1
|
Yuan YW, Yue ZQ, Zhou Q, Sheng J, Zou YH, Fan LJ, Xu H, Xin L. TFAP4 Regulation of MCM5 Activates the PI3K/AKT Pathway to Promote Invasion and Metastasis of Gastric Cancer. Dig Dis Sci 2025; 70:1411-1427. [PMID: 39971831 DOI: 10.1007/s10620-025-08897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
AIMS To investigate the role of transcription factor activating enhancer-binding protein 4 (TFAP4) in gastric cancer (GC) progression and elucidate its mechanism in promoting metastasis and invasion through the PI3K/AKT signaling pathway. METHODS Bioinformatics analysis was performed to assess TFAP4 expression in GC tissues. Clinical specimens were collected and validated for TFAP4 expression. Functional assays were conducted to evaluate the effects of TFAP4 overexpression and inhibition on GC cell proliferation, invasion, and metastasis. In vivo studies with HGC27 cells in BALB/c nude mice were used to assess tumor growth and metastasis. Mechanistic analysis included the measurement of MCM5 expression and activation of the PI3K/AKT signaling pathway, with PI3K inhibitor LY294002 and MCM5 knockdown applied to confirm the pathways involved. RESULTS Elevated TFAP4 expression was observed in GC tissues, and its overexpression promoted GC cell proliferation, invasion, and metastasis. Conversely, TFAP4 inhibition suppressed these behaviors. In vivo studies confirmed that TFAP4 knockdown reduced tumor growth and metastasis in nude mice. Mechanistically, TFAP4 was found to activate MCM5, which in turn facilitated GC cell invasion and metastasis. Furthermore, TFAP4 and MCM5 activated the PI3K/AKT signaling pathway, as evidenced by increased p-PI3K and p-AKT expression. The effects of TFAP4 overexpression were reversed by MCM5 knockdown or treatment with the PI3K inhibitor LY294002. CONCLUSION The TFAP4-MCM5 signaling axis promotes GC progression through the PI3K/AKT pathway, suggesting that targeting this axis could provide a potential therapeutic strategy for managing gastric cancer.
Collapse
Affiliation(s)
- Yi-Wu Yuan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Zhen-Qi Yue
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Qi Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Jie Sheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Yong-Hui Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Luo-Jun Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Hesong Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Lin Xin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Aviñó-Esteban L, Cardona-Blaya H, Sharpe J. Spatio-temporal reconstruction of gene expression patterns in developing mice. Development 2025; 152:DEV204313. [PMID: 39982400 PMCID: PMC11883288 DOI: 10.1242/dev.204313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Understanding gene regulation in organism development is crucial in biology. Techniques like whole-mount in situ hybridization can reveal spatial gene expression in organs and tissues. However, capturing time-lapse movies of gene expression dynamics in embryos developing in utero, such as mice, remains technically challenging beyond the early stages. To address this, we present a method to integrate static snapshots of gene expression patterns across limb developmental stages, creating a continuous 2D reconstruction of gene expression patterns over time. This method interpolates small tissue regions over time to create smooth temporal trajectories of gene expression. We successfully applied it to a number of key genes in limb development, including Sox9, Hand2, and Bmp2. This approach enables a detailed spatio-temporal mapping of gene expression, providing insights into developmental mechanisms. By estimating gene expression patterns at previously unobserved time points, it facilitates the comparison of these patterns across samples. The reconstructed trajectories offer high-quality data that will be useful to guide computational modeling and machine learning, advancing the study of developmental biology in systems where real-time imaging is technically difficult or impossible.
Collapse
Affiliation(s)
- Laura Aviñó-Esteban
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
| | - Heura Cardona-Blaya
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
3
|
Palacio V, Pancho A, Morabito A, Malkmus J, He Z, Soussi G, Zeller R, Treutlein B, Zuniga A. Single-cell profiling of penta- and tetradactyl mouse limb buds identifies mesenchymal progenitors controlling digit numbers and identities. Nat Commun 2025; 16:1226. [PMID: 39890843 PMCID: PMC11785988 DOI: 10.1038/s41467-025-56221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The cellular interactions controlling digit numbers and identities have remained largely elusive. Here, we leverage the anterior digit and identity loss in Grem1 tetradactyl mouse limb buds to identify early specified limb bud mesenchymal progenitor (LMP) populations whose size and distribution is governed by spatial modulation of BMP activity and SHH signaling. Distal-autopodial LMPs (dLMP) express signature genes required for autopod and digit development, and alterations affecting the dLMP population size prefigure the changes in digit numbers that characterize specific congenital malformations. A second, peripheral LMP (pLMP) population is anteriorly biased and reduction/loss of its asymmetric distribution underlies the loss of middle digit asymmetry and identities in Grem1 tetradactyl and pig limb buds. pLMPs depend on BMP activity, while dLMPs require GREM1-mediated BMP antagonism. Taken together, the spatial alterations in GREM1 antagonism in mouse mutant and evolutionarily diversified pig limb buds tunes BMP activity, which impacts dLMP and pLMP populations in an opposing manner.
Collapse
Affiliation(s)
- Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anna Pancho
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Angela Morabito
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jonas Malkmus
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Nicoletti C, Massenet J, Pintado-Urbanc AP, Connor LJ, Nicolau M, Sundar S, Xu M, Schmitt A, Zhang W, Fang Z, Chan TCI, Tapscott SJ, Cheung TH, Simon MD, Caputo L, Puri PL. E-box independent chromatin recruitment turns MYOD into a transcriptional repressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627024. [PMID: 39677796 PMCID: PMC11643108 DOI: 10.1101/2024.12.05.627024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression. Repression of mitogen- and growth factor-responsive genes occurs through promoter binding and requires a highly conserved domain within the first helix. Repression of cell-of-origin/alternative lineage genes occurs via binding and decommissioning of distal regulatory elements, such as super-enhancers (SE), which requires the N-terminal activation domain as well as two chromatin-remodeling domains and leads to reduced strength of CTCF-mediated chromatin interactions. Surprisingly, MYOD-mediated chromatin compaction and repression of transcription do not associate with reduction of H3K27ac, the conventional histone mark of enhancer or promoter activation, but with reduced levels of the recently discovered histone H4 acetyl-methyl lysine modification (Kacme). These results extend MYOD biological properties beyond the current dogma that restricts MYOD function to a monotone transcriptional activator and reveal a previously unrecognized functional versatility arising from an alternative chromatin recruitment through E-box or non-E-box sequences. The E-box independent repression of gene expression by MYOD might provide a promiscuous mechanism to reduce chromatin accessibility and repress cell-of-origin/alternative lineage and growth factor/mitogen-responsive genes to safeguard the integrity of cell identity during muscle progenitor commitment toward the myogenic lineage.
Collapse
Affiliation(s)
- Chiara Nicoletti
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Jimmy Massenet
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Andreas P. Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT
| | - Leah J. Connor
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT
| | - Monica Nicolau
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Swetha Sundar
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Mingzhi Xu
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | | | - Wenxin Zhang
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zesen Fang
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tsz Ching Indigo Chan
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Tom H. Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
| | - Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| |
Collapse
|
5
|
Han J, Choi SY, Choi RY, Park KW, Kang KY, Lee MK. Anti-muscle atrophy effect of fermented Tenebrio molitor larvae extract by modulating the PI3K-Akt-mTOR/FoxO3α pathway in mice treated with dexamethasone. Biomed Pharmacother 2024; 178:117266. [PMID: 39137649 DOI: 10.1016/j.biopha.2024.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
This study investigated the anti-sarcopenic effect of fermented Tenebrio molitor larvae (mealworms) extract (FME) in both dexamethasone (DEX)-treated C2C12 cells and mice. FME (100 µg/mL) increased the diameter of myotubes and inhibited the gene and protein expression of atrogin-1 compared to DEX- or non-fermented mealworms extract (ME)-treated C2C12 cells. Male C57BL/6N mice were divided into five groups: Normal Control (NC), DEX (10 mg/kg, intraperitoneal), and three groups of DEX+FME (100, 200, or 500 mg FME/kg/day, oral) for two weeks. FME at doses of 200 and 500 mg/kg effectively improved grip strength when compared to the DEX group. Histological analysis of the quadriceps muscle showed a larger muscle fiber size in the DEX+FME groups compared to DEX group. FME (200 and 500 mg/kg) significantly increased cross-sectional area of the muscle fiber compared to DEX group. FME (500 mg/kg) significantly decreased the ubiquitin, atrogin-1 and MuRF-1 protein levels, and increased levels of MHC and MyoG in DEX-treated mice. The puromycin labeling assay revealed that FME increased protein synthesis in DEX-induced muscle atrophy. The FME treatment demonstrated significant upregulation in phosphorylation levels, including mTOR, FoxO3α, Akt, and PI3K compared to DEX group. In conclusion, FME inhibited the increase in proteins associated with muscle atrophy, including, atrogin-1 and MuRF-1, by regulating the PI3K-Akt-FoxO3α pathway. FME improved the PI3K-Akt-mTOR signaling pathway, which was reduced by DEX. This study suggests that FME has the potential for use in sarcopenia therapy, possibly serving as a natural agent that counteracts the negative effects of DEX on muscle tissue.
Collapse
Affiliation(s)
- Jisu Han
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Soo-Young Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyung-Wuk Park
- Suncheon Research Center for Bio Health Care, Suncheon 57962, Republic of Korea
| | - Kyung-Yun Kang
- Suncheon Research Center for Bio Health Care, Suncheon 57962, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
6
|
Seco-Cervera M, Ibáñez-Cabellos JS, Pallardo FV, García-Giménez JL, Aulinas A, Martel-Duguech L, Webb SM, Valassi E. Circulating miR-28-5p is overexpressed in patients with sarcopenia despite long-term remission of Cushing's syndrome: a pilot study. Front Endocrinol (Lausanne) 2024; 15:1410080. [PMID: 39086897 PMCID: PMC11289718 DOI: 10.3389/fendo.2024.1410080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Patients with Cushing's syndrome (CS) in remission show sustained fatigue, myopathy, and an increased prevalence of sarcopenia. The mechanisms that determine these persistent muscle problems are not well known. We aimed to identify circulating microRNAs (miRNAs) with differential expression that could be potential biomarkers for the diagnosis and/or prognosis in CS. Patients and methods Thirty-six women in sustained remission for 13 ± 7 years (mean ± SD) from CS, with a median age (IQ range) of 51 (45.2-60) years and mean ± SD BMI of 27 ± 4 Kg/m2, and 36 matched healthy controls were investigated. In 7 patients sarcopenia was present according to the European Working Group on Sarcopenia in Older People (EWGSOP) criteria. Small RNA libraries were generated and indexed using a modified Illumina TruSeq small RNA-sequencing protocol. MiRNAs were identified in plasma using bioinformatic analysis, and validation was carried out using RT-qPCR. For the validation, Taqman probes were performed on QuantStudio 5 equipment (Applied Biosystems). Results In a first discovery group using RNA-sequencing, plasma samples of 18 CS patients and 18 healthy subjects were investigated; circulating miR-28-5p, miR-495-3p and miR-654-5p were upregulated in CS patients as compared with controls (p<0.05). In a validation study of the 3 upregulated miRNAs in 36 patients and 26 controls, no differences were observed by RT-qPCR; however, the expression of circulating miR-28-5p was upregulated in CS patients with sarcopenia as compared with those without (AUC for fold-change in the ROC analysis, 0.798; p=0.0156). The optimized cut-off value for miR-28-5p to identify CS patients with sarcopenia was 3.80, which yielded a sensitivity of 86% and a specificity of 69%. Conclusion MiR-28-5p, a muscle-specific microRNA involved in myotube proliferation and differentiation in vivo, may serve as an independent non-invasive biomarker for identifying CS patients at high-risk of sarcopenia despite biochemical remission.
Collapse
Affiliation(s)
- Marta Seco-Cervera
- Unit 733, Centre for Biomedical Network Research on Rare Diseases [CIBERER- Instituto de Salud Carlos III (ISCIII)], Madrid, Spain
- Mixed Unit for rare diseases INCLIVA-CIPF, INCLIVA Health Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Federico V. Pallardo
- Unit 733, Centre for Biomedical Network Research on Rare Diseases [CIBERER- Instituto de Salud Carlos III (ISCIII)], Madrid, Spain
- Mixed Unit for rare diseases INCLIVA-CIPF, INCLIVA Health Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José-Luis García-Giménez
- Unit 733, Centre for Biomedical Network Research on Rare Diseases [CIBERER- Instituto de Salud Carlos III (ISCIII)], Madrid, Spain
- Mixed Unit for rare diseases INCLIVA-CIPF, INCLIVA Health Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Anna Aulinas
- Department of Endocrinology, Hospital S Pau, Research Center for Pituitary Diseases, Institut de Recerca Sant Pau (IIB-Sant Pau), Barcelona, Spain
- CIBERER Unit 747, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Luciana Martel-Duguech
- Department of Endocrinology, Hospital S Pau, Research Center for Pituitary Diseases, Institut de Recerca Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Susan M. Webb
- Department of Endocrinology, Hospital S Pau, Research Center for Pituitary Diseases, Institut de Recerca Sant Pau (IIB-Sant Pau), Barcelona, Spain
- CIBERER Unit 747, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Univ Autonoma Barcelona, Bellaterra, Spain
| | - Elena Valassi
- CIBERER Unit 747, Instituto de Salud Carlos III, Madrid, Spain
- Endocrinology and Nutrition Department, Germans Trias i Pujol Hospital and Research Institute, Badalona, Spain
- School of Medicine, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona, Spain
| |
Collapse
|
7
|
Abrar M, Ali S, Hussain I, Khatoon H, Batool F, Ghazanfar S, Corcoran D, Kawakami Y, Abbasi AA. Cis-regulatory control of mammalian Trps1 gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:85-100. [PMID: 38369890 PMCID: PMC10978278 DOI: 10.1002/jez.b.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.
Collapse
Affiliation(s)
- Muhammad Abrar
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Irfan Hussain
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Center of regenerative medicine and stem cells research Aga Khan University hospital Karachi
| | - Hizran Khatoon
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agriculture Research Centre (NARC), Islamabad-45500, Pakistan
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Amir Ali Abbasi
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| |
Collapse
|
8
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
9
|
El Hayek L, DeVries D, Gogate A, Aiken A, Kaur K, Chahrour MH. Disruption of the autism gene and chromatin regulator KDM5A alters hippocampal cell identity. SCIENCE ADVANCES 2023; 9:eadi0074. [PMID: 37992166 PMCID: PMC10664992 DOI: 10.1126/sciadv.adi0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Chromatin regulation plays a pivotal role in establishing and maintaining cellular identity and is one of the top pathways disrupted in autism spectrum disorder (ASD). The hippocampus, composed of distinct cell types, is often affected in patients with ASD. However, the specific hippocampal cell types and their transcriptional programs that are dysregulated in ASD are unknown. Using single-nucleus RNA sequencing, we show that the ASD gene, lysine demethylase 5A (KDM5A), regulates the development of specific subtypes of excitatory and inhibitory neurons. We found that KDM5A is essential for establishing hippocampal cell identity by controlling a differentiation switch early in development. Our findings define a role for the chromatin regulator KDM5A in establishing hippocampal cell identity and contribute to the emerging convergent mechanisms across ASD.
Collapse
Affiliation(s)
- Lauretta El Hayek
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darlene DeVries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariel Aiken
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria H. Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Arostegui M, Scott RW, Underhill TM. Hic1 identifies a specialized mesenchymal progenitor population in the embryonic limb responsible for bone superstructure formation. Cell Rep 2023; 42:112325. [PMID: 37002923 DOI: 10.1016/j.celrep.2023.112325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023] Open
Abstract
The musculoskeletal system relies on the integration of multiple components with diverse physical properties, such as striated muscle, tendon, and bone, that enable locomotion and structural stability. This relies on the emergence of specialized, but poorly characterized, interfaces between these various elements during embryonic development. Within the appendicular skeleton, we show that a subset of mesenchymal progenitors (MPs), identified by Hic1, do not contribute to the primary cartilaginous anlagen but represent the MP population, whose progeny directly contribute to the interfaces that connect bone to tendon (entheses), tendon to muscle (myotendinous junctions), and the associated superstructures. Furthermore, deletion of Hic1 leads to skeletal defects reflective of deficient muscle-bone coupling and, consequently, perturbation of ambulation. Collectively, these findings show that Hic1 identifies a unique MP population that contributes to a secondary wave of bone sculpting critical to skeletal morphogenesis.
Collapse
Affiliation(s)
- Martin Arostegui
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
11
|
Xu Y, Zhang T, Zhou Q, Hu M, Qi Y, Xue Y, Nie Y, Wang L, Bao Z, Shi W. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat Cell Biol 2023; 25:604-615. [PMID: 36928764 DOI: 10.1038/s41556-023-01108-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
The early window of human embryogenesis is largely a black box for developmental biologists. Here we probed the cellular diversity of 4-6 week human embryos when essentially all organs are just laid out. On the basis of over 180,000 single-cell transcriptomes, we generated a comprehensive atlas of 313 clusters in 18 developmental systems, which were annotated with a collection of ontology and markers from 157 publications. Together with spatial transcriptome on embryonic sections, we characterized the molecule and spatial architecture of previously unappreciated cell types. Combined with data from other vertebrates, the rich information shed light on spatial patterning of axes, systemic temporal regulation of developmental progression and potential human-specific regulation. Our study provides a compendium of early progenitor cells of human organs, which can serve as the root of lineage analysis in organogenesis.
Collapse
Affiliation(s)
- Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Tengjiao Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qin Zhou
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Mengzhu Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Qi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yifang Xue
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Yuxiao Nie
- School of Pharmacy, Fudan University, Shanghai, China
| | - Lihui Wang
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
COBL, MKX and MYOC Are Potential Regulators of Brown Adipose Tissue Development Associated with Obesity-Related Metabolic Dysfunction in Children. Int J Mol Sci 2023; 24:ijms24043085. [PMID: 36834493 PMCID: PMC9964948 DOI: 10.3390/ijms24043085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is already accompanied by adipose tissue (AT) dysfunction and metabolic disease in children and increases the risk of premature death. Due to its energy-dissipating function, brown AT (BAT) has been discussed as being protective against obesity and related metabolic dysfunction. To analyze the molecular processes associated with BAT development, we investigated genome-wide expression profiles in brown and white subcutaneous and perirenal AT samples of children. We identified 39 upregulated and 26 downregulated genes in uncoupling protein 1 (UCP1)-positive compared to UCP1-negative AT samples. We prioritized for genes that had not been characterized regarding a role in BAT biology before and selected cordon-bleu WH2 repeat protein (COBL), mohawk homeobox (MKX) and myocilin (MYOC) for further functional characterization. The siRNA-mediated knockdown of Cobl and Mkx during brown adipocyte differentiation in vitro resulted in decreased Ucp1 expression, while the inhibition of Myoc led to increased Ucp1 expression. Furthermore, COBL, MKX and MYOC expression in the subcutaneous AT of children is related to obesity and parameters of AT dysfunction and metabolic disease, such as adipocyte size, leptin levels and HOMA-IR. In conclusion, we identify COBL, MKX and MYOC as potential regulators of BAT development and show an association of these genes with early metabolic dysfunction in children.
Collapse
|
13
|
Tanji M, Wada K, Sakamoto K, Ono Y, Inui M. Digoxigenin-labeled RNA probes for untranslated regions enable the isoform-specific gene expression analysis of myosin heavy chains in whole-mount in situ hybridization. Dev Growth Differ 2023; 65:48-55. [PMID: 36517457 DOI: 10.1111/dgd.12832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Myosin heavy chains (MyHCs), which are encoded by myosin heavy chain (Myh) genes, are the most abundant proteins in myofiber. Among the 11 sarcomeric Myh isoform genes in the mammalian genome, seven are mainly expressed in skeletal muscle. Myh genes/MyHC proteins share a common role as force producing units with highly conserved sequences, but have distinct spatio-temporal expression patterns. As such, the expression patterns of Myh genes/MyHC proteins are considered as molecular signatures of specific fiber types or the regenerative status of mammalian skeletal muscles. Immunohistochemistry is widely used for identifying MyHC expression patterns; however, this method is costly and is not ideal for whole-mount samples, such as embryos. In situ hybridization (ISH) is another versatile method for the analysis of gene expression, but is not commonly applied for Myh genes, partly because of the highly homologous sequences of Myh genes. Here we demonstrate that an ISH analysis with the untranslated region (UTR) sequence of Myh genes is cost-effective and specific method for analyzing the Myh gene expression in whole-mount samples. Digoxigenin (DIG)-labeled antisense probes for UTR sequences, but not for protein coding sequences, specifically detected the expression patterns of respective Myh isoform genes in both embryo and adult skeletal muscle tissues. UTR probes also revealed the isoform gene-specific polarized localization of Myh mRNAs in embryonic myofibers, which implied a novel mRNA distribution mechanism. Our data suggested that the DIG-labeled UTR probe is a cost-effective and versatile method to specifically detect skeletal muscle Myh genes in a whole-mount analysis.
Collapse
Affiliation(s)
- Masafumi Tanji
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Keitaro Wada
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Keita Sakamoto
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Yudai Ono
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| |
Collapse
|
14
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Heng JIT, Viti L, Pugh K, Marshall OJ, Agostino M. Understanding the impact of ZBTB18 missense variation on transcription factor function in neurodevelopment and disease. J Neurochem 2022; 161:219-235. [PMID: 35083747 PMCID: PMC9302683 DOI: 10.1111/jnc.15572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Mutations to genes that encode DNA‐binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non‐native gene regulatory actions in developing neurons, leading to cell‐morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.![]()
Collapse
Affiliation(s)
- Julian I-T Heng
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Neuroscience Laboratories, Sarich Neuroscience Institute, Crawley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Leon Viti
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Kye Pugh
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Owen J Marshall
- Menzies Institute for Medical Research, The University of Tasmania, Hobart, Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
16
|
Leong JCK, Li Y, Uesaka M, Uchida Y, Omori A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Wang F, Chen L, Wessel G, Livingston BT, Bradham C, Wang W, Irie N. Derivedness Index for Estimating Degree of Phenotypic Evolution of Embryos: A Study of Comparative Transcriptomic Analyses of Chordates and Echinoderms. Front Cell Dev Biol 2021; 9:749963. [PMID: 34900995 PMCID: PMC8661034 DOI: 10.3389/fcell.2021.749963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named "derivedness index" to quantify the degree of derivedness. In contrast to the conservation-based approach, which deals with expressions of commonly shared genes among species being compared, the derivedness index also considers those that were potentially lost or duplicated during evolution. By applying our method, we found that the gene expression profiles of penta-radial phases in echinoderm tended to be more highly derived than those of the bilateral phase. However, our results suggest that echinoderms may not have experienced much larger modifications to their developmental systems than chordates, at least at the transcriptomic level. In vertebrates, we found that the mid-embryonic and organogenesis stages were generally less derived than the earlier or later stages, indicating that the conserved phylotypic period is also less derived. We also found genes that potentially explain less derivedness, such as Hox genes. Finally, we highlight technical concerns that may influence the measured transcriptomic derivedness, such as read depth and library preparation protocols, for further improvement of our method through future studies. We anticipate that this index will serve as a quantitative guide in the search for constrained developmental phases or processes.
Collapse
Affiliation(s)
- Jason Cheok Kuan Leong
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yui Uchida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, United States
| | - Brian T Livingston
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Cynthia Bradham
- Department of Biology, Boston University, Boston, MA, United States
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Takahashi O, Tanahashi M, Yokoi S, Kaneko M, Yanaka K, Nakagawa S, Maita H. The cell type-specific ER membrane protein UGS148 is not essential in mice. Genes Cells 2021; 27:43-60. [PMID: 34897904 DOI: 10.1111/gtc.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
Genomes of higher eukaryotes encode many uncharacterized proteins, and the functions of these proteins cannot be predicted from the primary sequences due to a lack of conserved functional domains. In this study, we focused on a poorly characterized protein UGS148 that is highly expressed in a specialized cell type called tanycytes that line the ventral wall of the third ventricle in the hypothalamus. Immunostaining of UGS148 revealed the fine morphology of tanycytes with highly branched apical ER membranes. Immunoprecipitation revealed that UGS148 associated with mitochondrial ATPase at least in vitro, and ER and mitochondrial signals occasionally overlapped in tanycytes. Mutant mice lacking UGS148 did not exhibit overt phenotypes, suggesting that UGS148 was not essential in mice reared under normal laboratory conditions. We also found that RNA probes that were predicted to uniquely detect UGS148 mRNA cross-reacted with uncharacterized RNAs, highlighting the importance of experimental validation of the specificity of probes during the hybridization-based study of RNA localization.
Collapse
Affiliation(s)
- Osamu Takahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mayuko Tanahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kaori Yanaka
- Liver Cancer Prevention Research Unit, RIKEN, Wako, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Dai J, Leung M, Guan W, Guo HT, Krasnow RE, Wang TJ, El-Rifai W, Zhao Z, Reed T. Whole-Genome Differentially Hydroxymethylated DNA Regions among Twins Discordant for Cardiovascular Death. Genes (Basel) 2021; 12:genes12081183. [PMID: 34440357 PMCID: PMC8392630 DOI: 10.3390/genes12081183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is a mechanism underlying cardiovascular disease. It is unknown whether DNA hydroxymethylation is prospectively associated with the risk for cardiovascular death independent of germline and common environment. Male twin pairs middle-aged in 1969–1973 and discordant for cardiovascular death through December 31, 2014, were included. Hydroxymethylation was quantified in buffy coat DNA collected in 1986–1987. The 1893 differentially hydroxymethylated regions (DhMRs) were identified after controlling for blood leukocyte subtypes and age among 12 monozygotic (MZ) pairs (Benjamini–Hochberg False Discovery Rate < 0.01), of which the 102 DhMRs were confirmed with directionally consistent log2-fold changes and p < 0.01 among additional 7 MZ pairs. These signature 102 DhMRs, independent of the germline, were located on all chromosomes except for chromosome 21 and the Y chromosome, mainly within/overlapped with intergenic regions and introns, and predominantly hyper-hydroxymethylated. A binary linear classifier predicting cardiovascular death among 19 dizygotic pairs was identified and equivalent to that generated from MZ via the 2D transformation. Computational bioinformatics discovered pathways, phenotypes, and DNA motifs for these DhMRs or their subtypes, suggesting that hydroxymethylation was a pathophysiological mechanism underlying cardiovascular death that might be influenced by genetic factors and warranted further investigations of mechanisms of these signature regions in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Dai
- Department of Public Health, College of Health Sciences, Des Moines University, Des Moines, IA 50312, USA
- Correspondence: ; Tel.: +1-515-271-1367
| | - Ming Leung
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA;
| | - Han-Tian Guo
- Bioinformatics and Computational Biology Undergraduate Program, Iowa State University, Ames, IA 50011, USA;
| | - Ruth E. Krasnow
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Thomas J. Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terry Reed
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
19
|
Fernandez-Guerrero M, Zdral S, Castilla-Ibeas A, Lopez-Delisle L, Duboule D, Ros MA. Time-sequenced transcriptomes of developing distal mouse limb buds: A comparative tissue layer analysis. Dev Dyn 2021; 251:1550-1575. [PMID: 34254395 DOI: 10.1002/dvdy.394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of the amniote limb has been an important model system to study patterning mechanisms and morphogenesis. For proper growth and patterning, it requires the interaction between the distal sub-apical mesenchyme and the apical ectodermal ridge (AER) that involve the separate implementation of coordinated and tissue-specific genetic programs. RESULTS Here, we produce and analyze the transcriptomes of both distal limb mesenchymal progenitors and the overlying ectodermal cells, following time-coursed dissections that cover from limb bud initiation to fully patterned limbs. The comparison of transcriptomes within each layer as well as between layers over time, allowed the identification of specific transcriptional signatures for each of the developmental stages. Special attention was given to the identification of genes whose transcription dynamics suggest a previously unnoticed role in the context of limb development and also to signaling pathways enriched between layers. CONCLUSION We interpret the transcriptomic data in light of the known development pattern and we conclude that a major transcriptional transition occurs in distal limb buds between E9.5 and E10.5, coincident with the switch from an early phase continuation of the signature of trunk progenitors, related to the initial proximo distal specification, to a late intrinsic phase of development.
Collapse
Affiliation(s)
- Marc Fernandez-Guerrero
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Sofia Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | | | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland.,Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Collège de France, Paris, France
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain.,Facultad de Medicina, Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
20
|
Leylek R, Alcántara-Hernández M, Granja JM, Chavez M, Perez K, Diaz OR, Li R, Satpathy AT, Chang HY, Idoyaga J. Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Rep 2021; 32:108180. [PMID: 32966789 PMCID: PMC7546547 DOI: 10.1016/j.celrep.2020.108180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Human dendritic cells (DCs) comprise subsets with distinct phenotypic and functional characteristics, but the transcriptional programs that dictate their identity remain elusive. Here, we analyze global chromatin accessibility profiles across resting and stimulated human DC subsets by means of the assay for transposase-accessible chromatin using sequencing (ATAC-seq). We uncover specific regions of chromatin accessibility for each subset and transcriptional regulators of DC function. By comparing plasmacytoid DC responses to IFN-I-producing and non-IFN-I-producing conditions, we identify genetic programs related to their function. Finally, by intersecting chromatin accessibility with genome-wide association studies, we recognize DC subset-specific enrichment of heritability in autoimmune diseases. Our results unravel the basis of human DC subset heterogeneity and provide a framework for their analysis in disease pathogenesis. Human dendritic cells (DCs) orchestrate immune responses by a division of labor between functionally specialized subsets; however, the transcriptional basis of this heterogeneity is poorly understood. Using ATAC-seq, Leylek et al. profile the chromatin landscape of human DC subsets, providing insight into the underlying regulatory mechanisms that modulate their function.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey M Granja
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kimberly Perez
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar R Diaz
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Bazzocco S, Dopeso H, Martínez-Barriocanal Á, Anguita E, Nieto R, Li J, García-Vidal E, Maggio V, Rodrigues P, de Marcondes PG, Schwartz S, Aaltonen LA, Sánchez A, Mariadason JM, Arango D. Identification of ZBTB18 as a novel colorectal tumor suppressor gene through genome-wide promoter hypermethylation analysis. Clin Epigenetics 2021; 13:88. [PMID: 33892786 PMCID: PMC8063439 DOI: 10.1186/s13148-021-01070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Background Cancer initiation and progression are driven by genetic and epigenetic changes. Although genome/exome sequencing has significantly contributed to the characterization of the genetic driver alterations, further investigation is required to systematically identify cancer driver genes regulated by promoter hypermethylation. Results Using genome-wide analysis of promoter methylation in 45 colorectal cancer cell lines, we found that higher overall methylation levels were associated with microsatellite instability (MSI), faster proliferation and absence of APC mutations. Because epigenetically silenced genes could represent important oncogenic drivers, we used mRNA expression profiling of colorectal cancer cell lines and primary tumors to identify a subset of 382 (3.9%) genes for which promoter methylation was negatively associated with gene expression. Remarkably, a significant enrichment in zinc finger proteins was observed, including the transcriptional repressor ZBTB18. Re-introduction of ZBTB18 in colon cancer cells significantly reduced proliferation in vitro and in a subcutaneous xenograft mouse model. Moreover, immunohistochemical analysis revealed that ZBTB18 is frequently lost or reduced in colorectal tumors, and reduced ZBTB18 expression was found to be associated with lymph node metastasis and shorter survival of patients with locally advanced colorectal cancer. Conclusions We identified a set of 382 genes putatively silenced by promoter methylation in colorectal cancer that could significantly contribute to the oncogenic process. Moreover, as a proof of concept, we demonstrate that the epigenetically silenced gene ZBTB18 has tumor suppressor activity and is a novel prognostic marker for patients with locally advanced colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01070-0.
Collapse
Affiliation(s)
- Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain.,Group of Molecular Oncology, IRBLleida, 25198, Lleida, Spain
| | - Estefanía Anguita
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Jing Li
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Elia García-Vidal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Valentina Maggio
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Priscila Guimarães de Marcondes
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Simo Schwartz
- Group of Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lauri A Aaltonen
- Department of Medical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, 00290, Helsinki, Finland
| | - Alex Sánchez
- Departament d'Estadísitica, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, 3086, Australia
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain. .,Group of Molecular Oncology, IRBLleida, 25198, Lleida, Spain.
| |
Collapse
|
22
|
Dworschak GC, Reutter HM, Ludwig M. Currarino syndrome: a comprehensive genetic review of a rare congenital disorder. Orphanet J Rare Dis 2021; 16:167. [PMID: 33836786 PMCID: PMC8034116 DOI: 10.1186/s13023-021-01799-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background The triad of a presacral mass, sacral agenesis and an anorectal anomaly constitutes the rare Currarino syndrome (CS), which is caused by dorsal–ventral patterning defects during embryonic development. The major causative CS gene is MNX1, encoding a homeobox protein. Main body In the majority of patients, CS occurs as an autosomal dominant trait; however, a female predominance observed, implies that CS may underlie an additional mode(s) of inheritance. Often, the diagnosis of CS is established solely by clinical findings, impacting a detailed analysis of the disease. Our combined data, evaluating more than 60 studies reporting patients with CS-associated mutations, revealed a slightly higher incidence rate in females with a female-to-male ratio of 1.39:1. Overall, MNX1 mutation analysis was successful in only 57.4% of all CS patients investigated, with no mutation detected in 7.7% of the familial and 68% of the sporadic patients. Our studies failed to detect the presence of an expressed MNX1 isoform that might explain at least some of these mutation-negative cases. Conclusion Aside from MNX1, other genes or regulatory regions may contribute to CS and we discuss several cytogenetic studies and whole-exome sequencing data that have implicated further loci/genes in its etiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01799-0.
Collapse
Affiliation(s)
- Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany. .,Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53115, Bonn, Germany. .,Department of Pediatrics, University Hospital Bonn, 53127, Bonn, Germany.
| | - Heiko M Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, 53127, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127, Bonn, Germany
| |
Collapse
|
23
|
Blake S, Hemming I, Heng JIT, Agostino M. Structure-Based Approaches to Classify the Functional Impact of ZBTB18 Missense Variants in Health and Disease. ACS Chem Neurosci 2021; 12:979-989. [PMID: 33621064 DOI: 10.1021/acschemneuro.0c00758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Cys2His2 type zinc finger is a motif found in many eukaryotic transcription factor proteins that facilitates binding to genomic DNA so as to influence cellular gene expression. One such transcription factor is ZBTB18, characterized as a repressor that orchestrates the development of mammalian tissues including skeletal muscle and brain during embryogenesis. In humans, it has been recognized that disease-associated ZBTB18 missense variants mapping to the coding sequence of the zinc finger domain influence sequence-specific DNA binding, disrupt transcriptional regulation, and impair neural circuit formation in the brain. Furthermore, general population ZBTB18 missense variants that influence DNA binding and transcriptional regulation have also been documented within this domain; however, the molecular traits that explain why some variants cause disease while others do not are poorly understood. Here, we have applied five structure-based approaches to evaluate their ability to discriminate between disease-associated and general population ZBTB18 missense variants. We found that thermodynamic integration and Residue Scanning in the Schrodinger Biologics Suite were the best approaches for distinguishing disease-associated variants from general population variants. Our results demonstrate the effectiveness of structure-based approaches for the functional characterization of missense alleles to DNA binding, zinc finger transcription factor protein-coding genes that underlie human health and disease.
Collapse
Affiliation(s)
- Steven Blake
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia 6009, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6845, Australia
| | - Isabel Hemming
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia 6009, Australia
- The Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia 6009, Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6845, Australia
- Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
24
|
Núñez Y, Radović Č, Savić R, García-Casco JM, Čandek-Potokar M, Benítez R, Radojković D, Lukić M, Gogić M, Muñoz M, Fontanesi L, Óvilo C. Muscle Transcriptome Analysis Reveals Molecular Pathways Related to Oxidative Phosphorylation, Antioxidant Defense, Fatness and Growth in Mangalitsa and Moravka Pigs. Animals (Basel) 2021; 11:ani11030844. [PMID: 33809803 PMCID: PMC8002519 DOI: 10.3390/ani11030844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022] Open
Abstract
This work was aimed at evaluating loin transcriptome and metabolic pathway differences between the two main Serbian local pig breeds with divergent characteristics regarding muscle growth and fatness, as well as exploring nutrigenomic effects of tannin supplementation in Mangalitsa (MA) pigs. The study comprised 24 Mangalitsa and 10 Moravka (MO) males, which were kept under identical management conditions. Mangalitsa animals were divided in two nutritional groups (n = 12) receiving a standard (control) or tannin-supplemented diet (1.5%; MAT). Moravka pigs were fed the standard mixture. All animals were slaughtered at a similar age; 120 kg of average live weight (LW) and loin tissue was used for RNA-seq analysis. Results showed 306 differentially expressed genes (DEGs) according to breed, enriched in genes involved in growth, lipid metabolism, protein metabolism and muscle development, such as PDK4, FABP4, MYOD1 and STAT3, as well as a relevant number of genes involved in mitochondrial respiratory activity (MT-NDs, NDUFAs among others). Oxidative phosphorylation was the most significantly affected pathway, activated in Mangalitsa muscle, revealing the basis of a different muscle metabolism. Also, many other relevant pathways were affected by breed and involved in oxidative stress response, fat accumulation and development of skeletal muscle. Results also allowed the identification of potential regulators and causal networks such as those controlled by FLCN, PPARGC1A or PRKAB1 with relevant regulatory roles on DEGs involved in mitochondrial and lipid metabolism, or IL3 and TRAF2 potentially controlling DEGs involved in muscle development. The Tannin effect on transcriptome was small, with only 23 DEGs, but included interesting ones involved in lipid deposition such as PPARGC1B. The results indicate a significant effect of the breed on muscle tissue gene expression, affecting relevant biological pathways and allowing the identification of strong regulatory candidate genes to underlie the gene expression and phenotypic differences between the compared groups.
Collapse
Affiliation(s)
- Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Čedomir Radović
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | | | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Dragan Radojković
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Miloš Lukić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Marija Gogić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
- Correspondence: ; Tel.: +34-913471492
| |
Collapse
|
25
|
Massenet J, Gardner E, Chazaud B, Dilworth FJ. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet Muscle 2021; 11:4. [PMID: 33431060 PMCID: PMC7798257 DOI: 10.1186/s13395-020-00259-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
In response to muscle injury, muscle stem cells integrate environmental cues in the damaged tissue to mediate regeneration. These environmental cues are tightly regulated to ensure expansion of muscle stem cell population to repair the damaged myofibers while allowing repopulation of the stem cell niche. These changes in muscle stem cell fate result from changes in gene expression that occur in response to cell signaling from the muscle environment. Integration of signals from the muscle environment leads to changes in gene expression through epigenetic mechanisms. Such mechanisms, including post-translational modification of chromatin and nucleosome repositioning, act to make specific gene loci more, or less, accessible to the transcriptional machinery. In youth, the muscle environment is ideally structured to allow for coordinated signaling that mediates efficient regeneration. Both age and disease alter the muscle environment such that the signaling pathways that shape the healthy muscle stem cell epigenome are altered. Altered epigenome reduces the efficiency of cell fate transitions required for muscle repair and contributes to muscle pathology. However, the reversible nature of epigenetic changes holds out potential for restoring cell fate potential to improve muscle repair in myopathies. In this review, we will describe the current knowledge of the mechanisms allowing muscle stem cell fate transitions during regeneration and how it is altered in muscle disease. In addition, we provide some examples of how epigenetics could be harnessed therapeutically to improve regeneration in various muscle pathologies.
Collapse
Affiliation(s)
- Jimmy Massenet
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - Edward Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada. .,LIFE Research Institute, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
26
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
27
|
Okado H. Nervous system regulated by POZ domain Krüppel-like zinc finger (POK) family transcription repressor RP58. Br J Pharmacol 2020; 178:813-826. [PMID: 32959890 DOI: 10.1111/bph.15265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
The POZ domain Krüppel-like zinc finger transcription repressor (POK family) contains many important molecules, including RP58, Bcl6 and PLZF. They function as transcription repressors via chromatin remodelling and histone deacetylation and are known to be involved in the development and tumourigenesis of various organs. Furthermore, they are important in the formation and function of the nervous system. This review summarizes the role of the POK family transcription repressors in the nervous system. We particularly targeted Rp58 (also known as Znf238, Znp238 and Zbtb18), a sequence-specific transcriptional repressor that is strongly expressed in developing glutamatergic projection neurons in the cerebral cortex. It regulates various physiological processes, including neuronal production, neuronal migration and neuronal maturation. Human studies suggest that reduced RP58 levels are involved in cognitive function impairment and brain tumour formation. This review particularly focuses on the mechanisms underlying RP58-mediated neuronal development and function. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Haruo Okado
- Laboratory of Neural Development, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
28
|
Hemming IA, Blake S, Agostino M, Heng JI. General population ZBTB18 missense variants influence DNA binding and transcriptional regulation. Hum Mutat 2020; 41:1629-1644. [DOI: 10.1002/humu.24069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Isabel A. Hemming
- The Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands Western Australia Australia
- The Centre for Medical Research The University of Western Australia Crawley Western Australia Australia
- The Faculty of Health and Medical Sciences, Medical School The University of Western Australia Crawley Western Australia Australia
- Ralph and Patricia Sarich Neuroscience Research Institute Nedlands Western Australia Australia
- Curtin Health Innovation Research Institute Curtin University Bentley Western Australia Australia
| | - Steven Blake
- Ralph and Patricia Sarich Neuroscience Research Institute Nedlands Western Australia Australia
- Curtin Health Innovation Research Institute Curtin University Bentley Western Australia Australia
- School of Pharmacy and Biomedical Science Curtin University Bentley Western Australia Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute Curtin University Bentley Western Australia Australia
- School of Pharmacy and Biomedical Science Curtin University Bentley Western Australia Australia
- Curtin Institute for Computation Curtin University Bentley Western Australia Australia
| | - Julian I‐T. Heng
- Ralph and Patricia Sarich Neuroscience Research Institute Nedlands Western Australia Australia
- Curtin Health Innovation Research Institute Curtin University Bentley Western Australia Australia
| |
Collapse
|
29
|
Barbagiovanni G, Gabriele M, Testa G. KMT2B and Neuronal Transdifferentiation: Bridging Basic Chromatin Mechanisms to Disease Actionability. Neurosci Insights 2020; 15:2633105520928068. [PMID: 32596666 PMCID: PMC7297493 DOI: 10.1177/2633105520928068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
The role of bona fide epigenetic regulators in the process of neuronal transdifferentiation was until recently largely uncharacterized, despite their key role in the physiological processes of neural fate acquisition and maintenance. In this commentary, we describe the main findings of our recent paper “KMT2B is selectively required for neuronal transdifferentiation, and its loss exposes dystonia candidate genes,” where we investigated the role of this histone H3K4 methyltransferase during mouse embryonic fibroblasts (MEFs) to induced neuronal cells (iNs) direct conversion. Indeed, Kmt2b–/– MEFs, transduced with three neuronal-specific transcription factors (TFs), Brn2, Ascl1, and Myt1l, show lower transdifferentiation efficiency, defective iN maturation, and augmented alternative cell fates acquisition, with respect to controls. Here, we went beyond the data, hypothesizing how KMT2B executes its fundamental role. In particular, we supposed that MYT1L, which has been proven to be fundamental for iN maturation and the switch-off of alternative cell fates, directly or indirectly needs KMT2B. Indeed, KMT2B could be important both to make MYT1L-target genes accessible, because MYT1L is not a pioneer TF and preferentially binds to open chromatin, and to activate MYT1L-downstream genes.
Collapse
Affiliation(s)
- Giulia Barbagiovanni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Gabriele
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.,Human Technopole, Milan, Italy
| |
Collapse
|
30
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
31
|
Katz DC, Aponte JD, Liu W, Green RM, Mayeux JM, Pollard KM, Pomp D, Munger SC, Murray SA, Roseman CC, Percival CJ, Cheverud J, Marcucio RS, Hallgrímsson B. Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS One 2020; 15:e0233377. [PMID: 32502155 PMCID: PMC7274373 DOI: 10.1371/journal.pone.0233377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The biology of how faces are built and come to differ from one another is complex. Discovering normal variants that contribute to differences in facial morphology is one key to untangling this complexity, with important implications for medicine and evolutionary biology. This study maps quantitative trait loci (QTL) for skeletal facial shape using Diversity Outbred (DO) mice. The DO is a randomly outcrossed population with high heterozygosity that captures the allelic diversity of eight inbred mouse lines from three subspecies. The study uses a sample of 1147 DO animals (the largest sample yet employed for a shape QTL study in mouse), each characterized by 22 three-dimensional landmarks, 56,885 autosomal and X-chromosome markers, and sex and age classifiers. We identified 37 facial shape QTL across 20 shape principal components (PCs) using a mixed effects regression that accounts for kinship among observations. The QTL include some previously identified intervals as well as new regions that expand the list of potential targets for future experimental study. Three QTL characterized shape associations with size (allometry). Median support interval size was 3.5 Mb. Narrowing additional analysis to QTL for the five largest magnitude shape PCs, we found significant overrepresentation of genes with known roles in growth, skeletal and facial development, and sensory organ development. For most intervals, one or more of these genes lies within 0.25 Mb of the QTL's peak. QTL effect sizes were small, with none explaining more than 0.5% of facial shape variation. Thus, our results are consistent with a model of facial diversity that is influenced by key genes in skeletal and facial development and, simultaneously, is highly polygenic.
Collapse
Affiliation(s)
- David C. Katz
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - J. David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Rebecca M. Green
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Daniel Pomp
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Charles C. Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, NY, United States of America
| | - James Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
32
|
Sato T, Kataoka K, Ito Y, Yokoyama S, Inui M, Mori M, Takahashi S, Akita K, Takada S, Ueno-Kudoh H, Asahara H. Lin28a/let-7 pathway modulates the Hox code via Polycomb regulation during axial patterning in vertebrates. eLife 2020; 9:53608. [PMID: 32479258 PMCID: PMC7259951 DOI: 10.7554/elife.53608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
The body plan along the anteroposterior axis and regional identities are specified by the spatiotemporal expression of Hox genes. Multistep controls are required for their unique expression patterns; however, the molecular mechanisms behind the tight control of Hox genes are not fully understood. In this study, we demonstrated that the Lin28a/let-7 pathway is critical for axial elongation. Lin28a–/– mice exhibited axial shortening with mild skeletal transformations of vertebrae, which were consistent with results in mice with tail bud-specific mutants of Lin28a. The accumulation of let-7 in Lin28a–/– mice resulted in the reduction of PRC1 occupancy at the Hox cluster loci by targeting Cbx2. Consistently, Lin28a loss in embryonic stem-like cells led to aberrant induction of posterior Hox genes, which was rescued by the knockdown of let-7. These results suggest that the Lin28/let-7 pathway is involved in the modulation of the ‘Hox code’ via Polycomb regulation during axial patterning.
Collapse
Affiliation(s)
- Tempei Sato
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kensuke Kataoka
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Metabolism, National Institutes of Health, Bethesda, United States
| | - Masafumi Inui
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Animal Regeneration Systemology, Meiji University, Kanagawa, Japan
| | - Masaki Mori
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical Chemistry, Shiga University of Medical Science, Shiga, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroe Ueno-Kudoh
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Reproduction Center, Yokohama City University, Yokohama, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
33
|
Bmi1 inhibitor PTC-209 promotes Chemically-induced Direct Cardiac Reprogramming of cardiac fibroblasts into cardiomyocytes. Sci Rep 2020; 10:7129. [PMID: 32346096 PMCID: PMC7189257 DOI: 10.1038/s41598-020-63992-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
The development of therapeutic approaches based on direct cardiac reprogramming of fibroblasts into induced-cardiomyocytes (iCM) has emerged as an attractive strategy to repair the injured myocardium. The identification of the mechanisms driving lineage conversion represents a crucial step toward the development of new and more efficient regenerative strategies. To this aim, here we show that pre-treatment with the Bmi1 inhibitor PTC-209 is sufficient to increase the efficiency of Chemical-induced Direct Cardiac Reprogramming both in mouse embryonic fibroblasts and adult cardiac fibroblasts. PTC-209 induces an overall increase of spontaneously beating iCM at end-stage of reprogramming, expressing high levels of late cardiac markers Troponin T and myosin muscle light chain-2v. The inhibition of Bmi1 expression occurring upon PTC-209 pre-treatment was maintained throughout the reprogramming protocol, contributing to a significant gene expression de-regulation. RNA profiling revealed that, upon Bmi1 inhibition a significant down-regulation of genes associated with immune and inflammatory signalling pathways occurred, with repression of different genes involved in interleukin, cytokine and chemokine pathways. Accordingly, we observed the down-regulation of both JAK/STAT3 and MAPK/ERK1-2 pathway activation, highlighting the crucial role of these pathways as a barrier for cardiac reprogramming. These findings have significant implications for the development of new cardiac regenerative therapies.
Collapse
|
34
|
Chen L, Pan X, Guo W, Gan Z, Zhang YH, Niu Z, Huang T, Cai YD. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. Genomics 2020; 112:2524-2534. [PMID: 32045671 DOI: 10.1016/j.ygeno.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
The development of embryonic cells involves several continuous stages, and some genes are related to embryogenesis. To date, few studies have systematically investigated changes in gene expression profiles during mammalian embryogenesis. In this study, a computational analysis using machine learning algorithms was performed on the gene expression profiles of mouse embryonic cells at seven stages. First, the profiles were analyzed through a powerful Monte Carlo feature selection method for the generation of a feature list. Second, increment feature selection was applied on the list by incorporating two classification algorithms: support vector machine (SVM) and repeated incremental pruning to produce error reduction (RIPPER). Through SVM, we extracted several latent gene biomarkers, indicating the stages of embryonic cells, and constructed an optimal SVM classifier that produced a nearly perfect classification of embryonic cells. Furthermore, some interesting rules were accessed by the RIPPER algorithm, suggesting different expression patterns for different stages.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - XiaoYong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| | - Wei Guo
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zijun Gan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
35
|
Hoshiba T, Yokoyama N. Decellularized extracellular matrices derived from cultured cells at stepwise myogenic stages for the regulation of myotube formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118658. [PMID: 31978502 DOI: 10.1016/j.bbamcr.2020.118658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
The regulation of stem cell differentiation is key for muscle tissue engineering and regenerative medicine. To this end, various substrates mimicking the native extracellular matrix (ECM) have been developed with consideration of the mechanical, topological, and biochemical properties. However, mimicking the biochemical properties of the native ECM is difficult due to its compositional complexity. To develop substrates that mimic the native ECM and its biochemical properties, decellularization is typically used. Here, substrates mimicking the native ECM at each myogenic stage are prepared as stepwise myogenesis-mimicking matrices via the in vitro myogenic culture of C2C12 myoblasts and decellularization. Cells adhered to the stepwise myogenesis-mimicking matrices at similar levels. However, the matrices derived from cells at the myogenic early stage suppressed cell growth and promoted myogenesis. This promotion of myogenesis was potentially due to the suppression of the activation of endogenous BMP signaling following the suppression of the expression of the myogenic-inhibitory factors, Id2 and Id3. Our stepwise myogenesis-mimicking matrices will be suitable ECM models for basic biological research and myogenesis of stem cells. Further, these matrices will provide insights that improve the efficacy of decellularized ECM for muscle repair.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Natsumi Yokoyama
- Yamagata Prefectural Yonezawa Kojokan Senior High School, 1101 Oh-aza, Sasano, Yonezawa, Yamagata 992-1443, Japan
| |
Collapse
|
36
|
Kelahmetoglu Y, Jannig PR, Cervenka I, Koch LG, Britton SL, Zhou J, Wang H, Robinson MM, Nair KS, Ruas JL. Comparative Analysis of Skeletal Muscle Transcriptional Signatures Associated With Aerobic Exercise Capacity or Response to Training in Humans and Rats. Front Endocrinol (Lausanne) 2020; 11:591476. [PMID: 33193103 PMCID: PMC7649134 DOI: 10.3389/fendo.2020.591476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Increasing exercise capacity promotes healthy aging and is strongly associated with lower mortality rates. In this study, we analyzed skeletal muscle transcriptomics coupled to exercise performance in humans and rats to dissect the inherent and response components of aerobic exercise capacity. Using rat models selected for intrinsic and acquired aerobic capacity, we determined that the high aerobic capacity muscle transcriptome is associated with pathways for tissue oxygenation and vascularization. Conversely, the low capacity muscle transcriptome indicated immune response and metabolic dysfunction. Low response to training was associated with an inflammatory signature and revealed a potential link to circadian rhythm. Next, we applied bioinformatics tools to predict potential secreted factors (myokines). The predicted secretome profile for exercise capacity highlighted circulatory factors involved in lipid metabolism and the exercise response secretome was associated with extracellular matrix remodelling. Lastly, we utilized human muscle mitochondrial respiration and transcriptomics data to explore molecular mediators of exercise capacity and response across species. Human transcriptome comparison highlighted epigenetic mechanisms linked to exercise capacity and the damage repair for response. Overall, our findings from this cross-species transcriptome analysis of exercise capacity and response establish a foundation for future studies on the mechanisms that link exercise and health.
Collapse
Affiliation(s)
- Yildiz Kelahmetoglu
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jiajia Zhou
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - K Sreekumaran Nair
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
- *Correspondence: Jorge L. Ruas,
| |
Collapse
|
37
|
Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-Gutierrez P, Imbalzano AN, Navea JG, Fazzio TG, Padilla-Benavides T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper. FASEB J 2019; 33:14556-14574. [PMID: 31690123 PMCID: PMC6894080 DOI: 10.1096/fj.201901606r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
Metal-regulatory transcription factor 1 (MTF1) is a conserved metal-binding transcription factor in eukaryotes that binds to conserved DNA sequence motifs, termed metal response elements. MTF1 responds to both metal excess and deprivation, protects cells from oxidative and hypoxic stresses, and is required for embryonic development in vertebrates. To examine the role for MTF1 in cell differentiation, we use multiple experimental strategies [including gene knockdown (KD) mediated by small hairpin RNA and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), immunofluorescence, chromatin immunopreciptation sequencing, subcellular fractionation, and atomic absorbance spectroscopy] and report a previously unappreciated role for MTF1 and copper (Cu) in cell differentiation. Upon initiation of myogenesis from primary myoblasts, both MTF1 expression and nuclear localization increased. Mtf1 KD impaired differentiation, whereas addition of nontoxic concentrations of Cu+-enhanced MTF1 expression and promoted myogenesis. Furthermore, we observed that Cu+ binds stoichiometrically to a C terminus tetra-cysteine of MTF1. MTF1 bound to chromatin at the promoter regions of myogenic genes, and Cu addition stimulated this binding. Of note, MTF1 formed a complex with myogenic differentiation (MYOD)1, the master transcriptional regulator of the myogenic lineage, at myogenic promoters. These findings uncover unexpected mechanisms by which Cu and MTF1 regulate gene expression during myoblast differentiation.-Tavera-Montañez, C., Hainer, S. J., Cangussu, D., Gordon, S. J. V., Xiao, Y., Reyes-Gutierrez, P., Imbalzano, A. N., Navea, J. G., Fazzio, T. G., Padilla-Benavides, T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper.
Collapse
Affiliation(s)
- Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sarah J. Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Juan G. Navea
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Thomas G. Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
38
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
39
|
Zamariolli M, Colovati M, Moysés-Oliveira M, Nunes N, Caires Dos Santos L, Alvarez Perez AB, Bragagnolo S, Melaragno MI. Rare single-nucleotide variants in oculo-auriculo-vertebral spectrum (OAVS). Mol Genet Genomic Med 2019; 7:e00959. [PMID: 31469246 PMCID: PMC6785430 DOI: 10.1002/mgg3.959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 01/13/2023] Open
Abstract
Background Oculo‐auriculo‐vertebral spectrum (OAVS) is a craniofacial developmental disorder that affects structures derived from the first and second pharyngeal arches. The clinically heterogeneous phenotype involves mandibular, oral, and ear development anomalies. Etiology is complex and poorly understood. Genetic factors have been associated, evidenced by chromosomal abnormalities affecting different genomic regions and genes. However, known pathogenic single‐nucleotide variants (SNVs) have only been identified in MYT1 in a restricted number of patients. Therefore, investigations of SNVs on candidate genes may reveal other pathogenic mechanisms. Methods In a cohort of 73 patients, coding and untranslated regions (UTR) of 10 candidate genes (CRKL, YPEL1, MAPK1, NKX3‐2, HMX1, MYT1, OTX2, GSC, PUF60, HOXA2) were sequenced. Rare SNVs were selected and in silico predictions were performed to ascertain pathogenicity. Likely pathogenic variants were validated by Sanger sequencing and heritability was assessed when possible. Results Four likely pathogenic variants in heterozygous state were identified in different patients. Two SNVs were located in the 5’UTR of YPEL1; one in the 3’UTR of CRKL and one in the 3’UTR of OTX2. Conclusion Our work described variants in candidate genes for OAVS and supported the genetic heterogeneity of the spectrum.
Collapse
Affiliation(s)
- Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mileny Colovati
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Moysés-Oliveira
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natália Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo Caires Dos Santos
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana B Alvarez Perez
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silvia Bragagnolo
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Okado H. Regulation of brain development and brain function by the transcriptional repressor RP58. Brain Res 2019; 1705:15-23. [PMID: 29501651 DOI: 10.1016/j.brainres.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 12/16/2022]
Abstract
The mechanisms regulating the formation of the cerebral cortex have been well studied. In the developing cortex, (also known Znf238, Zfp238, and Zbtb18), which encodes a sequence-specific transcriptional repressor, is expressed in glutamatergic projection neurons and progenitor cells. Targeted deletion of Rp58 leads to dysplasia of the neocortex and hippocampus, a reduction in the number of mature cortical neurons, and defects in laminar organization due to abnormal neuronal migration within the cortical plate. During late embryogenesis, Rp58-deficient mice have larger numbers of progenitor cells due to a delay in cell cycle exit. RP58 represses all four Id genes (Id1-Id4), which regulate cell cycle exit in the developing cerebral cortex, and is essential for transcriptional repression of Ngn2 and Rnd2, which regulate the multipolar-to-bipolar transition during neuronal migration independently of its role in cell cycle exit.
Collapse
Affiliation(s)
- Haruo Okado
- Tokyo Metropolitan Institute of Medical Science, Brain Development and Neural Degeneration, Neural Development Project, Japan.
| |
Collapse
|
41
|
Kita M, Nakae J, Kawano Y, Asahara H, Takemori H, Okado H, Itoh H. Zfp238 Regulates the Thermogenic Program in Cooperation with Foxo1. iScience 2019; 12:87-101. [PMID: 30677742 PMCID: PMC6352565 DOI: 10.1016/j.isci.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/25/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity has become an explicit public health concern because of its relevance to metabolic syndrome. Evidence points to the significance of beige adipocytes in regulating energy expenditure. Here, using yeast two-hybrid screening, we show that Zfp238 is a Foxo1 co-repressor and that adipose-tissue-specific ablation of Zfp238 (Adipo-Zfp238KO) in mice leads to obesity, decreased energy expenditure, and insulin resistance under normal chow diet. Adipo-Zfp238KO inhibits induction of Ucp1 expression in subcutaneous adipose tissue upon cold exposure or CL316243, but not in brown adipose tissue. Furthermore, knockdown of Zfp238 in 3T3-L1 cells decreases Ucp1 expression in response to cool incubation or forskolin significantly compared with control cells. In contrast, overexpression of Zfp238 in 3T3-L1 cells significantly increases Ucp1 expression in response to forskolin. Finally, double knockdown of both Zfp238 and Foxo1 normalizes Ucp1 induction. These data suggest that Zfp238 in adipose tissue regulates the thermogenic program in cooperation with Foxo1. Zfp238 is a Foxo1 co-repressor Zfp238 deficiency in adipocyte leads to obesity and decreased energy expenditure Knockdown of Zfp238 in 3T3-L1 cells decreases Ucp1 induction Double knockdown of both Zfp238 and Foxo1 normalizes Ucp1 induction
Collapse
Affiliation(s)
- Motoko Kita
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Nakae
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Physiology, International University of Health and Welfare School of Medicine, Narita 286-8686, Japan.
| | - Yoshinaga Kawano
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Haruo Okado
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-0057, Japan
| | - Hiroshi Itoh
- Navigation Medicine of Kidney and Metabolism, Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
42
|
Nakamichi R, Kataoka K, Asahara H. Essential role of Mohawk for tenogenic tissue homeostasis including spinal disc and periodontal ligament. Mod Rheumatol 2018; 28:933-940. [PMID: 29667905 PMCID: PMC6511339 DOI: 10.1080/14397595.2018.1466644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
Abstract
Tendons and ligaments play essential roles in connecting muscle and bone and stabilizing the connections between bones. The damage to tendons and ligaments caused by aging, injury, and arthritis induces the dysfunction of the musculoskeletal system and reduces the quality of life. Current therapy for damaged tendons and ligaments depends on self-repair; however, it is difficult to reconstruct normal tissue. Regeneration therapy for tendons and ligaments has not been achieved, partly because the mechanism, cell biology, and pathophysiology of tendon and ligament development remain unclear. This review summarizes the role of the transcription factor, Mohawk, which controls tendon and ligament cell differentiation, in the maintenance of cell homeostasis, as well as its function in disease and the possibility of new therapeutic approaches.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Kensuke Kataoka
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
43
|
Wang J, Yuan X, Ye S, Huang S, He Y, Zhang H, Li J, Zhang X, Zhang Z. Genome wide association study on feed conversion ratio using imputed sequence data in chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:494-500. [PMID: 30381748 PMCID: PMC6409457 DOI: 10.5713/ajas.18.0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/20/2018] [Indexed: 01/11/2023]
Abstract
Objective Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genome-wide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. Methods A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. Results After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. Conclusion Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits.
Collapse
Affiliation(s)
- Jiaying Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuwen Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yingting He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
44
|
Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism. Sci Rep 2018; 8:12792. [PMID: 30143714 PMCID: PMC6109157 DOI: 10.1038/s41598-018-31090-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/10/2018] [Indexed: 12/25/2022] Open
Abstract
The mitogen-induced D-type cyclins (D1, D2 and D3) are regulatory subunits of the cyclin-dependent kinases CDK4 and CDK6 that drive progression through the G1 phase of the cell cycle. In skeletal muscle, cyclin D3 plays a unique function in controlling the proliferation/differentiation balance of myogenic progenitor cells. Here, we show that cyclin D3 also performs a novel function, regulating muscle fiber type-specific gene expression. Mice lacking cyclin D3 display an increased number of myofibers with higher oxidative capacity in fast-twitch muscle groups, primarily composed of myofibers that utilize glycolytic metabolism. The remodeling of myofibers toward a slower, more oxidative phenotype is accompanied by enhanced running endurance and increased energy expenditure and fatty acid oxidation. In addition, gene expression profiling of cyclin D3-/- muscle reveals the upregulation of genes encoding proteins involved in the regulation of contractile function and metabolic markers specifically expressed in slow-twitch and fast-oxidative myofibers, many of which are targets of MEF2 and/or NFAT transcription factors. Furthermore, cyclin D3 can repress the calcineurin- or MEF2-dependent activation of a slow fiber-specific promoter in cultured muscle cells. These data suggest that cyclin D3 regulates muscle fiber type phenotype, and consequently whole body metabolism, by antagonizing the activity of MEF2 and/or NFAT.
Collapse
|
45
|
Honda T, Inui M. PDZRN3 regulates differentiation of myoblasts into myotubes through transcriptional and posttranslational control of Id2. J Cell Physiol 2018; 234:2963-2972. [PMID: 30066954 DOI: 10.1002/jcp.27113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
PDZRN3 (also known as LNX3) is a member of the PDZ domain-containing RING finger protein family. We previously showed that PDZRN3 is essential for differentiation of myoblasts into myotubes and that depletion of PDZRN3 inhibits such differentiation downstream of the upregulation of myogenin, a basic helix-loop-helix (bHLH) transcription factor required for completion of the differentiation process. However, the mechanism by which PDZRN3 controls this process has remained unclear. Myogenin is rendered active during the late stage of myogenic differentiation by the downregulation of Id2, a negative regulator of bHLH transcription factors. We now show that depletion of PDZRN3 inhibits the differentiation of C2C12 cells by inducing the upregulation of Id2 and thereby delaying its downregulation. Knockdown of Id2 by RNA interference restores the differentiation of PDZRN3-depleted cells. Luciferase reporter assays revealed that a putative binding site for STAT5b in the Id2 gene promoter is required for the upregulation of Id2 expression by PDZRN3 depletion. In addition, the amount of phosphorylated Id2 was reduced and that of the nonphosphorylated protein concomitantly increased in PDZRN3-depleted cells, with the inhibitory effect of Id2 on bHLH transcription factors having previously been shown to be attenuated by phosphorylation of Id2 catalyzed by the complex of Cdk2 with cyclin A2 or E1. Indeed, the expression of cyclin A2, but not that of cyclin E1, was reduced in PDZRN3-depleted cells. Our results thus indicate that PDZRN3 plays a key role in the differentiation of myoblasts into myotubes by regulating Id2 at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
46
|
Kasai M, Ishida R, Nakahara K, Okumura K, Aoki K. Mesenchymal cell differentiation and diseases: involvement of translin/TRAX complexes and associated proteins. Ann N Y Acad Sci 2018; 1421:37-45. [PMID: 29740830 DOI: 10.1111/nyas.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022]
Abstract
Translin and translin-associated factor X (translin/TRAX) proteins have been implicated in a variety of cellular activities central to nucleic acid metabolism. Accumulating evidence indicates that translin/TRAX complexes participate in processes ensuring the replication of DNA, as well as cell division. Significant progress has been made in understanding the roles of translin/TRAX complexes in RNA metabolism, such as through RNA-induced silencing complex activation or the microRNA depletion that occurs in Dicer deficiency. At the cellular level, translin-deficient (Tsn-/- ) mice display delayed endochondral ossification or progressive bone marrow failure with ectopic osteogenesis and adipogenesis, suggesting involvement in mesenchymal cell differentiation. In this review, we summarize the molecular and cellular functions of translin homo-octamer and translin/TRAX hetero-octamer. Finally, we discuss the multifaceted roles of translin, TRAX, and associated proteins in the healthy and disease states.
Collapse
Affiliation(s)
- Masataka Kasai
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Ishida
- Center for Stem Cell and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakahara
- National Institution for Academic Degrees and Quality Enhancement of Higher Education, Tokyo, Japan
| | - Ko Okumura
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan
| | - Katsunori Aoki
- Occupational Health Department, Sony Corporate Service Corporation, Kanagawa, Japan
| |
Collapse
|
47
|
Boughner JC, van Eede MC, Spring S, Yu LX, Rostampour N, Henkelman RM. P63 expression plays a role in developmental rate, embryo size, and local morphogenesis. Dev Dyn 2018; 247:779-787. [DOI: 10.1002/dvdy.24622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Julia C. Boughner
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | | | - Shoshana Spring
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Lisa X. Yu
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
48
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
49
|
Tanaka M. Alterations in anterior-posterior patterning and its accompanying changes along the proximal-distal axis during the fin-to-limb transition. Genesis 2017; 56. [PMID: 28834131 DOI: 10.1002/dvg.23053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/07/2022]
Abstract
The evolution from fins to limbs was one of the most successful innovations for vertebrates, allowing them to vastly expand their behaviors and habitats. Fossil records suggest that morphological changes occurred not only along the proximal-distal axis included appearance of the autopod, but also occurred along the anterior-posterior axis included reductions in the size and number of basal bones and digits. This review focuses on recent progress in developmental and genetic studies aimed at elucidating the mechanisms underlying alteration of anterior-posterior patterning and its accompanying changes along the proximal-distal axis during the fin-to-limb transition.
Collapse
Affiliation(s)
- Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
50
|
Hautefort A, Chesné J, Preussner J, Pullamsetti SS, Tost J, Looso M, Antigny F, Girerd B, Riou M, Eddahibi S, Deleuze JF, Seeger W, Fadel E, Simonneau G, Montani D, Humbert M, Perros F. Pulmonary endothelial cell DNA methylation signature in pulmonary arterial hypertension. Oncotarget 2017; 8:52995-53016. [PMID: 28881789 PMCID: PMC5581088 DOI: 10.18632/oncotarget.18031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/09/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and incurable pulmonary vascular disease. One of the primary origins of PAH is pulmonary endothelial dysfunction leading to vasoconstriction, aberrant angiogenesis and smooth muscle cell proliferation, endothelial-to-mesenchymal transition, thrombosis and inflammation. Our objective was to study the epigenetic variations in pulmonary endothelial cells (PEC) through a specific pattern of DNA methylation. DNA was extracted from cultured PEC from idiopathic PAH (n = 11), heritable PAH (n = 10) and controls (n = 18). DNA methylation was assessed using the Illumina HumanMethylation450 Assay. After normalization, samples and probes were clustered according to their methylation profile. Differential clusters were functionally analyzed using bioinformatics tools. Unsupervised hierarchical clustering allowed the identification of two clusters of probes that discriminates controls and PAH patients. Among 147 differential methylated promoters, 46 promoters coding for proteins or miRNAs were related to lipid metabolism. Top 10 up and down-regulated genes were involved in lipid transport including ABCA1, ABCB4, ADIPOQ, miR-26A, BCL2L11. NextBio meta-analysis suggested a contribution of ABCA1 in PAH. We confirmed ABCA1 mRNA and protein downregulation specifically in PAH PEC by qPCR and immunohistochemistry and made the proof-of-concept in an experimental model of the disease that its targeting may offer novel therapeutic options. In conclusion, DNA methylation analysis identifies a set of genes mainly involved in lipid transport pathway which could be relevant to PAH pathophysiology.
Collapse
Affiliation(s)
- Aurélie Hautefort
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Julie Chesné
- UMR_S 1087 CNRS UMR_6291, Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - Jens Preussner
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Soni S Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Jorg Tost
- Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Mario Looso
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Fabrice Antigny
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Barbara Girerd
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marianne Riou
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Saadia Eddahibi
- INSERM U1046, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France
| | | | - Werner Seeger
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Elie Fadel
- Hôpital Marie Lannelongue, Service de Chirurgie Thoracique et Vasculaire, Le Plessis Robinson, France
| | - Gerald Simonneau
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|