak
- Institute of Structural and Molecular Biology, University College London, London, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Kieran McGourty
- Institute of Structural and Molecular Biology, University College London, London, UK
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Josef T Kittler
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | | | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
16
|
Rigiracciolo DC, Cirillo F, Talia M, Muglia L, Gutkind JS, Maggiolini M, Lappano R. Focal Adhesion Kinase Fine Tunes Multifaced Signals toward Breast Cancer Progression. Cancers (Basel) 2021; 13:645. [PMID: 33562737 PMCID: PMC7915897 DOI: 10.3390/cancers13040645] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer represents the most common diagnosed malignancy and the main leading cause of tumor-related death among women worldwide. Therefore, several efforts have been made in order to identify valuable molecular biomarkers for the prognosis and prediction of therapeutic responses in breast tumor patients. In this context, emerging discoveries have indicated that focal adhesion kinase (FAK), a non-receptor tyrosine kinase, might represent a promising target involved in breast tumorigenesis. Of note, high FAK expression and activity have been tightly correlated with a poor clinical outcome and metastatic features in several tumors, including breast cancer. Recently, a role for the integrin-FAK signaling in mechanotransduction has been suggested and the function of FAK within the breast tumor microenvironment has been ascertained toward tumor angiogenesis and vascular permeability. FAK has been also involved in cancer stem cells (CSCs)-mediated initiation, maintenance and therapeutic responses of breast tumors. In addition, the potential of FAK to elicit breast tumor-promoting effects has been even associated with the capability to modulate immune responses. On the basis of these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. Here, we recapitulate the multifaceted action exerted by FAK and its prognostic significance in breast cancer. Moreover, we highlight the recent clinical evidence regarding the usefulness of FAK inhibitors in the treatment of breast tumors.
Collapse
Affiliation(s)
- Damiano Cosimo Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Jorge Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| |
Collapse
|
17
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
18
|
Koudelková L, Brábek J, Rosel D. Src kinase: Key effector in mechanosignalling. Int J Biochem Cell Biol 2020; 131:105908. [PMID: 33359015 DOI: 10.1016/j.biocel.2020.105908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Cells have developed a unique set of molecular mechanisms that allows them to probe mechanical properties of the surrounding environment. These systems are based on deformable primary mechanosensors coupled to tension transmitting proteins and enzymes generating biochemical signals. This modular setup enables to transform a mechanical load into more versatile biochemical information. Src kinase appears to be one of the central components of the mechanotransduction network mediating force-induced signalling across multiple cellular contexts. In tight cooperation with primary sensors and the cytoskeleton, Src functions as an effector molecule necessary for transformation of mechanical stimuli into biochemical outputs executing cellular response and adaptation to mechanical cues.
Collapse
Affiliation(s)
- Lenka Koudelková
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic.
| |
Collapse
|
19
|
Lin Z, Liu Z, Tan X, Li C. SH3GL3 functions as a potent tumor suppressor in lung cancer in a SH3 domain dependent manner. Biochem Biophys Res Commun 2020; 534:787-794. [PMID: 33168185 DOI: 10.1016/j.bbrc.2020.10.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is one of the most common and aggressive cancer and a leading cause of cancer related deaths worldwide. Few studies have prospectively examined the functions of SH3GL3 in cancer progression, however, the biological functions of SH3GL3 in lung cancer initiation and progression remains largely unknown. Here, we show that both mRNA and protein levels of SH3GL3 are weakly expressed in lung cancer tissues and cell lines and its expression negatively correlates with the survival of lung cancer patients. Overexpression of SH3GL3 dramatically inhibits lung cancer cells malignancy behaviors, including proliferation and migration. Additionally, SH3GL3 curbs cell cycle at G0/G1 phase and induces cellular apoptosis of lung cancer cells and inhibits lung cancer stem cell self-renewal dependents on its SH3 domain. Moreover, we report for the first time that SH3GL3 inhibits lung cancer progression partially through p21 and up-regulates p21 in transcriptional level. Collectively, our work suggests that SH3GL3 acts as a potent tumor suppressor in lung cancer progression and have a potential to serve as diagnostic and prognostic biomarker of lung cancer.
Collapse
Affiliation(s)
- Zhongkun Lin
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, #11 Wuyingshan Middile Road, Jinan, Shandong, 250031, China
| | - Zhiping Liu
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, #11 Wuyingshan Middile Road, Jinan, Shandong, 250031, China
| | - Xiansheng Tan
- Department of Oncology, The Second Affiliated Hospital, Traditional Chinese Medicine, Shandong University, #1 Jingba Road, Jinan, Shandong, 250031, China.
| | - Chunhua Li
- Department of Oncology, The Second Affiliated Hospital, Traditional Chinese Medicine, Shandong University, #1 Jingba Road, Jinan, Shandong, 250031, China.
| |
Collapse
|
20
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
21
|
Jearawuttanakul K, Khumkhrong P, Suksen K, Reabroi S, Munyoo B, Tuchinda P, Borwornpinyo S, Boonmuen N, Chairoungdua A. Cleistanthin A induces apoptosis and suppresses motility of colorectal cancer cells. Eur J Pharmacol 2020; 889:173604. [PMID: 32980346 DOI: 10.1016/j.ejphar.2020.173604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Here, we investigated the molecular mechanisms that underpin the anticancer effects of cleistanthin A (CA) in two CRC cell lines, HCT 116, and SW480. At 48 h, CA exhibited apoptotic cytotoxic effects in both CRC cell lines, concomitant with reduction of an anti-apoptotic protein, survivin. Mechanistically, CA treatment significantly reduced the expression levels of β-catenin and active-β-catenin in a dose-dependent manner in both CRC cell lines. Moreover, CA suppressed the Wnt/β-catenin signaling pathway by decreasing β-catenin-mediated transcriptional activity and expression of β-catenin target genes, AXIN2, CCND1, and survivin. Furthermore, CA also inhibited transcriptional activity in cells overexpressing a constitutively active β-catenin S33Y, indicating a GSK-3β-independent mechanism underlying the observed CA effects on CRC cells. Although cytotoxic activity was not observed with CA treatment at 24 h, cell migration and invasion were significantly reduced. In addition, CA suppressed V-type ATPase activity and focal adhesion kinase (FAK) phosphorylation. Collectively, our study reveals that CA has time-dependent effects on CRC cell phenotypes. First, short-term CA treatment inhibited CRC cell migration and invasion partly through the suppression of V-type ATPase activity. This suppression resulted in reduced FAK activation. Second, longer-term CA treatment decreased cell viability which correlated with the suppression of Wnt/β-catenin signaling induced transcriptional activity. Altogether, our data suggest that CA has the potential to develop as an effective and novel therapeutic drug for CRC patients.
Collapse
Affiliation(s)
- Kedchin Jearawuttanakul
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | | | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somrudee Reabroi
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Bamroong Munyoo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Patoomratana Tuchinda
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
22
|
Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF. The Roles of Tissue Rigidity and Its Underlying Mechanisms in Promoting Tumor Growth. Cancer Invest 2020; 38:445-462. [PMID: 32713210 DOI: 10.1080/07357907.2020.1802474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Faculty of Health Sciences, Centre for Healthy Ageing and Wellness, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Gayathri Thevi Selvarajah
- Faculty of Veterinary Medicine, Department of Veterinary Clinical Studies, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Siti Fathiah Masre
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Wu HM, Huang HY, Soong YK, Leung PCK, Wang HS. Kisspeptin regulation of human decidual stromal cells motility via FAK-Src intracellular tyrosine kinases. Hum Reprod 2020; 34:1291-1301. [PMID: 31188433 DOI: 10.1093/humrep/dez061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION Can of Clinical Genetics, Maastricht University Medical Centre, Maastricht kisspeptin and its analogues regulate the motility of human decidual stromal cells and what intracellular signaling pathways are involved? SUMMARY ANSWER Kisspeptin analogue-mediated cell motility in human decidual stromal cells via the focal adhesion kinase (FAK)-steroid receptor coactivator (Src) pathway suggesting that kisspeptin may modulate embryo implantation and decidual programming in human pregnancy. WHAT IS KNOWN ALREADY The extravillous trophoblast invades the maternal decidua during embryo implantation and placentation. The motile behavior and invasive potential of decidual stromal cells regulate embryo implantation and programming of human pregnancy. STUDY DESIGN, SIZE, DURATION Human decidual stromal cells were isolated from healthy women undergoing elective termination of a normal pregnancy at 6- to 12-week gestation, after informed consent. PARTICIPANTS/MATERIALS, SETTING, METHODS Kisspeptin analogues were synthetic peptides. Cell motility was estimated by an invasion and migration assay. Immunoblot analysis was performed to investigate the expression of kisspeptin receptor and the effects of kisspeptin analogues on the phosphorylation of FAK and Src. Small interfering RNAs (siRNAs) were used to knock down the expression of kisspeptin receptor, FAK, Src, matrix metallo-proteinases (MMPs) 2 and 9, and extracellular signal-regulated protein kinase (ERK) 1/2. MAIN RESULTS AND THE ROLE OF CHANCE The kisspeptin receptor was expressed in human decidual stromal cells. Kisspeptin agonist decreased, but antagonist increased, cell motility. Kisspeptin agonist decreased the phosphorylation of FAK and Src tyrosine kinases, whereas antagonist increased it. These effects on phosphorylation were abolished by kisspeptin receptor siRNA. The activation of cell motility by kisspeptin analogues was suppressed by siRNA knockdown of endogenous FAK (decreased 66%), Src (decreased 60%), kisspeptin receptor (decreased 26%), MMP-2 (decreased 36%), MMP-9 (decreased 23%), and ERK 1/2 inhibitor (decreased 27%). LIMITATIONS, REASONS FOR CAUTION Human decidual stromal cells were obtained from women having terminations after 6-12 weeks of pregnancy and differences in timing could affect their properties. WIDER IMPLICATIONS OF THE FINDINGS Kisspeptin acting within the endometrium has a potential modulatory role on embryo implantation and decidual programming of human pregnancy. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grant NSC-104-2314-B-182A-146-MY2 (to H.-M.W.) from the Ministry of Science and Technology, Taiwan, and grants CMRPG3E0401 and CMRPG3E0402 (to H.-M.W.). This work was also supported by grants from the Canadian Institutes of Health Research to P.C.K.L. P.C.K.L. is the recipient of a Child & Family Research Institute Distinguished Investigator Award. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- H-M Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C
| | - H-Y Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C
| | - Y-K Soong
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C
| | - P C K Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - H-S Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Casamento A, Boucrot E. Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochem J 2020; 477:2327-2345. [PMID: 32589750 PMCID: PMC7319585 DOI: 10.1042/bcj20190342] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, U.K
| |
Collapse
|
25
|
Fibrinogen alpha chain is up-regulated and affects the pathogenesis of endometriosis. Reprod Biomed Online 2019; 39:893-904. [PMID: 31740226 DOI: 10.1016/j.rbmo.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
RESEARCH QUESTION In the group's previous study, fibrinogen alpha chain (FGA) was identified as an up-regulated differential protein that was highly expressed in women with endometriosis. The current study investigated the expression and effects of FGA in endometriosis. It also evaluated the effects of FGA on human endometrial stromal cells and studied the possible mechanism. DESIGN This was a cross-sectional analysis of FGA expression in plasma and endometrial tissue of matched eutopic and ectopic samples from women with endometriosis undergoing laparoscopic surgery and samples from women without endometriosis. Forty-four patients with endometriosis and 32 healthy control subjects who donated plasma for FGA analysis, including 26 matched cases of eutopic and ectopic endometria from endometriosis patients and 22 endometria from healthy control subjects, were analysed. The effects of FGA were studied in a human endometrial stromal cell line after transfection with FGA short interfering RNA (siRNA). RESULTS FGA concentrations in serum and expression in eutopic and ectopic endometrial tissue were significantly higher in women with endometriosis than controls (P < 0.05 and P < 0.01 respectively), whereas FGA expression was not significantly different in eutopic compared with ectopic endometrial tissues from the same patients. High FGA concentrations in serum were related to disease stage and ovarian involvement, but were not affected by age and menstrual cycle. The knockdown of FGA expression by FGA siRNA inhibited hEM15A cellular adhesion, migration and invasion, and attenuated matrix metalloproteinase-2 (MMP-2) expression. CONCLUSIONS High FGA expression in endometriosis was closely related to disease severity and affected cell adhesion, migration and invasion, which might play an important role in the pathogenesis of endometriosis.
Collapse
|
26
|
Lu H, Bhat AA, Peng D, Chen Z, Zhu S, Hong J, Maacha S, Yan J, Robbins DJ, Washington MK, Belkhiri A, El-Rifai W. APE1 Upregulates MMP-14 via Redox-Sensitive ARF6-Mediated Recycling to Promote Cell Invasion of Esophageal Adenocarcinoma. Cancer Res 2019; 79:4426-4438. [PMID: 31308045 DOI: 10.1158/0008-5472.can-19-0237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive malignancy with poor clinical outcome. The incidence of EAC has been rising rapidly in the past three decades. Here, we showed that apurinic/apyrimidinic endonuclease (APE1) is overexpressed in EAC cell lines, and patients' samples of dysplasia and EAC. Downregulation of APE1 or inhibition of its redox function significantly repressed invasion. Overexpression of a redox-defective mutant, C65A, abrogated the proinvasive phenotype of APE1. APE1 regulated invasion via upregulation of matrix metalloproteinase 14 (MMP-14), which subsequently activated MMP-2, leading to degradation of the extracellular matrix in a redox-dependent manner. Downregulation of APE1 or inhibition of its redox function decreased the rate of endocytosis and recycling of MMP-14 protein. APE1 interacted with ARF6, a key regulator of MMP-14 recycling, which maintained ARF6 activity in an APE1-redox-dependent manner, promoting its ability to regulate MMP-14 recycling to the cell surface. In summary, these findings identify a novel redox-sensitive APE1-ARF6-MMP-14 signaling axis that mediates cellular invasion in esophageal carcinogenesis. SIGNIFICANCE: This study demonstrates the association between oxidative stress and the development and metastatic behavior of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ajaz A Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Selma Maacha
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Jin Yan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangshu, China
| | - David J Robbins
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
27
|
Kessler BE, Mishall KM, Kellett MD, Clark EG, Pugazhenthi U, Pozdeyev N, Kim J, Tan AC, Schweppe RE. Resistance to Src inhibition alters the BRAF-mutant tumor secretome to promote an invasive phenotype and therapeutic escape through a FAK>p130Cas>c-Jun signaling axis. Oncogene 2019; 38:2565-2579. [PMID: 30531837 PMCID: PMC6450711 DOI: 10.1038/s41388-018-0617-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023]
Abstract
Few therapy options exist for patients with advanced papillary and anaplastic thyroid cancer. We and others have previously identified c-Src as a key mediator of thyroid cancer pro-tumorigenic processes and a promising therapeutic target for thyroid cancer. To increase the efficacy of targeting Src in the clinic, we sought to define mechanisms of resistance to the Src inhibitor, dasatinib, to identify key pathways to target in combination. Using a panel of thyroid cancer cell lines expressing clinically relevant mutations in BRAF or RAS, which were previously developed to be resistant to dasatinib, we identified a switch to a more invasive phenotype in the BRAF-mutant cells as a potential therapy escape mechanism. This phenotype switch is driven by FAK kinase activity, and signaling through the p130Cas>c-Jun signaling axis. We have further shown this more invasive phenotype is accompanied by alterations in the secretome through the increased expression of pro-inflammatory cytokines, including IL-1β, and the pro-invasive metalloprotease, MMP-9. Furthermore, IL-1β signals via a feedforward autocrine loop to promote invasion through a FAK>p130Cas>c-Jun>MMP-9 signaling axis. We further demonstrate that upfront combined inhibition of FAK and Src synergistically inhibits growth and invasion, and induces apoptosis in a panel of BRAF- and RAS-mutant thyroid cancer cell lines. Together our data demonstrate that acquired resistance to single-agent Src inhibition promotes a more invasive phenotype through an IL-1β>FAK>p130Cas>c-Jun >MMP signaling axis, and that combined inhibition of FAK and Src has the potential to block this inhibitor-induced phenotype switch.
Collapse
Affiliation(s)
- Brittelle E Kessler
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Katie M Mishall
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Meghan D Kellett
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Erin G Clark
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Umarani Pugazhenthi
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Bioinformatics and Personalized Medicine, Aurora, CO, 80045, USA
| | - Jihye Kim
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aik Choon Tan
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
28
|
Brown Y, Hua S, Tanwar PS. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Biochem Cell Biol 2019; 109:90-104. [DOI: 10.1016/j.biocel.2019.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|
29
|
Merő B, Radnai L, Gógl G, Tőke O, Leveles I, Koprivanacz K, Szeder B, Dülk M, Kudlik G, Vas V, Cserkaszky A, Sipeki S, Nyitray L, Vértessy BG, Buday L. Structural insights into the tyrosine phosphorylation-mediated inhibition of SH3 domain-ligand interactions. J Biol Chem 2019; 294:4608-4620. [PMID: 30659095 DOI: 10.1074/jbc.ra118.004732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.
Collapse
Affiliation(s)
| | | | - Gergő Gógl
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Center for Natural Sciences (RCNS), Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Ibolya Leveles
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | | | | | | | | | - Virág Vas
- From the Institute of Enzymology and
| | | | - Szabolcs Sipeki
- the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - László Nyitray
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Beáta G Vértessy
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | - László Buday
- From the Institute of Enzymology and .,the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| |
Collapse
|
30
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
31
|
Poudel KR, Roh-Johnson M, Su A, Ho T, Mathsyaraja H, Anderson S, Grady WM, Moens CB, Conacci-Sorrell M, Eisenman RN, Bai J. Competition between TIAM1 and Membranes Balances Endophilin A3 Activity in Cancer Metastasis. Dev Cell 2018; 45:738-752.e6. [PMID: 29920278 DOI: 10.1016/j.devcel.2018.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/10/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022]
Abstract
Normal cells acquire aggressive behavior by modifying signaling pathways. For instance, alteration of endocytosis profoundly impacts both proliferation and migration during tumorigenesis. Here we investigate the mechanisms that enable the endocytic machinery to coordinate these processes. We show that a membrane curvature-sensing protein, endophilin A3, promotes growth and migration of colon cancer cells through two competing mechanisms: an endocytosis pathway that is required for proliferation and a GTPase regulatory pathway that controls cell motility. EndoA3 stimulates cell migration by binding the Rac GEF TIAM1 leading to activation of small GTPases. Competing interactions of EndoA3 with membrane versus TIAM1 modulate hyperproliferative and metastatic phenotypes. Disruption of EndoA3-membrane interactions stimulates TIAM1 and small GTPases in vitro, and further promotes pro-metastatic phenotypes in vivo. Together, these results uncover a coupling mechanism, by which EndoA3 promotes growth and migration of colon cancers, by linking membrane dynamics to GTPase regulation.
Collapse
Affiliation(s)
- Kumud R Poudel
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Minna Roh-Johnson
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Allen Su
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Thuong Ho
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Haritha Mathsyaraja
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Sarah Anderson
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Tegge AN, Rodrigues RR, Larkin AL, Vu L, Murali TM, Rajagopalan P. Transcriptomic Analysis of Hepatic Cells in Multicellular Organotypic Liver Models. Sci Rep 2018; 8:11306. [PMID: 30054499 PMCID: PMC6063915 DOI: 10.1038/s41598-018-29455-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Liver homeostasis requires the presence of both parenchymal and non-parenchymal cells (NPCs). However, systems biology studies of the liver have primarily focused on hepatocytes. Using an organotypic three-dimensional (3D) hepatic culture, we report the first transcriptomic study of liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) cultured with hepatocytes. Through computational pathway and interaction network analyses, we demonstrate that hepatocytes, LSECs and KCs have distinct expression profiles and functional characteristics. Our results show that LSECs in the presence of KCs exhibit decreased expression of focal adhesion kinase (FAK) signaling, a pathway linked to LSEC dedifferentiation. We report the novel result that peroxisome proliferator-activated receptor alpha (PPARα) is transcribed in LSECs. The expression of downstream processes corroborates active PPARα signaling in LSECs. We uncover transcriptional evidence in LSECs for a feedback mechanism between PPARα and farnesoid X-activated receptor (FXR) that maintains bile acid homeostasis; previously, this feedback was known occur only in HepG2 cells. We demonstrate that KCs in 3D liver models display expression patterns consistent with an anti-inflammatory phenotype when compared to monocultures. These results highlight the distinct roles of LSECs and KCs in maintaining liver function and emphasize the need for additional mechanistic studies of NPCs in addition to hepatocytes in liver-mimetic microenvironments.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Virginia Tech, Blacksburg, USA
- Department of Statistics, Virginia Tech, Blacksburg, USA
| | - Richard R Rodrigues
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, USA
| | - Adam L Larkin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - Lucas Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
33
|
Liu Y, Shen HJ, Wang XQY, Liu HQ, Zheng LY, Luo JD. EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes. J Cell Biochem 2018; 119:8290-8303. [PMID: 29923351 DOI: 10.1002/jcb.26862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023]
Abstract
Cardiac hypertrophy is one of the major risk factors for chronic heart failure. The role of endophilinA2 (EndoA2) in clathrin-mediated endocytosis and clathrin-independent endocytosis is well documented. In the present study, we tested the hypothesis that EndoA2 protects against angiotensin II (Ang II)-induced cardiac hypertrophy by mediating intracellular angiotensin II type 1 receptor (AT1-R) trafficking in neonatal rat cardiomyocytes (NRCMs). Cardiac hypertrophy was evaluated by using cell surface area and quantitative RT-PCR (qPCR) analyses. For the first time, we found that EndoA2 attenuated cardiac hypertrophy and fibrosis induced by Ang II. Moreover, EndoA2 inhibited apoptosis induced by excessive endoplasmic reticulum stress (ERS), which accounted for the beneficial effects of EndoA2 on cardiac hypertrophy. We further revealed that there was an interaction between EndoA2 and AT1-R.The expression levels of EndoA2, which inhibits AT1-R transport from the cytoplasm to the membrane, and the interaction between EndoA2 and AT1-R were obviously decreased after Ang II treatment. Furthermore, Ang II inhibited the co-localization of AT1-R with GRP-78, which was reversed by EndoA2 overexpression. In conclusion, our results suggested that EndoA2 plays a role in protecting against cardiac hypertrophy induced by Ang II, possibly by inhibiting AT1-R transport from the cytoplasm to the membrane to suppress signal transduction.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Huan-Jia Shen
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xin-Qiu-Yue Wang
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hai-Qi Liu
- Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ling-Yun Zheng
- School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Jian-Dong Luo
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
34
|
Zhuang Q, Luo W, Zhang M, Fan M, Lu H, Xu R, He X. Capn4 contributes to tumor invasion and metastasis in clear cell renal cell carcinoma cells via modulating talin-focal adhesion kinase signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:465-472. [PMID: 29648579 DOI: 10.1093/abbs/gmy031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 11/12/2022] Open
Abstract
Calpain small subunit 1 (Capn4) has been shown to correlate with the metastasis/invasion of clear cell renal cell carcinoma (ccRCC). This study aimed to further elucidate the molecular mechanisms underlying Capn4-mediated ccRCC progression. The mRNA expression levels in ccRCC cells were measured by quantitative real-time PCR. The effects of Capn4 on cell adhesion, invasion, and migration were examined by cell adhesion assay, cell invasion assay, and wound-healing assay, respectively. The protein levels were detected by western blot analysis. The effect of Capn4 on cancer metastasis in vivo was assessed in a nude mice xenograft model. It was found that Capn4 was up-regulated in the ccRCC cells, and Capn4 overexpression suppressed cell adhesion activity and increased cell invasion and migration in 786-O cells, while Capn4 silencing increased cell adhesion activity and impaired the invasion and migration ability of Caki-1 cells. Capn4 overexpression also increased the protein level of cleaved talin in 786-O cells, while Capn4 silencing decreased the protein level of cleaved talin in Caki-1 cells. The focal adhesion kinase (FAK)/AKT/MAPK signaling was activated by Capn4 overexpression in 786-O cells, and was inhibited by Capn4 down-regulation in Caki-1 cells. Capn4 overexpression increased the protein levels of matrix metalloproteinase 2 (MMP-2), vimentin, N-cadherin, and down-regulated E-cadherin in 786-O cells, while Capn4 silencing decreased the protein levels of MMP-2, vimentin, N-cadherin, and up-regulated E-cadherin in Caki-1 cells. Capn4 also promoted cancer metastasis in the in vivo nude mice xenograft model. Our results implicate the functional role of Capn4 in ccRCC invasion and migration, which may contribute to cancer metastasis in ccRCC.
Collapse
Affiliation(s)
- Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| | - Weiping Luo
- Department of Urology, The People's Hospital of Liyang, Changzhou 213300, China
| | - Mingran Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| |
Collapse
|
35
|
Liu Y, Liu HQ, Xiao JY, Ma KT, Wang XQY, Shen HJ, Luo JD. Autophagy is involved in the protective effect of endophilin A2 on H2O2-induced apoptosis in H9C2 cardiomyocytes. Biochem Biophys Res Commun 2018; 499:299-306. [DOI: 10.1016/j.bbrc.2018.03.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
36
|
Chen R, Zhao H, Wu D, Zhao C, Zhao W, Zhou X. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance. Oncotarget 2018; 7:73101-73113. [PMID: 27683032 PMCID: PMC5341966 DOI: 10.18632/oncotarget.12231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is an incurable cancer characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood. The mechanisms of myeloma cells migration/invasion have remained unclear. Herein, we found SH3GL3 was highly expressed in the CD138-negative (CD138−) myeloma cells. The migration/invasion capability of CD138− cells was significantly higher than that in the CD138-positive (CD138+) cells. Silencing SH3GL3 using shRNA reduced myeloma cells migration/invasion. Conversely, overexpression of SH3GL3 increased myeloma cells migration/invasion. Moreover, SH3GL3 is also associated with the stemness and chemo-resistance of CD138− myeloma cells. Elevated expression of stem cell and multi-drug resistant markers were seen in the myeloma cells with overexpressed SH3GL3; while knocking-down SH3GL3 reduced the expression of these markers. A marked increase in p-PI3K and p-FAK was observed in the cells with overexpressed SH3GL3. To test if FAK/PI3K signaling pathway was involved in the SH3GL3-mediated myeloma cells migration, the cells transfected w/wo SH3GL3 cDNA were treated with FAK inhibitor 14 and PI3K inhibitor LY294002. Inhibition of FAK and PI3K attenuated SH3GL3-mediated migration /invasion. Our findings indicate that SH3GL3 plays an important role in myeloma cell migration/invasion, stemness and chemo-resistance. The SH3GL3-mediated myeloma cell migration/invasion is mediated by FAK/PI3K signaling pathway.
Collapse
Affiliation(s)
- Ruoying Chen
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Hong Zhao
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Dan Wu
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Chen Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Weiling Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
López-Martínez C, Huidobro C, Albaiceta GM, López-Alonso I. Mechanical stretch modulates cell migration in the lungs. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:28. [PMID: 29430445 DOI: 10.21037/atm.2017.12.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell migration is a core process to preserve homeostasis. Release of chemotactic signals induces changes in cell cytoskeleton to facilitate migration. This includes the rearrangement of cytoskeleton, genomic reprogramming and the modification of the surrounding extracellular matrix (ECM) to allow the motion of cells through. In the special case of repair after acute lung injury, cells must migrate while exposed to an increased mechanical stretch caused either by an increased work of breathing or positive-pressure ventilation. Interestingly, the cell response to this increased mechanical load can modify virtually all the mechanisms involved in cell migration. In this review we explore the interplay between stretch and the machinery responsible for cell migration. A translational approach to find new therapies in acute lung injury must take into account these interactions in order to develop effective treatments that promote lung repair.
Collapse
Affiliation(s)
- Cecilia López-Martínez
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
38
|
Baldassarre T, Truesdell P, Craig AW. Endophilin A2 promotes HER2 internalization and sensitivity to trastuzumab-based therapy in HER2-positive breast cancers. Breast Cancer Res 2017; 19:110. [PMID: 28974266 PMCID: PMC5627411 DOI: 10.1186/s13058-017-0900-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Background Human epidermal growth factor receptor-2 (HER2) is amplified and a clinical target in a subset of human breast cancers with high rates of metastasis. Targeted therapies involving the antibody trastuzumab and trastuzumab-emtansine (T-DM1) have greatly improved outcomes for HER2-positive (HER2+) breast cancer patients. However, resistance to these targeted therapies can develop and limit their efficacy. Here, we test the involvement of the endocytic adaptor protein endophilin A2 (Endo II) in HER2+ breast cancer models, and their responses to treatments with trastuzumab and T-DM1. Methods Endo II expression in human breast tumors and lymph node metastases were analyzed by immunohistochemistry. Stable silencing of Endo II was achieved in HER2+ cancer cell lines (SK-BR-3 and HCC1954) to test Endo II effects on HER2 levels, localization and signaling, cell motility and tumor metastasis. The effects of Endo II silencing on the responses of HER2+ cancer cells to trastuzumab or T-DM1 treatments were tested using real-time cell motility and cytotoxicity assays. Results High Endo II protein expression was detected in HER2-positive tumors, and was linked to worse overall survival in node-positive HER2+ breast cancers at the mRNA level. Stable silencing of Endo II in HER2+ cell lines led to elevated levels of HER2 on the cell surface, impaired epidermal growth factor-induced HER2 internalization, and reduced signaling to downstream effector kinases Akt and Erk. Endo II silencing also led to decreased migration and invasion of HER2+ cancer cells in vitro, and impaired lung seeding following tail vein injection in mice. In addition, Endo II silencing also impaired HER2 internalization in response to Trastuzumab, and led to reduced cytotoxicity response in HER2+ cancer cells treated with T-DM1. Conclusions Our study provides novel evidence of Endo II function in HER2+ cancer cell motility and trafficking of HER2 that relates to effective treatments with trastuzumab or T-DM1. Thus, differential expression of Endo II may relate to sensitivity or resistance to trastuzumab-based therapies for HER2+ cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0900-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomas Baldassarre
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Andrew W Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada. .,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada.
| |
Collapse
|
39
|
Ling B, Watt K, Banerjee S, Newsted D, Truesdell P, Adams J, Sidhu SS, Craig AWB. A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models. Oncotarget 2017; 8:58372-58385. [PMID: 28938563 PMCID: PMC5601659 DOI: 10.18632/oncotarget.17702] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/22/2017] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinase-14 (MMP-14) is a clinically relevant target in metastatic cancers due to its role in tumor progression and metastasis. Since active MMP-14 is localized on the cell surface, it is amenable to antibody-mediated blockade in cancer, and here we describe our efforts to develop novel inhibitory anti-MMP-14 antibodies. A phage-displayed synthetic humanized Fab library was screened against the extracellular domain of MMP-14 and a panel of MMP14-specific Fabs were identified. A lead antibody that inhibits the catalytic domain of MMP-14 (Fab 3369) was identified and treatment of MDA-MB-231 breast cancer cells with Fab 3369 led to significant loss of extracellular matrix degradation and cell invasion abilities. In mammary orthotopic tumor xenograft assays, MMP-14 blockade by IgG 3369 limited tumor growth and metastasis. Analysis of tumor tissue sections revealed that MMP-14 blockade limited tumor neoangiogenesis and hypoxia. Similar effects of MMP-14 blockade in syngeneic 4T1 mammary tumors were observed, along with increased detection of cytotoxic immune cell markers. In conclusion, we show that immunotherapies targeting MMP-14 can limit immune suppression, tumor progression, and metastasis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Binbing Ling
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Kathleen Watt
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | | | - Daniel Newsted
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Jarrett Adams
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
40
|
Bendris N, Schmid SL. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends Cell Biol 2016; 27:189-200. [PMID: 27989654 DOI: 10.1016/j.tcb.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
Sorting nexin (SNX)9 was first discovered as an endocytic accessory protein involved in clathrin-mediated endocytosis. However, recent data suggest that SNX9 is a multifunctional scaffold that coordinates membrane trafficking and remodeling with changes in actin dynamics to affect diverse cellular processes. Here, we review the accumulated knowledge on SNX9 with an emphasis on its recently identified roles in clathrin-independent endocytic pathways, cell invasion, and cell division, which have implications for SNX9 function in human disease, including cancer.
Collapse
Affiliation(s)
- Nawal Bendris
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sandra L Schmid
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Liu CZ, Li XY, Du RH, Gao M, Ma MM, Li FY, Huang EW, Sun HS, Wang GL, Guan YY. Endophilin A2 Influences Volume-Regulated Chloride Current by Mediating ClC-3 Trafficking in Vascular Smooth Muscle Cells. Circ J 2016; 80:2397-2406. [PMID: 27760895 DOI: 10.1253/circj.cj-16-0793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Previous research has demonstrated that ClC-3 is responsible for volume-regulated Cl-current (ICl.vol) in vascular smooth muscle cells (VSMCs). However, it is still not clear whether and how ClC-3 is transported to cell membranes, resulting in alteration ofICl.vol. METHODS AND RESULTS Volume-regulated chloride current (ICl.vol) was recorded by whole-cell patch clamp recording, and Western blotting and co-immunoprecipitation were performed to examine protein expression and protein-protein interaction. Live cell imaging was used to observe ClC-3 transporting. The results showed that an overexpression of endophilin A2 could increaseICl.vol, while endophilin A2 knockdown decreasedICl.vol. In addition, the SH3 domain of endophilin A2 mediated its interaction with ClC-3 and promotes ClC-3 transportation from the cytoplasm to cell membranes. The regulation of ClC-3 channel activity was also verified in basilar arterial smooth muscle cells (BASMCs) isolated from endophilin A2 transgenic mice. Moreover, endophilin A2 increase VSMCs proliferation induced by endothelin-1 or hypo-osmolarity. CONCLUSIONS The present study identified endophilin A2 as a ClC-3 channel partner, which serves as a new ClC-3 trafficking insight in regulatingICl.volin VSMCs. This study provides a new mechanism by which endophilin A2 regulates ClC-3 channel activity, and sheds light on how ClC-3 is transported to cell membranes to play its critical role as a chloride channel in VSMCs function, which may be involved in cardiovascular diseases. (Circ J 2016; 80: 2397-2406).
Collapse
Affiliation(s)
- Can-Zhao Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Endophilin-A2-mediated increase in scavenger receptor expression contributes to macrophage-derived foam cell formation. Atherosclerosis 2016; 254:133-141. [PMID: 27741419 DOI: 10.1016/j.atherosclerosis.2016.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/08/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Macrophage-derived foam cell formation (MFCF) is a crucial step in the pathogenesis of atherosclerosis. Uptake of oxidized low-density lipoprotein (oxLDL) by scavenger receptors is indispensable for MFCF. Endophilin-A2 has been reported to regulate clathrin-mediated endocytosis (CME). In this study, we tested the hypothesis that endophilin-A2 regulates oxLDL uptake and MFCF by mediating CME of oxLDL-scavenger receptor complexes. METHODS In vitro MFCF was induced by oxLDL treatment. Involvement of endophilin-A2 in oxLDL cytomembrane binding, cellular uptake, and MFCF was evaluated by manipulation of endophilin-A2. RESULTS Endophilin-A2 was involved in MFCF via scavenger receptor CD36 and scavenger receptor-A (SR-A)-mediated positive feedback pathways. We observed that oxLDL triggered interaction of endophilin-A2 with CD36 or SR-A, and induced an endophilin-A2-dependent activation of the apoptosis signal-regulating kinase-1 (ASK1)/Jun N-terminal kinase (JNK)/p38 signaling pathway. The activation of ASK1-JNK/p38 signal increased expression of both CD36 and SR-A, which promoted oxLDL cytomembrane binding, cellular uptake, and MFCF. In the absence of oxLDL, endophilin-A2 up-regulated the expression of receptors and Dil-oxLDL binding and uptake, but not the intracellular accumulation of lipids. In the presence of oxLDL, the CME inhibitors pitstop2 and ikarugamycin mimicked the inhibiting effect of endophilin-A2 knockdown and eliminated the elevating effect of endophilin-A2 overexpression on oxLDL uptake and MFCF. CONCLUSIONS Endophilin-A2 was identified as a novel molecule regulating MFCF by mechanisms attributable to CME and beyond CME.
Collapse
|
43
|
Guan H, Zhao P, Dai Z, Liu X, Wang X. SH3GL1 inhibition reverses multidrug resistance in colorectal cancer cells by downregulation of MDR1/P-glycoprotein via EGFR/ERK/AP-1 pathway. Tumour Biol 2016; 37:12153-12160. [PMID: 27220321 DOI: 10.1007/s13277-016-5092-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/15/2016] [Indexed: 01/14/2023] Open
Abstract
Multidrug resistance is one of the major reasons colorectal cancer (CRC) chemotherapy-based treatments fail, and novel biologically based therapies are urgently needed. Src homology 3 (SH3)-domain GRB2-like protein 1 (SH3GL1) is a membrane-bound protein which was found to be involved in tumor formation, progression, and metastasis. In this study, immunohistochemistry staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis revealed a high expression of SH3GL1 in human CRC tumor specimens and several CRC cells resistant to chemotherapeutics. Cell Counting Kit-8 (CCK-8) assay showed that transfection of pCDNA3.1(+)-SH3GL1 increased while transfection of SH3GL1 siRNA decreased cell viability in response to 5-fluorouracil (5-FU) treatment (P < 0.05). Further studies indicated that transfection of SH3GL1 siRNA significantly downregulated multidrug resistance protein 1 (MDR1)/P-glycoprotein expression (P < 0.05), decreased MDR1 promoter activity and activator protein-1 (AP-1) binding activity (P < 0.05), and inhibited the activation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling (P < 0.05) in CRC cells resistant to chemotherapeutics. Transfection of pCDNA3.1(+)-SH3GL1 caused the opposite effect. Additionally, pre-treatment with either EGFR kinase inhibitor PD153035 or ERK1/2 kinase inhibitor PD98059 in HCT116/5-FU cells partly inhibits P-glycoprotein expression and AP-1 binding activity (P < 0.05). In conclusion, we confirmed that inhibition of SH3GL1 reverses multidrug resistance through declining P-glycoprotein expression via the EGFR/ERK/AP-1 pathway.
Collapse
Affiliation(s)
- Haitao Guan
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West NO. 5 Road, Xi'an, Shaanxi Province, 710004, China
| | - Ping Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West NO.5 Road, Xi'an, Shaanxi Province, 710004, China.
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West NO. 5 Road, Xi'an, Shaanxi Province, 710004, China
| | - Xiaoxu Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West NO. 5 Road, Xi'an, Shaanxi Province, 710004, China
| | - Xijing Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West NO. 5 Road, Xi'an, Shaanxi Province, 710004, China
| |
Collapse
|
44
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
45
|
Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu Rev Cell Dev Biol 2016; 32:555-576. [PMID: 27501444 DOI: 10.1146/annurev-cellbio-111315-125227] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.
Collapse
Affiliation(s)
| | | | - Pedro Monteiro
- Barts Cancer Institute, University of London John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | - Catalina Lodillinsky
- Instituto de Oncologia Ángel H. Roffo, Research Area, Buenos Aires, C1417DTB, Argentina
| | - Carine Rossé
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| |
Collapse
|
46
|
Significance of kinase activity in the dynamic invadosome. Eur J Cell Biol 2016; 95:483-492. [PMID: 27465307 DOI: 10.1016/j.ejcb.2016.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
Invadosomes are actin rich protrusive structures that facilitate invasive migration in multiple cell types. Comprised of invadopodia and podosomes, these highly dynamic structures adhere to and degrade the extracellular matrix, and are also thought to play a role in mechanosensing. Many extracellular signals have been implicated in invadosome stimulation, activating complex signalling cascades to drive the formation, activity and turnover of invadosomes. While the structural components of invadosomes have been well studied, the regulation of invadosome dynamics is still poorly understood. Protein kinases are essential to this regulation, affecting all stages of invadosome dynamics and allowing tight spatiotemporal control of their activity. Invadosome organisation and function have been linked to pathophysiological states such as cancer invasion and metastasis; therapeutic targeting of invadosome regulatory components is thus warranted. In this review, we discuss the involvement of kinase signalling in every stage of the invadosome life cycle and evaluate its significance.
Collapse
|
47
|
Mrkonjic S, Destaing O, Albiges-Rizo C. Mechanotransduction pulls the strings of matrix degradation at invadosome. Matrix Biol 2016; 57-58:190-203. [PMID: 27392543 DOI: 10.1016/j.matbio.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
Degradation of the extracellular matrix is a critical step of tumor cell invasion. Both protease-dependent and -independent mechanisms have been described as alternate processes in cancer cell motility. Interestingly, some effectors of protease-dependent degradation are focalized at invadosomes and are directly coupled with contractile and adhesive machineries composed of multiple mechanosensitive proteins. This review presents recent findings in protease-dependent mechanisms elucidating the ways the force affects extracellular matrix degradation by targeting protease expression and activity at invadosome. The aim is to highlight mechanosensing and mechanotransduction processes to direct the degradative activity at invadosomes, with the focus on membrane tension, proteases and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sanela Mrkonjic
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| |
Collapse
|
48
|
Yue J, Zhang Y, Liang WG, Gou X, Lee P, Liu H, Lyu W, Tang WJ, Chen SY, Yang F, Liang H, Wu X. In vivo epidermal migration requires focal adhesion targeting of ACF7. Nat Commun 2016; 7:11692. [PMID: 27216888 PMCID: PMC5476826 DOI: 10.1038/ncomms11692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7’s NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essential for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Together, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement. The spectraplakin protein ACF7 binds to actin at focal adhesions and targets microtubule plus ends to focal adhesions, promoting their disassembly. Here the authors reveal that ACF7 is phosphorylated by Src/FAK, and this regulates actin binding and focal adhesion dynamics in vitro and in vivo.
Collapse
Affiliation(s)
- Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Yao Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Philbert Lee
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Han Liu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wanqing Lyu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, Kentucky 40292, USA
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
49
|
Cytotoxic effects of natural and semisynthetic cucurbitacins on lung cancer cell line A549. Invest New Drugs 2016; 34:139-48. [DOI: 10.1007/s10637-015-0317-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
|
50
|
Dave JM, Abbey CA, Duran CL, Seo H, Johnson GA, Bayless KJ. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci 2016; 129:743-56. [PMID: 26769900 DOI: 10.1242/jcs.170571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
During angiogenesis, endothelial cells must coordinate matrix proteolysis with migration. Here, we tested whether the focal adhesion scaffold protein Hic-5 (also known as TGFB1I1) regulated endothelial sprouting in three dimensions. Hic-5 silencing reduced endothelial sprouting and lumen formation, and sprouting defects were rescued by the return of Hic-5 expression. Pro-angiogenic factors enhanced colocalization and complex formation between membrane type-1 matrix metalloproteinase (MT1-MMP, also known as MMP14) and Hic-5, but not between paxillin and MT1-MMP. The LIM2 and LIM3 domains of Hic-5 were necessary and sufficient for Hic-5 to form a complex with MT1-MMP. The degree of interaction between MT1-MMP and Hic-5 and the localization of the complex within detergent-resistant membrane fractions were enhanced during endothelial sprouting, and Hic-5 depletion lowered the surface levels of MT1-MMP. In addition, we observed that loss of Hic-5 partially reduced complex formation between MT1-MMP and focal adhesion kinase (FAK, also known as PTK2), suggesting that Hic-5 bridges MT1-MMP and FAK. Finally, Hic-5 LIM2-LIM3 deletion mutants reduced sprout initiation. Hic-5, MT1-MMP and FAK colocalized in angiogenic vessels during porcine pregnancy, supporting that this complex assembles during angiogenesis in vivo. Collectively, Hic-5 appears to enhance complex formation between MT1-MMP and FAK in activated endothelial cells, which likely coordinates matrix proteolysis and cell motility.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Heewon Seo
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|