1
|
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther 2025; 10:170. [PMID: 40383803 PMCID: PMC12086256 DOI: 10.1038/s41392-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is a critical regulator of vasculogenesis, angiogenesis, and lymphangiogenesis, processes that are vital for the development of vascular and lymphatic systems, tissue repair, and the maintenance of homeostasis. VEGF ligands and their receptors orchestrate endothelial cell proliferation, migration, and survival, playing a pivotal role in dynamic vascular remodeling. Dysregulated VEGF signaling drives diverse pathological conditions, including tumor angiogenesis, cardiovascular diseases, and ocular disorders. Excessive VEGF activity promotes tumor growth, invasion, and metastasis, while insufficient signaling contributes to impaired wound healing and ischemic diseases. VEGF-targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have revolutionized the treatment of diseases involving pathological angiogenesis, offering significant clinical benefits in oncology and ophthalmology. These therapies inhibit angiogenesis and slow disease progression, but they often face challenges such as therapeutic resistance, suboptimal efficacy, and adverse effects. To further explore these issues, this review provides a comprehensive overview of VEGF ligands and receptors, elucidating their molecular mechanisms and regulatory networks. It evaluates the latest progress in VEGF-targeted therapies and examines strategies to address current challenges, such as resistance mechanisms. Moreover, the discussion includes emerging therapeutic strategies such as innovative drug delivery systems and combination therapies, highlighting the continuous efforts to improve the effectiveness and safety of VEGF-targeted treatments. This review highlights the translational potential of recent discoveries in VEGF biology for improving patient outcomes.
Collapse
Affiliation(s)
- Chunsik Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea.
| | - Myung-Jin Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea
| | - Anil Kumar
- Center for Research and Innovations, Adichunchanagiri University, Mandya, Karnataka, India
| | - Han-Woong Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Chen C, Chen Z, Luo R, Tu W, Long M, Liang M, Cheng M, Wang Z, Huang K, Wang C. Endothelial USP11 drives VEGFR2 signaling and angiogenesis via PRDX2/c-MYC axis. Angiogenesis 2025; 28:23. [PMID: 40199774 DOI: 10.1007/s10456-025-09976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/16/2025] [Indexed: 04/10/2025]
Abstract
Angiogenesis is a crucial component of various physiological and pathological processes, including embryonic development, ischemic diseases, and tumor progression. Recent studies have highlighted the importance of ubiquitinases in angiogenesis. In this study, we utilized RNA sequencing data of the mouse retinal development model from the GEO database to identify the potential proangiogenic deubiquitinases and found USP11 was significantly upregulated. Although USP11 is known to regulate cell survival, DNA repair, and oxidative stress in cancers and ischemic conditions, its direct role in endothelial angiogenesis remains poorly understood. Here, we demonstrated that USP11 expression correlates with key pro-angiogenic genes and is significantly upregulated at both mRNA and protein levels in VEGF-treated human umbilical vein endothelial cells (HUVECs). USP11 knockout markedly inhibited angiogenesis both in vivo and in vitro, whereas USP11 overexpression promoted angiogenesis. Mechanistically, USP11 binds to PRDX2, facilitating the removal of its K63-linked polyubiquitination, which promotes its translocation into the nucleus. This facilitates the concurrent nuclear translocation of c-MYC, a PRDX2 interactor, which subsequently enhances the transcription of KDR (encoding VEGFR2) and activates the VEGFR2 signaling pathway. Our findings suggest that USP11 promotes angiogenesis by upregulating VEGFR2 expression through the PRDX2/c-MYC pathway, indicating that USP11 could serve as a potential target for clinical interventions in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Can Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilong Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruijie Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wanheng Tu
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Liyuan Cardiovascular Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minwen Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minglu Liang
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cheng Wang
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Feng Q, Yu C, Guo L, Liu X, Lin Y, Li C, Zhang W, Zong Y, Yang W, Ma Y, Wang R, Li L, Pei Y, Wang H, Liu D, Niu H, Han M, Nie L. DCBLD1 Modulates Angiogenesis by Regulation of the VEGFR-2 Endocytosis in Endothelial Cells. Arterioscler Thromb Vasc Biol 2025; 45:198-217. [PMID: 39665138 DOI: 10.1161/atvbaha.123.320443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Unwanted angiogenesis is involved in the progression of various malignant tumors and cardiovascular diseases, and the factors that regulate angiogenesis are potential therapeutic targets. We tested the hypothesis that DCBLD1 (discoidin, CUB, and LCCL domain-containing protein 1) is a coreceptor of VEGFR-2 (vascular endothelial growth factor receptor-2) and modulates angiogenesis in endothelial cells. METHODS A carotid artery ligation model and retinal angiogenesis assay were used to study angiogenesis using globe knockout or endothelial cell-specific conditional Dcbld1 knockout mice in vivo. Immunoblotting, immunofluorescence staining, plasma membrane subfraction isolation, Coimmunoprecipitation, and mass spectrum assay were performed to clarify the molecular mechanisms. RESULTS Loss of Dcbld1 impaired VEGF (vascular endothelial growth factor) response and inhibited VEGF-induced endothelial cell proliferation and migration. Dcbld1 deletion interfered with adult and developmental angiogenesis. Mechanistically, DCBLD1 bound to VEGFR-2 and regulated the formation of VEGFR-2 complex with negative regulators: protein tyrosine phosphatases, E3 ubiquitin ligases (neuronal precursor cell-expressed developmentally downregulated gene 4, Nedd4 and c-Casitas B-lineage lymphoma, c-Cbl), and also Dcbld1 knockdown promoted lysosome-mediated VEGFR-2 degradation in endothelial cells. CONCLUSION These findings demonstrated the essential role of endothelial DCBLD1 in regulating VEGF signaling and provided evidence that DCBLD1 promotes VEGF-induced angiogenesis by limiting the dephosphorylation, ubiquitination, and lysosome degradation after VEGFR-2 endocytosis. We proposed that endothelial DCBLD1 is a potential therapeutic target for ischemic cardiovascular diseases by the modulation of angiogenesis through regulation of the VEGFR-2 endocytosis.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yuehua Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Runtao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lijing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yunli Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Huifang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Demin Liu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China (D.L.)
| | - Honglin Niu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei Province, China (H.N.)
| | - Mei Han
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| |
Collapse
|
4
|
Pal S, Su Y, Nwadozi E, Claesson-Welsh L, Richards M. Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions. Angiogenesis 2024; 28:7. [PMID: 39668325 PMCID: PMC11638295 DOI: 10.1007/s10456-024-09963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Neuropilin-1 (NRP1) regulates endothelial cell (EC) biology through modulation of vascular endothelial growth factor receptor 2 (VEGFR2) signalling by presenting VEGFA to VEGFR2. How NRP1 impacts VEGFA-mediated vascular hyperpermeability has however remained unresolved, described as exerting either a positive or a passive function. Using EC-specific Nrp1 knock-out mice, we discover that EC-expressed NRP1 exerts an organotypic role. In the ear skin, VEGFA/VEGFR2-mediated vascular leakage was increased following loss of EC NRP1, implicating NRP1 in negative regulation of VEGFR2 signalling. In contrast, in the back skin and trachea, loss of EC NRP1 decreased vascular leakage. In accordance, phosphorylation of vascular endothelial (VE)-cadherin was increased in the ear skin but suppressed in the back skin of Nrp1 iECKO mice. NRP1 expressed on perivascular cells has been shown to impact VEGF-mediated VEGFR2 signalling. Importantly, expression of NRP1 on perivascular cells was more abundant in the ear skin than in the back skin. Global loss of NRP1 resulted in suppressed VEGFA-induced vascular leakage in the ear skin, implicating perivascular NRP1 as a juxtacrine co-receptor of VEGFA in this compartment. Altogether, we demonstrate that perivascular NRP1 is an active participant in EC VEGFA/VEGFR2 signalling and acts as an organotypic modifier of EC biology.
Collapse
Affiliation(s)
- Sagnik Pal
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yangyang Su
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis AE, Pham VN, Saric A, Jain A, Yin Y, Castranova D, Melani M, Fujita M, Grainger S, Bonifacino JS, Weinstein BM, Stratman AN. Angiogenesis is limited by LIC1-mediated lysosomal trafficking. Angiogenesis 2024; 27:943-962. [PMID: 39356418 PMCID: PMC11653708 DOI: 10.1007/s10456-024-09951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.
Collapse
Affiliation(s)
- Dymonn Johnson
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Colijn
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Jahmiera Richee
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Yano
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Burns
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew E Davis
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Van N Pham
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amra Saric
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akansha Jain
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Yin
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Castranova
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mariana Melani
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Misato Fujita
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Kanagawa University, Kanagawa, 221-8686, Japan
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Juan S Bonifacino
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Amber N Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Li Z, Yao A, Yang X, Luo S, Wu Z, Yu Y. NRP1 promotes osteo/odontogenic differentiation via shroom3 in dental pulp stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119795. [PMID: 39033931 DOI: 10.1016/j.bbamcr.2024.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Neuropilin-1 (NRP1) is a single transmembrane glycoprotein involved in a variety of physiological events. However, the exact mechanisms by which NRP1 regulates dental pulp stem cells (DPSCs) to differentiate toward an osteo/odontogenic phenotype are poorly understood. Here, we determined the significantly increased expression of full-length NRP1 and glycosaminoglycan (GAG)-modified NRP1 during osteo/odontogenesis in DPSCs. NRP1 was confirmed to promote alkaline phosphatase (ALP) activity, mineralized nodule deposition, protein and mRNA expression of Runx2, DSPP and DMP1 in DPSCs via the loss-of-function and gain-of-function approaches. Further, a non-GAG-modified NRP1 mutant (NRP1 S612A) was generated and the suppression of osteo/odontogenic differentiation was observed in the NRP1 S612A overexpression cells. Knockdown of the adaptor protein shroom3 resulted in the inhibition of osteo/odontogenesis. The protein-protein interaction network, the protein-protein docking and confocal analyses indicated the interactions between NRP1 and shroom3. Furthermore, immunoprecipitation followed by western analysis confirmed the binding of NRP1 to shroom3, but overexpression of NRP1 S612A greatly influenced the recruitment of shroom3 by NRP1. These results provide strong evidence that NRP1 is a critical regulator for osteo/odontogenesis through interacting with shroom3. Moreover, our results indicate that NRP1 S612A attenuates osteo/odontogenesis, suggesting that GAG modification is essential for NRP1 in DPSCs.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Aokang Yao
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Xinyue Yang
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Sheng Luo
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Zhuoyang Wu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Yaqiong Yu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China.
| |
Collapse
|
7
|
Liu T, Zhang J, Chang F, Sun M, He J, Ai D. Role of endothelial Raptor in abnormal arteriogenesis after lower limb ischaemia in type 2 diabetes. Cardiovasc Res 2024; 120:1218-1234. [PMID: 38722901 DOI: 10.1093/cvr/cvae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Proper arteriogenesis after tissue ischaemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type 2 diabetes mellitus (T2DM). Raptor is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischaemia-induced arteriogenesis during T2DM. METHODS AND RESULTS Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischaemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signalling in endothelial cells (ECs) and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that EC-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice. CONCLUSION Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischaemia-induced arteriogenesis in T2DM by mediating VEGFR2 signalling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Jiachen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Fangyuan Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Mengyu Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| |
Collapse
|
8
|
Stewen J, Kruse K, Godoi-Filip AT, Zenia, Jeong HW, Adams S, Berkenfeld F, Stehling M, Red-Horse K, Adams RH, Pitulescu ME. Eph-ephrin signaling couples endothelial cell sorting and arterial specification. Nat Commun 2024; 15:2539. [PMID: 38570531 PMCID: PMC10991410 DOI: 10.1038/s41467-024-46300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024] Open
Abstract
Cell segregation allows the compartmentalization of cells with similar fates during morphogenesis, which can be enhanced by cell fate plasticity in response to local molecular and biomechanical cues. Endothelial tip cells in the growing retina, which lead vessel sprouts, give rise to arterial endothelial cells and thereby mediate arterial growth. Here, we have combined cell type-specific and inducible mouse genetics, flow experiments in vitro, single-cell RNA sequencing and biochemistry to show that the balance between ephrin-B2 and its receptor EphB4 is critical for arterial specification, cell sorting and arteriovenous patterning. At the molecular level, elevated ephrin-B2 function after loss of EphB4 enhances signaling responses by the Notch pathway, VEGF and the transcription factor Dach1, which is influenced by endothelial shear stress. Our findings reveal how Eph-ephrin interactions integrate cell segregation and arteriovenous specification in the vasculature, which has potential relevance for human vascular malformations caused by EPHB4 mutations.
Collapse
Affiliation(s)
- Jonas Stewen
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Anca T Godoi-Filip
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Zenia
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
- Sequencing Core Facility, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Frank Berkenfeld
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany.
| | - Mara E Pitulescu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany.
| |
Collapse
|
9
|
Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis AE, Pham VN, Saric A, Jain A, Yin Y, Castranova D, Melani M, Fujita M, Grainger S, Bonifacino JS, Weinstein BM, Stratman AN. Regulation of angiogenesis by endocytic trafficking mediated by cytoplasmic dynein 1 light intermediate chain 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587559. [PMID: 38903077 PMCID: PMC11188074 DOI: 10.1101/2024.04.01.587559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.
Collapse
Affiliation(s)
- Dymonn Johnson
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Sarah Colijn
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Jahmiera Richee
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Joseph Yano
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Margaret Burns
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Andrew E. Davis
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Van N. Pham
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Amra Saric
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akansha Jain
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Ying Yin
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Daniel Castranova
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Mariana Melani
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Misato Fujita
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Kanagawa University, Kanagawa, 221-8686, Japan
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Brant M. Weinstein
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Amber N. Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
10
|
Guo GX, Wu KY, Zhang XY, Lai FX, Tsim KWK, Qin QW, Hu WH. The extract of Curcumae Longae Rhizoma suppresses angiogenesis via VEGF-induced PI3K/Akt-eNOS-NO pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116299. [PMID: 36842721 DOI: 10.1016/j.jep.2023.116299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumae Longae Rhizoma (CLR) is a safe natural herbal medicine, and which has been widely used for centuries as functional food and health products, but its effects on angiogenesis and related underlying mechanism remain unclear. AIM OF THE STUDY The abnormal angiogenesis is closely related with various diseases, and therefore the precise control of angiogenesis is of great importance. The well-known angiogenic factor, vascular endothelial growth factor (VEGF), mediates angiogenesis and induces multiple signalling pathways via binding to VEGF receptor (VEGFR). The attenuation of VEGF-triggered angiogenic-related signalling pathways may relieve various diseases through suppression of angiogenesis. Here, we aimed to elucidate that CLR extract could exert striking anti-angiogenic activities both in vitro and in vivo. MATERIALS AND METHODS The viability of human umbilical vascular endothelial cell (HUVEC) was examined by LDH and MTT assays. Migrative and invasive ability of the endothelial cells were independently evaluated by wound healing and transwell assays. The activities of CLR extract on in vitro angiogenesis was tested by tube formation assay. In vivo vascularization was determined by using zebrafish embryo model in the present of CLR extract. Western blotting was applied to determine the phosphorylated levels of VEGFR2, PI3K, AKT and eNOS. Besides, the levels of nitric oxide (NO) and reactive oxygen species (ROS) were separately evaluated by Griess assay and 2'7'-dichlorofluorescein diacetate reaction. In addition, the cell migrative ability of cancer cell was estimated by using cultured human colon carcinoma cells (HT-29 cell line), and immunofluorescence assay was applied to evaluate the effect of CLR extract on nuclear translocation of NF-κB p65 subunit in the VEGF-treated HT-29 cultures. RESULTS CLR extract significantly suppressed a series of VEGF-mediated angiogenic responses, including endothelial cell proliferation, migration, invasion, and tube formation. Moreover, CLR extract reduced in vivo sub-intestinal vessel formation in zebrafish embryo model. Mechanistically, the extract of CLR attenuated the VEGF-triggered signalling, as demonstrated by decreased level of phosphorylated VEGFR2 and subsequently inactivated its downstream regulators, e.g. phospho-PI3K, phospho-AKT and phospho-eNOS. The production of NO and formation of ROS were markedly inhibited in HUVECs. Furthermore, CLR extract suppressed cell migration and NF-κB translocation in cultured HT-29 cells. CONCLUSIONS These preclinical findings demonstrate that the extract of CLR remarkably attenuates angiogenesis and which has great potential as a natural drug candidate with excellent anti-angiogenic activity.
Collapse
Affiliation(s)
- Guo-Xia Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Ke-Yue Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiao-Yong Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Fu-Xiang Lai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Karl Wah-Keung Tsim
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Wei-Hui Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| |
Collapse
|
11
|
Luo J, Lu C, Chen Y, Wu X, Zhu C, Cui W, Yu S, Li N, Pan Y, Zhao W, Yang Q, Yang X. Nuclear translocation of cGAS orchestrates VEGF-A-mediated angiogenesis. Cell Rep 2023; 42:112328. [PMID: 37027305 DOI: 10.1016/j.celrep.2023.112328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) senses cytosolic incoming DNA and consequently activates stimulator of interferon response cGAMP interactor 1 (STING) to mount immune response. Here, we show nuclear cGAS could regulate VEGF-A-mediated angiogenesis in an immune-independent manner. We found VEGF-A stimulation induces cGAS nuclear translocation via importin-β pathway. Moreover, nuclear cGAS subsequently regulates miR-212-5p-ARPC3 cascade to modulate VEGF-A-mediated angiogenesis through affecting cytoskeletal dynamics and VEGFR2 trafficking from trans-Golgi network (TGN) to plasma membrane via a regulatory feedback loop. In contrast, cGAS deficiency remarkably impairs VEGF-A-mediated angiogenesis in vivo and in vitro. Furthermore, we found strong association between the expression of nuclear cGAS and VEGF-A, and the malignancy and prognosis in malignant glioma, suggesting that nuclear cGAS might play important roles in human pathology. Collectively, our findings illustrated the function of cGAS in angiogenesis other than immune surveillance, which might be a potential therapeutic target for pathological angiogenesis-related diseases.
Collapse
Affiliation(s)
- Juanjuan Luo
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chunjiao Lu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yang Chen
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xuewei Wu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chenchen Zhu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wei Cui
- College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shicang Yu
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ningning Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yihang Pan
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Weijiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingkai Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xiaojun Yang
- Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
12
|
Cho HD, Nhàn NTT, Zhou C, Tu K, Nguyen T, Sarich NA, Yamada KH. KIF13B mediates VEGFR2 recycling to modulate vascular permeability. Cell Mol Life Sci 2023; 80:91. [PMID: 36928770 PMCID: PMC10165967 DOI: 10.1007/s00018-023-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Excessive vascular endothelial growth factor-A (VEGF-A) signaling induces vascular leakage and angiogenesis in diseases. VEGFR2 trafficking to the cell surface, mediated by kinesin-3 family protein KIF13B, is essential to respond to VEGF-A when inducing angiogenesis. However, the precise mechanism of how KIF13B regulates VEGF-induced signaling and its effects on endothelial permeability is largely unknown. Here we show that KIF13B-mediated recycling of internalized VEGFR2 through Rab11-positive recycling vesicle regulates endothelial permeability. Phosphorylated VEGFR2 at the cell-cell junction was internalized and associated with KIF13B in Rab5-positive early endosomes. KIF13B mediated VEGFR2 recycling through Rab11-positive recycling vesicle. Inhibition of the function of KIF13B attenuated phosphorylation of VEGFR2 at Y951, SRC at Y416, and VE-cadherin at Y685, which are necessary for endothelial permeability. Failure of VEGFR2 trafficking to the cell surface induced accumulation and degradation of VEGFR2 in lysosomes. Furthermore, in the animal model of the blinding eye disease wet age-related macular degeneration (AMD), inhibition of KIF13B-mediated VEGFR2 trafficking also mitigated vascular leakage. Thus, the present results identify the fundamental role of VEGFR2 recycling to the cell surface in mediating vascular permeability, which suggests a promising strategy for mitigating vascular leakage associated with inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Food and Nutrition, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Nguyễn Thị Thanh Nhàn
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Christopher Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kayeman Tu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Ramchandran R. Endothelial cells and their role in the vasculature: Past, present and future. Front Cell Dev Biol 2022; 10:994133. [PMID: 36187473 PMCID: PMC9520988 DOI: 10.3389/fcell.2022.994133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
|
14
|
Field CJ, Perez AM, Samet T, Ricles V, Iovine MK, Lowe-Krentz LJ. Involvement of transmembrane protein 184a during angiogenesis in zebrafish embryos. Front Physiol 2022; 13:845407. [PMID: 36117693 PMCID: PMC9478037 DOI: 10.3389/fphys.2022.845407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis, the outgrowth of new blood vessels from existing vasculature, is critical during development, tissue formation, and wound healing. In response to vascular endothelial growth factors (VEGFs), endothelial cells are activated to proliferate and move towards the signal, extending the vessel. These events are directed by VEGF-VEGF receptor (Vegfr2) signal transduction, which in turn is modulated by heparan sulfate proteoglycans (HSPGs). HSPGs are glycoproteins covalently attached to HS glycosaminoglycan chains. Transmembrane protein 184a (Tmem184a) has been recently identified as a heparin receptor, which is believed to bind heparan sulfate chains in vivo. Therefore, Tmem184a has the potential to fine-tune interactions between VEGF and HS, modulating Vegfr2-dependent angiogenesis. The function of Tmem184a has been investigated in the regenerating zebrafish caudal fin, but its role has yet to be evaluated during developmental angiogenesis. Here we provide insights into how Tmem184a contributes to the proper formation of the vasculature in zebrafish embryos. First, we find that knockdown of Tmem184a causes a reduction in the number of intact intersegmental vessels (ISVs) in the zebrafish embryo. This phenotype mimics that of vegfr2b knockout mutants, which have previously been shown to exhibit severe defects in ISV development. We then test the importance of HS interactions by removing the binding domain within the Tmem184a protein, which has a negative effect on angiogenesis. Tmem184a is found to act synergistically with Vegfr2b, indicating that the two gene products function in a common pathway to modulate angiogenesis. Moreover, we find that knockdown of Tmem184a leads to an increase in endothelial cell proliferation but a decrease in the amount of VE-cadherin present. Together, these findings suggest that Tmem184a is necessary for ISVs to organize into mature, complete vessels.
Collapse
|
15
|
Saikia Q, Reeve H, Alzahrani A, Critchley WR, Zeqiraj E, Divan A, Harrison MA, Ponnambalam S. VEGFR endocytosis: Implications for angiogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 194:109-139. [PMID: 36631189 DOI: 10.1016/bs.pmbts.2022.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The binding of vascular endothelial growth factor (VEGF) superfamily to VEGF receptor tyrosine kinases (VEGFRs) and co-receptors regulates vasculogenesis, angiogenesis and lymphangiogenesis. A recurring theme is that dysfunction in VEGF signaling promotes pathological angiogenesis, an important feature of cancer and pro-inflammatory disease states. Endocytosis of basal (resting) or activated VEGFRs facilitates signal attenuation and endothelial quiescence. However, increasing evidence suggest that activated VEGFRs can continue to signal from intracellular compartments such as endosomes. In this chapter, we focus on the evolving link between VEGFR endocytosis, signaling and turnover and the implications for angiogenesis. There is much interest in how such understanding of VEGFR dynamics can be harnessed therapeutically for a wide range of human disease states.
Collapse
Affiliation(s)
- Queen Saikia
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Reeve
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Areej Alzahrani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - William R Critchley
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Elton Zeqiraj
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Aysha Divan
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Michael A Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
16
|
Vega-Lugo J, da Rocha-Azevedo B, Dasgupta A, Jaqaman K. Analysis of conditional colocalization relationships and hierarchies in three-color microscopy images. J Cell Biol 2022; 221:e202106129. [PMID: 35552363 PMCID: PMC9111757 DOI: 10.1083/jcb.202106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Colocalization analysis of multicolor microscopy images is a cornerstone approach in cell biology. It provides information on the localization of molecules within subcellular compartments and allows the interrogation of known molecular interactions in their cellular context. However, almost all colocalization analyses are designed for two-color images, limiting the type of information that they reveal. Here, we describe an approach, termed "conditional colocalization analysis," for analyzing the colocalization relationships between three molecular entities in three-color microscopy images. Going beyond the question of whether colocalization is present or not, it addresses the question of whether the colocalization between two entities is influenced, positively or negatively, by their colocalization with a third entity. We benchmark the approach and showcase its application to investigate receptor-downstream adaptor colocalization relationships in the context of functionally relevant plasma membrane locations. The software for conditional colocalization analysis is available at https://github.com/kjaqaman/conditionalColoc.
Collapse
Affiliation(s)
- Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
17
|
Corti F, Ristori E, Rivera-Molina F, Toomre D, Zhang J, Mihailovic J, Zhuang ZW, Simons M. Syndecan-2 selectively regulates VEGF-induced vascular permeability. NATURE CARDIOVASCULAR RESEARCH 2022; 1:518-528. [PMID: 36212522 PMCID: PMC9544384 DOI: 10.1038/s44161-022-00064-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/06/2022] [Indexed: 02/03/2023]
Abstract
Vascular endothelial growth factor (VEGF)- driven increase in vascular permeability is a key feature of many disease states associated with inflammation and ischemic injury, contributing significantly to morbidity and mortality in these settings. Despite its importance, no specific regulators that preferentially control VEGF-dependent increase in permeability versus its other biological activities, have been identified. Here we report that a proteoglycan Syndecan-2 (Sdc2) regulates the interaction between a transmembrane phosphatase DEP1 and VEGFR2 by controlling cell surface levels of DEP1. In the absence of Sdc2 or the presence of an antibody that blocks Sdc2-DEP1 interaction, increased plasma membrane DEP1 levels promote selective dephosphorylation of the VEGFR2 Y951 site that is involved in permeability control. Either an endothelial-specific Sdc2 deletion or a treatment with an anti-Sdc2 antibody result in a highly significant reduction in stroke size due to a decrease in intracerebral edema.
Collapse
Affiliation(s)
- F Corti
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - E Ristori
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - F Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - D Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - J Zhang
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - J Mihailovic
- Department of Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Z W Zhuang
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - M Simons
- Yale Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
18
|
Functional Characterization of the MYO6 Variant p.E60Q in Non-Syndromic Hearing Loss Patients. Int J Mol Sci 2022; 23:ijms23063369. [PMID: 35328790 PMCID: PMC8949016 DOI: 10.3390/ijms23063369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Hereditary hearing loss (HHL) is a common genetic disorder accounting for at least 60% of pre-lingual deafness in children, of which 70% is inherited in an autosomal recessive pattern. The long tradition of consanguinity among the Qatari population has increased the prevalence of HHL, which negatively impacts the quality of life. Here, we functionally validated the pathogenicity of the c.178G>C, p.E60Q mutation in the MYO6 gene, which was detected previously in a Qatari HHL family, using cellular and animal models. In vitro analysis was conducted in HeLa cells transiently transfected with plasmids carrying MYO6WT or MYO6p.E60Q, and a zebrafish model was generated to characterize the in vivo phenotype. Cells transfected with MYO6WT showed higher expression of MYO6 in the plasma membrane and increased ATPase activity. Modeling the human MYO6 variants in zebrafish resulted in severe otic defects. At 72 h post-injection, MYO6p.E60Q embryos demonstrated alterations in the sizes of the saccule and utricle. Additionally, zebrafish with MYO6p.E60Q displayed super-coiled and bent hair bundles in otic hair cells when compared to control and MYO6WT embryos. In conclusion, our cellular and animal models add support to the in silico prediction that the p.E60Q missense variant is pathogenic and damaging to the protein. Since the c.178G>C MYO6 variant has a 0.5% allele frequency in the Qatari population, about 400 times higher than in other populations, it could contribute to explaining the high prevalence of hearing impairment in Qatar.
Collapse
|
19
|
βIV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling. Nat Commun 2022; 13:1326. [PMID: 35288568 PMCID: PMC8921520 DOI: 10.1038/s41467-022-28933-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report βIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific βIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, βIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, βIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development. Defective angiogenesis remains a high source of morbidity in multiple disorders. Here they show that βIV-spectrin, a membrane-associated cytoskeletal protein, is essential for regulation of endothelial tip cell populations and VEGF signaling during sprouting angiogenesis.
Collapse
|
20
|
Waters SB, Dominguez JR, Cho HD, Sarich NA, Malik AB, Yamada KH. KIF13B-mediated VEGFR2 trafficking is essential for vascular leakage and metastasis in vivo. Life Sci Alliance 2022; 5:e202101170. [PMID: 34670814 PMCID: PMC8548263 DOI: 10.26508/lsa.202101170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
VEGF-A induces vascular leakage and angiogenesis via activating the cell surface localized receptor VEGF receptor 2 (VEGFR2). The amount of available VEGFR2 at the cell surface is however tightly regulated by trafficking of VEGFR2 by kinesin family 13 B (KIF13B), a plus-end kinesin motor, to the plasma membrane of endothelial cells (ECs). Competitive inhibition of interaction between VEGFR2 and KIF13B by a peptide kinesin-derived angiogenesis inhibitor (KAI) prevented pathological angiogenesis in models of cancer and eye disease associated with defective angiogenesis. Here, we show the protective effects of KAI in VEGF-A-induced vascular leakage and cancer metastasis. Using an EC-specific KIF13B knockout (Kif13b iECKO ) mouse model, we demonstrated the function of EC expressed KIF13B in mediating VEGF-A-induced vascular leakage, angiogenesis, tumor growth, and cancer metastasis. Thus, KIF13B-mediated trafficking of VEGFR2 to the endothelial surface has an essential role in pathological angiogenesis induced by VEGF-A, and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Stephen B Waters
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Joseph R Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Khan SA, Goliwas KF, Deshane JS. Sphingolipids in Lung Pathology in the Coronavirus Disease Era: A Review of Sphingolipid Involvement in the Pathogenesis of Lung Damage. Front Physiol 2021; 12:760638. [PMID: 34690821 PMCID: PMC8531546 DOI: 10.3389/fphys.2021.760638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Sphingolipids are bioactive lipids involved in the regulation of cell survival, proliferation, and the inflammatory response. The SphK/S1P/S1PR pathway (S1P pathway) is a driver of many anti-apoptotic and proliferative processes. Pro-survival sphingolipid sphingosine-1-phosphate (S1P) initiates its signaling cascade by interacting with various sphingosine-1-phosphate receptors (S1PR) through which it is able to exert its pro-survival or inflammatory effects. Whereas sphingolipids, including ceramides and sphingosines are pro-apoptotic. The pro-apoptotic lipid, ceramide, can be produced de novo by ceramide synthases and converted to sphingosine by way of ceramidases. The balance of these antagonistic lipids and how this balance manifests is the essence of the sphingolipid rheostat. Recent studies on SARS-CoV-2 have implicated the S1P pathway in the pathogenesis of novel coronavirus disease COVID-19-related lung damage. Accumulating evidence indicates that an aberrant inflammatory process, known as "cytokine storm" causes lung injury in COVID-19, and studies have shown that the S1P pathway is involved in signaling this hyperinflammatory response. Beyond the influence of this pathway on cytokine storm, over the last decade the S1P pathway has been investigated for its role in a wide array of lung pathologies, including pulmonary fibrosis, pulmonary arterial hypertension (PAH), and lung cancer. Various studies have used S1P pathway modulators in models of lung disease; many of these efforts have yielded results that point to the potential efficacy of targeting this pathway for future treatment options. Additionally, they have emphasized S1P pathway's significant role in inflammation, fibrosis, and a number of other endothelial and epithelial changes that contribute to lung damage. This review summarizes the S1P pathway's involvement in COVID-19 and chronic lung diseases and discusses the potential for targeting S1P pathway as a therapeutic option for these diseases.
Collapse
Affiliation(s)
| | | | - Jessy S. Deshane
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Zhang J, Wu N, Shi D. The Involvement of the Mammalian Target of Rapamycin, Protein Tyrosine Phosphatase 1b and Dipeptidase 4 Signaling Pathways in Cancer and Diabetes: A Narrative Review. Mini Rev Med Chem 2021; 21:803-815. [PMID: 33185160 DOI: 10.2174/1389557520666201113110406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. METHODOLOGY We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. RESULTS We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. CONCLUSION There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.
Collapse
Affiliation(s)
- Jiajia Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
23
|
Waters SB, Zhou C, Nguyen T, Zelkha R, Lee H, Kazlauskas A, Rosenblatt MI, Malik AB, Yamada KH. VEGFR2 Trafficking by KIF13B Is a Novel Therapeutic Target for Wet Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 33533881 PMCID: PMC7862734 DOI: 10.1167/iovs.62.2.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) and its receptor VEGFR2 are promising therapeutic targets for wet age-related macular degeneration (AMD). As a topically applicable option, we developed the peptide KAI to selectively interfere with VEGFR2 trafficking to the cell surface where it receives VEGF. This study sought to determine the efficacy of KAI in the mouse model of choroidal neovascularization (CNV). Methods The specificity of KAI was tested by surface plasmon resonance. The drug delivery was analyzed by cryosection and the ELISA after treatment of KAI eyedrop to the mouse eyes. For the laser-induced CNV model, mice with laser-induced ruptures in Bruch's membrane received daily treatment of KAI eyedrop or control peptide. The other groups of mice received intravitreal injection of anti-VEGF or IgG control. After two weeks, CNV was quantified and compared. Results First, we showed the specificity and high affinity of KAI to VEGFR2. Next, biodistribution revealed successful delivery of KAI eyedrop to the back of the mouse eyes. KAI significantly reduced the disease progression in laser-induced CNV. The comparison with current therapy suggests that KAI eyedrop is as effective as current therapy to prevent CNV in wet AMD. Moreover, the genetic deletion of a kinesin KIF13B, which mediates VEGFR2 trafficking to the cell surface, confirmed the pivotal role of KIF13B in disease progression of wet AMD and neovascularization from choroidal vessels. Conclusions Taken together, pharmacologic inhibition and genetic deletion complementarily suggest the therapeutic possibility of targeting VEGFR2 trafficking to inhibit pathological angiogenesis in wet AMD.
Collapse
Affiliation(s)
- Stephen B Waters
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Christopher Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Ruth Zelkha
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Hyun Lee
- Biophysics Core & Department of Pharmaceutical Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States.,Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States.,Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States
| |
Collapse
|
24
|
Kempers L, Wakayama Y, van der Bijl I, Furumaya C, De Cuyper IM, Jongejan A, Kat M, van Stalborch AMD, van Boxtel AL, Hubert M, Geerts D, van Buul JD, de Korte D, Herzog W, Margadant C. The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis. Angiogenesis 2021; 24:695-714. [PMID: 33983539 PMCID: PMC8292304 DOI: 10.1007/s10456-021-09788-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic 'tip' and 'stalk' cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.
Collapse
Affiliation(s)
- Lanette Kempers
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Yuki Wakayama
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ivo van der Bijl
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Charita Furumaya
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science /Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marije Kat
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | | | - Antonius L van Boxtel
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marvin Hubert
- University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Dirk de Korte
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.,Sanquin Blood Bank, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Wiebke Herzog
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.,University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | - Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Zhu H, Zhang Y, Zhong Y, Ye Y, Hu X, Gu L, Xiong X. Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front Cell Neurosci 2021; 15:652647. [PMID: 33967696 PMCID: PMC8096981 DOI: 10.3389/fncel.2021.652647] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is the leading cause of disability and mortality in the world, but the pathogenesis of ischemic stroke (IS) is not completely clear and treatments are limited. Mounting evidence indicate that neovascularization is a critical defensive reaction to hypoxia that modulates the process of long-term neurologic recovery after IS. Angiogenesis is a complex process in which the original endothelial cells in blood vessels are differentiated, proliferated, migrated, and finally remolded into new blood vessels. Many immune cells and cytokines, as well as growth factors, are directly or indirectly involved in the regulation of angiogenesis. Inflammatory cells can affect endothelial cell proliferation, migration, and activation by secreting a variety of cytokines via various inflammation-relative signaling pathways and thus participate in the process of angiogenesis. However, the mechanism of inflammation-mediated angiogenesis has not been fully elucidated. Hence, this review aimed to discuss the mechanism of inflammation-mediated angiogenesis in IS and to provide new ideas for clinical treatment of IS.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Nitzsche A, Pietilä R, Love DT, Testini C, Ninchoji T, Smith RO, Ekvärn E, Larsson J, Roche FP, Egaña I, Jauhiainen S, Berger P, Claesson‐Welsh L, Hellström M. Paladin is a phosphoinositide phosphatase regulating endosomal VEGFR2 signalling and angiogenesis. EMBO Rep 2021; 22:e50218. [PMID: 33369848 PMCID: PMC7857541 DOI: 10.15252/embr.202050218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.
Collapse
Affiliation(s)
- Anja Nitzsche
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Université de ParisParis Cardiovascular Research CenterINSERM U970ParisFrance
| | - Riikka Pietilä
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Dominic T Love
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Chiara Testini
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Division of NephrologyDepartment of MedicineBoston Children’s HospitalBostonMAUSA
| | - Takeshi Ninchoji
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Ross O Smith
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Elisabet Ekvärn
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Cepheid ABSolnaSweden
| | - Jimmy Larsson
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Francis P Roche
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Isabel Egaña
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Suvi Jauhiainen
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Philipp Berger
- Laboratory of Nanoscale BiologyPaul‐Scherrer InstituteVilligenSwitzerland
| | - Lena Claesson‐Welsh
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Mats Hellström
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| |
Collapse
|
27
|
Ahmed T, Mythreye K, Lee NY. Strength and duration of GIPC-dependent signaling networks as determinants in cancer. Neoplasia 2021; 23:181-188. [PMID: 33360508 PMCID: PMC7773760 DOI: 10.1016/j.neo.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/25/2022]
Abstract
GIPC is a PDZ-domain containing adaptor protein that regulates the cell surface expression and endocytic trafficking of numerous transmembrane receptors and signaling complexes. Interactions with over 50 proteins have been reported to date including VEGFR, insulin-like growth factor-1 receptor (IGF-1R), GPCRs, and APPL, many of which have essential roles in neuronal and cardiovascular development. In cancer, a major subset of GIPC-binding receptors and cytoplasmic effectors have been shown to promote tumorigenesis or metastatic progression, while other subsets have demonstrated strong tumor-suppressive effects. Given that these diverse pathways are widespread in normal tissues and human malignancies, precisely how these opposing signals are integrated and regulated within the same tumor setting likely depend on the strength and duration of their interactions with GIPC. This review highlights the major pathways and divergent mechanisms of GIPC signaling in various cancers and provide a rationale for emerging GIPC-targeted cancer therapies.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nam Y Lee
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
28
|
Zink J, Frye M, Frömel T, Carlantoni C, John D, Schreier D, Weigert A, Laban H, Salinas G, Stingl H, Günther L, Popp R, Hu J, Vanhollebeke B, Schmidt H, Acker-Palmer A, Renné T, Fleming I, Benz PM. EVL regulates VEGF receptor-2 internalization and signaling in developmental angiogenesis. EMBO Rep 2021; 22:e48961. [PMID: 33512764 PMCID: PMC7857432 DOI: 10.15252/embr.201948961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial tip cells are essential for VEGF‐induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial‐specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down‐regulated in EVL‐deficient P5‐retinal endothelial cells. Consistently, EVL deletion impairs VEGF‐induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor‐2 internalization and signaling.
Collapse
Affiliation(s)
- Joana Zink
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Frömel
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David John
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Insitute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Danny Schreier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Hebatullah Laban
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Heike Stingl
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Lea Günther
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jiong Hu
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, ULB Neuroscience Institute Department of Molecular Biology, University of Brussels, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Fleming
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Peter M Benz
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Aghajanian A, Zhang H, Buckley BK, Wittchen ES, Ma WY, Faber JE. Decreased inspired oxygen stimulates de novo formation of coronary collaterals in adult heart. J Mol Cell Cardiol 2021; 150:1-11. [PMID: 33038388 PMCID: PMC7855913 DOI: 10.1016/j.yjmcc.2020.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023]
Abstract
RATIONALE Collateral vessels lessen myocardial ischemia when acute or chronic coronary obstruction occurs. It has long been assumed that although native (pre-existing) collaterals enlarge in obstructive disease, new collaterals do not form in the adult. However, the latter was recently shown to occur after coronary artery ligation. Understanding the signals that drive this process is challenged by the difficulty in studying collateral vessels directly and the complex milieu of signaling pathways, including cell death, induced by ligation. Herein we show that hypoxemia alone is capable of inducing collateral vessels to form and that the novel gene Rabep2 is required. OBJECTIVE Hypoxia stimulates angiogenesis during embryonic development and in pathological states. We hypothesized that hypoxia also stimulates collateral formation in adult heart by a process that involves RABEP2, a recently identified protein required for formation of collateral vessels during development. METHODS AND RESULTS Exposure of mice to reduced FiO2 induced collateral formation that resulted in smaller infarctions following LAD ligation and that reversed on return to normoxia. Deletion of Rabep2 or knockdown of Vegfa inhibited formation. Hypoxia upregulated Rabep2, Vegfa and Vegfr2 in heart and brain microvascular endothelial cells (HBMVECs). Knockdown of Rabep2 impaired migration of HBMVECs. In contrast to systemic hypoxia, deletion of Rabep2 did not affect collateral formation induced by ischemic injury caused by LAD ligation. CONCLUSIONS Hypoxia induced formation of coronary collaterals by a process that required VEGFA and RABEP2, proteins also required for collateral formation during development. Knockdown of Rabep2 impaired cell migration, providing one potential mechanism for RABEP2's role in collateral formation. This appears specific to hypoxia, since formation after acute ischemic injury was unaffected in Rabep2-/- mice. These findings provide a novel model for studying coronary collateral formation, and demonstrate that hypoxia alone can induce new collaterals to form in adult heart.
Collapse
Affiliation(s)
- Amir Aghajanian
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Hua Zhang
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Brian K Buckley
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Erika S Wittchen
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - Willa Y Ma
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America
| | - James E Faber
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina at Chapel Hill, United States of America.
| |
Collapse
|
30
|
Pasterkamp RJ, Burk K. Axon guidance receptors: Endocytosis, trafficking and downstream signaling from endosomes. Prog Neurobiol 2020; 198:101916. [PMID: 32991957 DOI: 10.1016/j.pneurobio.2020.101916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
During the development of the nervous system, axons extend through complex environments. Growth cones at the axon tip allow axons to find and innervate their appropriate targets and form functional synapses. Axon pathfinding requires axons to respond to guidance signals and these cues need to be detected by specialized receptors followed by intracellular signal integration and translation. Several downstream signaling pathways have been identified for axon guidance receptors and it has become evident that these pathways are often initiated from intracellular vesicles called endosomes. Endosomes allow receptors to traffic intracellularly, re-locating receptors from one cellular region to another. The localization of axon guidance receptors to endosomal compartments is crucial for their function, signaling output and expression levels. For example, active receptors within endosomes can recruit downstream proteins to the endosomal membrane and facilitate signaling. Also, endosomal trafficking can re-locate receptors back to the plasma membrane to allow re-activation or mediate downregulation of receptor signaling via degradation. Accumulating evidence suggests that axon guidance receptors do not follow a pre-set default trafficking route but may change their localization within endosomes. This re-routing appears to be spatially and temporally regulated, either by expression of adaptor proteins or co-receptors. These findings shed light on how signaling in axon guidance is regulated and diversified - a mechanism which explains how a limited set of guidance cues can help to establish billions of neuronal connections. In this review, we summarize and discuss our current knowledge of axon guidance receptor trafficking and provide directions for future research.
Collapse
Affiliation(s)
- R J Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands.
| | - K Burk
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany.
| |
Collapse
|
31
|
Balaji Ragunathrao VA, Anwar M, Akhter MZ, Chavez A, Mao DY, Natarajan V, Lakshmikanthan S, Chrzanowska-Wodnicka M, Dudek AZ, Claesson-Welsh L, Kitajewski JK, Wary KK, Malik AB, Mehta D. Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling. Cell Rep 2020; 29:3472-3487.e4. [PMID: 31825830 PMCID: PMC6927555 DOI: 10.1016/j.celrep.2019.11.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/06/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelial growth factor-A (VEGF-A)-VEGFR2 pathway drives tumor vascularization by activating proangiogenic signaling in endothelial cells (ECs). Here, we show that EC-sphingosine-1-phosphate receptor 1 (S1PR1) amplifies VEGFR2-mediated angiogenic signaling to enhance tumor growth. We show that cancer cells induce S1PR1 activity in ECs, and thereby, conditional deletion of S1PR1 in ECs (EC-S1pr1−/− mice) impairs tumor vascularization and growth. Mechanistically, we show that S1PR1 engages the heterotrimeric G-protein Gi, which amplifies VEGF-VEGFR2 signaling due to an increase in the activity of the tyrosine kinase c-Abl1. c-Abl1, by phosphorylating VEGFR2 at tyrosine-951, prolongs VEGFR2 retention on the plasmalemma to sustain Rac1 activity and EC migration. Thus, S1PR1 or VEGFR2 antagonists, alone or in combination, reverse the tumor growth in control mice to the level seen in EC-S1pr1−/− mice. Our findings suggest that blocking S1PR1 activity in ECs has the potential to suppress tumor growth by preventing amplification of VEGF-VEGFR2 signaling. Vijay Avin et al. demonstrate an essential role of endothelial cell (EC)-S1PR1 signaling in amplifying VEGFR2-mediated tumor growth. S1PR1 by Gi and c-Abl1 phosphorylates VEGFR2 at Y951, which retains VEGFR2 at EC plasmalemma, thus enabling EC migration, tumor angiogenesis, and growth.
Collapse
Affiliation(s)
- Vijay Avin Balaji Ragunathrao
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mumtaz Anwar
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Md Zahid Akhter
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Alejandra Chavez
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - De Yu Mao
- Department of Physiology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Medicine, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | - Arkadiusz Z Dudek
- Department of Medicine, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Jan K Kitajewski
- Department of Physiology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kishore K Wary
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Dolly Mehta
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
32
|
Bosseboeuf E, Raimondi C. Signalling, Metabolic Pathways and Iron Homeostasis in Endothelial Cells in Health, Atherosclerosis and Alzheimer's Disease. Cells 2020; 9:cells9092055. [PMID: 32911833 PMCID: PMC7564205 DOI: 10.3390/cells9092055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells drive the formation of new blood vessels in physiological and pathological contexts such as embryonic development, wound healing, cancer and ocular diseases. Once formed, all vessels of the vasculature system present an endothelial monolayer (the endothelium), lining the luminal wall of the vessels, that regulates gas and nutrient exchange between the circulating blood and tissues, contributing to maintaining tissue and vascular homeostasis. To perform their functions, endothelial cells integrate signalling pathways promoted by growth factors, cytokines, extracellular matrix components and signals from mechanosensory complexes sensing the blood flow. New evidence shows that endothelial cells rely on specific metabolic pathways for distinct cellular functions and that the integration of signalling and metabolic pathways regulates endothelial-dependent processes such as angiogenesis and vascular homeostasis. In this review, we provide an overview of endothelial functions and the recent advances in understanding the role of endothelial signalling and metabolism in physiological processes such as angiogenesis and vascular homeostasis and vascular diseases. Also, we focus on the signalling pathways promoted by the transmembrane protein Neuropilin-1 (NRP1) in endothelial cells, its recently discovered role in regulating mitochondrial function and iron homeostasis and the role of mitochondrial dysfunction and iron in atherosclerosis and neurodegenerative diseases.
Collapse
|
33
|
Henry S, Szabó V, Sutus E, Pirity MK. RYBP is important for cardiac progenitor cell development and sarcomere formation. PLoS One 2020; 15:e0235922. [PMID: 32673370 PMCID: PMC7365410 DOI: 10.1371/journal.pone.0235922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
We have previously established that epigenetic regulator RING1 and YY1 binding protein (RYBP) is required for the contractility of embryonic stem (ES) cell derived cardiomyocytes (CMCs), suggesting its essential role in contractility. In order to investigate the underlying molecular events of this phenotype, we compared the transcriptomic profile of the wild type and Rybp null mutant ES cells and CMCs differentiated from these cell lines. We identified genes related to ion homeostasis, cell adhesion and sarcomeric organization affected in the Rybp null mutant CMCs, by using hierarchical gene clustering and Gene Ontology analysis. We have also demonstrated that the amount of RYBP is drastically reduced in the terminally differentiated wild type CMCs whilst it is broadly expressed in the early phase of differentiation when progenitors form. We also describe that RYBP is important for the proper expression of key cardiac transcription factors including Mesp1, Shh and Mef2c. These findings identify Rybp as a gene important for both early cardiac gene transcription and consequent sarcomere formation necessary for contractility. Since impairment of sarcomeric function and contractility plays a central role in reduced cardiac pump function leading to heart failures in human, current results might be relevant to the pathophysiology of cardiomyopathies.
Collapse
Affiliation(s)
- Surya Henry
- Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Enikő Sutus
- Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
34
|
Cao T, Jiang Y, Li D, Sun X, Zhang Y, Qin L, Tellides G, Taylor HS, Huang Y. H19/TET1 axis promotes TGF-β signaling linked to endothelial-to-mesenchymal transition. FASEB J 2020; 34:8625-8640. [PMID: 32374060 PMCID: PMC7364839 DOI: 10.1096/fj.202000073rrrrr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
While emerging evidence suggests the link between endothelial activation of TGF-β signaling, induction of endothelial-to-mesenchymal transition (EndMT), and cardiovascular disease (CVD), the molecular underpinning of this connection remains enigmatic. Here, we report aberrant expression of H19 lncRNA and TET1 in endothelial cells (ECs) of human atherosclerotic coronary arteries. Using primary human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAoECs) we show that TNF-α, a known risk factor for endothelial dysfunction and CVD, induces H19 expression which in turn activates TGF-β signaling and EndMT via a TET1-dependent epigenetic mechanism. We also show that H19 regulates TET1 expression at the posttranscriptional level. Further, we provide evidence that this H19/TET1-mediated regulation of TGF-β signaling and EndMT occurs in mouse pulmonary microvascular ECs in vivo under hyperglycemic conditions. We propose that endothelial activation of the H19/TET1 axis may play an important role in EndMT and perhaps CVD.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Li
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Sun
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Zhang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Conformationally active integrin endocytosis and traffic: why, where, when and how? Biochem Soc Trans 2020; 48:83-93. [PMID: 32065228 PMCID: PMC7054750 DOI: 10.1042/bst20190309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
Abstract
Spatiotemporal control of integrin-mediated cell adhesion to the extracellular matrix (ECM) is critical for physiological and pathological events in multicellular organisms, such as embryonic development, angiogenesis, platelet aggregation, leukocytes extravasation, and cancer cell metastatic dissemination. Regulation of integrin adhesive function and signaling relies on the modulation of both conformation and traffic. Indeed, integrins exist in a dynamic equilibrium between a bent/closed (inactive) and an extended/open (active) conformation, respectively endowed with low and high affinity for ECM ligands. Increasing evidence proves that, differently to what hypothesized in the past, detachment from the ECM and conformational inactivation are not mandatory for integrin to get endocytosed and trafficked. Specific transmembrane and cytosolic proteins involved in the control of ECM proteolytic fragment-bound active integrin internalization and recycling exist. In the complex masterplan that governs cell behavior, active integrin traffic is key to the turnover of ECM polymers and adhesion sites, the polarized secretion of endogenous ECM proteins and modifying enzymes, the propagation of motility and survival endosomal signals, and the control of cell metabolism.
Collapse
|
36
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
37
|
Qiao B, Nie JJ, Shao Y, Li Y, Zhang C, Hao W, Li S, Chen D, Yu B, Li HH, Xu FJ, Du J. Functional Nanocomplexes with Vascular Endothelial Growth Factor A/C Isoforms Improve Collateral Circulation and Cardiac Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905925. [PMID: 31880079 DOI: 10.1002/smll.201905925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Protein-based therapies are potential treatments for cancer, immunological, and cardiovascular diseases. However, effective delivery systems are needed because of their instability, immunogenicity, and so on. Crosslinked negatively charged heparin polysaccharide nanoparticle (HepNP) is proposed for protein delivery. HepNP can efficiently condense vascular endothelial growth factor (VEGF) because of the unique electronegative sulfonic acid and carboxyl domain of heparin. HepNP is then assembled with VEGF-C (Hep@VEGF-C) or VEGF-A (Hep@VEGF-A) protein for the therapy of myocardial infarction (MI) via intravenous (iv) injection. Hep@VEGF-A-mediated improvement of cardiac function by promoting angiogenesis is limited because of elevated vascular permeability, while Hep@VEGF-C effectively promotes lymphangiogenesis and reduces edema. On this basis, a graded delivery of VEGF-C (0.5-1 h post-MI) and VEGF-A (5 d post-MI) using HepNP is developed. At the dose ratio of 3:1 (Hep@VEGF-C vs Hep@VEGF-A), Hep@VEGF functional complexes substantially reduce the scar formation (≈-39%; p < 0.05) and improve cardiac function (≈+74%; p < 0.05). Such a HepNP delivery system provides a simple and effective therapeutic strategy for cardiovascular diseases by delivering functional proteins. Because of the unique binding ability of heparin with cytokines and growth factors, HepNP also has considerable application prospects in protein therapy for other serious diseases.
Collapse
Affiliation(s)
- Bokang Qiao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Jing-Jun Nie
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yihui Shao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Yulin Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Congcong Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Wenjing Hao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| |
Collapse
|
38
|
Kluever AK, Braumandl A, Fischer S, Preissner KT, Deindl E. The Extraordinary Role of Extracellular RNA in Arteriogenesis, the Growth of Collateral Arteries. Int J Mol Sci 2019; 20:ijms20246177. [PMID: 31817879 PMCID: PMC6940760 DOI: 10.3390/ijms20246177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
Arteriogenesis is an intricate process in which increased shear stress in pre-existing arteriolar collaterals induces blood vessel expansion, mediated via endothelial cell activation, leukocyte recruitment and subsequent endothelial and smooth muscle cell proliferation. Extracellular RNA (eRNA), released from stressed cells or damaged tissue under pathological conditions, has recently been discovered to be liberated from endothelial cells in response to increased shear stress and to promote collateral growth. Until now, eRNA has been shown to enhance coagulation and inflammation by inducing cytokine release, leukocyte recruitment, and endothelial permeability, the latter being mediated by vascular endothelial growth factor (VEGF) signaling. In the context of arteriogenesis, however, eRNA has emerged as a transmitter of shear stress into endothelial activation, mediating the sterile inflammatory process essential for collateral remodeling, whereby the stimulatory effects of eRNA on the VEGF signaling axis seem to be pivotal. In addition, eRNA might influence subsequent steps of the arteriogenesis cascade as well. This article provides a comprehensive overview of the beneficial effects of eRNA during arteriogenesis, laying the foundation for further exploration of the connection between the damaging and non-damaging effects of eRNA in the context of cardiovascular occlusive diseases and of sterile inflammation.
Collapse
Affiliation(s)
- Anna-Kristina Kluever
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Anna Braumandl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Klaus T. Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Elisabeth Deindl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-76504
| |
Collapse
|
39
|
Machado MJC, Boardman R, Riu F, Emanueli C, Benest AV, Bates DO. Enhanced notch signaling modulates unproductive revascularization in response to nitric oxide-angiopoietin signaling in a mouse model of peripheral ischemia. Microcirculation 2019; 26:e12549. [PMID: 30974486 PMCID: PMC6899699 DOI: 10.1111/micc.12549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Arteriolargenesis can be induced by concomitant stimulation of nitric Oxide (NO)-Angiopoietin receptor (Tie)-Vascular Endothelial Growth Factor (VEGF) signaling in the rat mesentery angiogenesis assay. We hypothesized that the same combination of exogenously added growth factors would also have a positive impact on arteriolargenesis and, consequently, the recovery of blood flow in a model of unilateral hindlimb ischemia. RESULTS AND METHODS NO-Tie mice had faster blood flow recovery compared to control mice, as assessed by laser speckle imaging. There was no change in capillary density within the ischemic muscles, but arteriole density was higher in NO-Tie mice. Given the previously documented beneficial effect of VEGF signaling, we tested whether NO-Tie-VEGF mice would show further improvement. Surprisingly, these mice recovered no differently from control, arteriole density was similar and capillary density was lower. Dll4 is a driver of arterial specification, so we hypothesized that Notch1 expression would be involved in arteriolargenesis. There was a significant upregulation of Notch1 transcripts in NO-Tie-VEGF compared with NO-Tie mice. Using soluble Dll4 (sDll4), we stimulated Notch signaling in the ischemic muscles of mice. NO-Tie-sDll4 mice had significantly increased capillary and arteriole densities, but impaired blood flow recovery. CONCLUSION These results suggest that Dll4 activation early on in revascularization can lead to unproductive angiogenesis and arteriolargenesis, despite increased vascular densities. These results suggest spatial and temporal balance of growth factors needs to be perfected for ideal functional and anatomical revascularisation.
Collapse
Affiliation(s)
- Maria J. C. Machado
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Rachel Boardman
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Federica Riu
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
| | | | - Andrew V. Benest
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
- COMPARE University of Birmingham and University of NottinghamNottinghamUK
| | - David O. Bates
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
- COMPARE University of Birmingham and University of NottinghamNottinghamUK
| |
Collapse
|
40
|
Zhou Z, Mao W, Li Y, Qi C, He Y. Myricetin Inhibits Breast Tumor Growth and Angiogenesis by Regulating VEGF/VEGFR2 and p38MAPK Signaling Pathways. Anat Rec (Hoboken) 2019; 302:2186-2192. [DOI: 10.1002/ar.24222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/10/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Zhiqing Zhou
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Wenli Mao
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Yuanyuan Li
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Cuiling Qi
- Guangdong Pharmaceutical University Guangzhou Guangdong China
| | - Yanli He
- School of Basic MedicineGuangzhou University of Chinese Medicine Guangzhou Guangdong China
| |
Collapse
|
41
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
42
|
Gong B, Li Z, Xiao W, Li G, Ding S, Meng A, Jia S. Sec14l3 potentiates VEGFR2 signaling to regulate zebrafish vasculogenesis. Nat Commun 2019; 10:1606. [PMID: 30962435 PMCID: PMC6453981 DOI: 10.1038/s41467-019-09604-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) regulates vasculogenesis by using its tyrosine kinase receptors. However, little is known about whether Sec14-like phosphatidylinositol transfer proteins (PTP) are involved in this process. Here, we show that zebrafish sec14l3, one of the family members, specifically participates in artery and vein formation via regulating angioblasts and subsequent venous progenitors’ migration during vasculogenesis. Vascular defects caused by sec14l3 depletion are partially rescued by restoration of VEGFR2 signaling at the receptor or downstream effector level. Biochemical analyses show that Sec14l3/SEC14L2 physically bind to VEGFR2 and prevent it from dephosphorylation specifically at the Y1175 site by peri-membrane tyrosine phosphatase PTP1B, therefore potentiating VEGFR2 signaling activation. Meanwhile, Sec14l3 and SEC14L2 interact with RAB5A/4A and facilitate the formation of their GTP-bound states, which might be critical for VEGFR2 endocytic trafficking. Thus, we conclude that Sec14l3 controls vasculogenesis in zebrafish via the regulation of VEGFR2 activation. The growth factor VEGF is known to regulate vasculogenesis but the downstream pathways activated are unclear. Here, the authors report that Sec14l3, a member of the PITP (phosphatidyl inositol transfer proteins) family regulates the formation of zebrafish vasculature by promoting VEGFR2 endocytic trafficking.
Collapse
Affiliation(s)
- Bo Gong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhihao Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wanghua Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guangyuan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
43
|
Inhibiting Protein Tyrosine Phosphatase 1B to Improve Regenerative Functions of Endothelial Cells. J Cardiovasc Pharmacol 2019; 71:59-64. [PMID: 28817487 DOI: 10.1097/fjc.0000000000000530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin receptor- and vascular endothelial growth factor receptor-dependent signalings in endothelial cells. Genetic or pharmacological inhibition of PTP1B has been shown to enhance endothelial cell proliferation and migration and increase nitric oxide production. In vivo, inhibiting PTP1B can reverse endothelial dysfunction, promote angiogenesis, and accelerate wound healing. Intense research is currently continuing in an effort to discover novel selective PTP1B inhibitors, primarily for treating insulin resistance. We propose that these drugs may also represent a new horizon for boosting the regenerative capacities of endothelial cells.
Collapse
|
44
|
Lam I, Pickering CM, Mac Gabhann F. Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1437. [PMID: 30255986 PMCID: PMC6537588 DOI: 10.1002/wsbm.1437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell membrane proteins that provide cells with the ability to sense proteins in their environments. Many RTKs are essential to development and organ growth. Derangement of RTKs-by mutation or by overexpression-is central to several developmental and adult disorders including cancer, short stature, and vascular pathologies. The mechanism of action of RTKs is complex and is regulated by contextual components, including the existence of multiple competing ligands and receptors in many families, the intracellular location of the RTK, the dynamic and cell-specific coexpression of other RTKs, and the commonality of downstream signaling pathways. This means that both the state of the cell and the microenvironment outside the cell play a role, which makes sense given the pivotal location of RTKs as the nexus linking the extracellular milieu to intracellular signaling and modification of cell behavior. In this review, we describe these different contextual components through the lens of systems biology, in which both computational modeling and experimental "omics" approaches have been used to better understand RTK networks. The complexity of these networks is such that using these systems biology approaches is necessary to get a handle on the mechanisms of pathology and the design of therapeutics targeting RTKs. In particular, we describe in detail three concrete examples (involving ErbB3, VEGFR2, and AXL) that illustrate how systems approaches can reveal key mechanistic and therapeutic insights. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Inez Lam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christina M Pickering
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
45
|
Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes. Med Hypotheses 2019; 123:125-129. [PMID: 30696582 DOI: 10.1016/j.mehy.2019.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
46
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
47
|
Daniel E, Cleaver O. Vascularizing organogenesis: Lessons from developmental biology and implications for regenerative medicine. Curr Top Dev Biol 2019; 132:177-220. [PMID: 30797509 DOI: 10.1016/bs.ctdb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organogenesis requires tightly coordinated and patterned growth of numerous cell types to form a fully mature and vascularized organ. Endothelial cells (ECs) that line blood vessels develop alongside the growing organ, but only recently has their role in directing epithelial and stromal growth been appreciated. Endothelial, epithelial, and stromal cells in embryonic organs actively communicate with one another throughout development to ensure that the organ forms appropriately. What signals tell blood vessel progenitors where to go? How are tissues influenced by the vasculature that pervades it? In this chapter, we review the ways in which crosstalk between ECs and epithelial or stromal cells during development leads to a fully patterned pancreas, lung, or kidney. ECs in all of these organs are necessary for proper epithelial and stromal growth, but how they direct this process is organ- and time-specific, highlighting the concept of dynamic EC heterogeneity. We end with a discussion on how understanding cell-cell crosstalk during development can be applied therapeutically through the generation of transplantable miniature organ-like tissues called "organoids." We will discuss the current state of organoid technology and highlight the major challenges in forming a properly patterned vascular network that will be critical in transforming them into a viable therapeutic option.
Collapse
Affiliation(s)
- Edward Daniel
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
48
|
Harrison IP, Vinh A, Johnson IR, Luong R, Drummond GR, Sobey CG, Tiganis T, Williams ED, O’ Leary JJ, Brooks DA, Selemidis S. NOX2 oxidase expressed in endosomes promotes cell proliferation and prostate tumour development. Oncotarget 2018; 9:35378-35393. [PMID: 30459931 PMCID: PMC6226044 DOI: 10.18632/oncotarget.26237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/06/2018] [Indexed: 01/20/2023] Open
Abstract
Reactive oxygen species (ROS) promote growth factor signalling including for VEGF-A and have potent angiogenic and tumourigenic properties. However, the precise enzymatic source of ROS generation, the subcellular localization of ROS production and cellular targets in vivo that influence tumour-promoting processes, are largely undefined. Here, using mRNA microarrays, we show increased gene expression for NOX2, the catalytic subunit of the ROS-generating NADPH oxidase enzyme, in human primary prostate cancer compared to non-malignant tissue. In addition, NOX4 gene expression was markedly elevated in human metastatic prostate cancers, but not in primary prostate tumours. Using a syngeneic, orthotopic mouse model of prostate cancer the genetic deletion of NOX2 (i.e. NOX2 -/y mouse) resulted in reduced angiogenesis and an almost complete failure in tumour development. Furthermore, pharmacological inhibition of NOX2 oxidase suppressed established prostate tumours in mice. In isolated endothelial cells, and in human normal and prostate cancer cells, NOX2 co-located to varying degrees with early endosome markers including EEA1, Appl1 and Rab5A and the late endosome marker Rab7A, and this correlated with significant VEGF-A-dependent ROS production within acidified endosomal compartments and endothelial cell proliferation that was NOX2 oxidase- and hydrogen peroxide dependent. We concluded that NOX2 oxidase expression and endosomal ROS production were important for prostate cancer growth and that this was required to positively regulate the VEGF pathway. The research provides a paradigm for limiting tumour growth through a better understanding of NOX2 oxidase's effect on VEGF signalling and how controlling the development of tumour vasculature can limit prostate tumour development and metastasis.
Collapse
Affiliation(s)
- Ian P. Harrison
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ian R.D. Johnson
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Raymond Luong
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
| | - Grant R. Drummond
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tony Tiganis
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Elizabeth D. Williams
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Resea rch Institute, Brisbane, Queensland 4000, Australia
| | - John J. O’ Leary
- Histopathology, School of Medicine Trinity College Dublin, Ireland, Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, Dublin 8, Ireland
- Emer Casey Research Laboratory, Molecular Pathology Laboratory, The Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Doug A. Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Stavros Selemidis
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
49
|
Auriau J, Roujeau C, Belaid Choucair Z, Oishi A, Derviaux C, Roux T, Trinquet E, Hermine O, Jockers R, Dam J. Gain of affinity for VEGF165 binding within the VEGFR2/NRP1 cellular complex detected by an HTRF-based binding assay. Biochem Pharmacol 2018; 158:45-59. [PMID: 30236477 DOI: 10.1016/j.bcp.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.
Collapse
Affiliation(s)
- Johanna Auriau
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Clara Roujeau
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Zakia Belaid Choucair
- Hôpital Necker, CNRS UMR 8147, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France And THERANOVIR, Pépinière Genopole Entreprise, Evry, France
| | - Atsuro Oishi
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Carine Derviaux
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Thomas Roux
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, BP84175, 30200 Codolet, France
| | - Eric Trinquet
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, BP84175, 30200 Codolet, France
| | | | - Ralf Jockers
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Julie Dam
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
50
|
Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, Sund M, Öhlund D, Kiflemariam S, Sjöblom T, Claesson-Welsh L. VEGF receptor-2/neuropilin 1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival. J Pathol 2018; 246:311-322. [PMID: 30027561 PMCID: PMC6221118 DOI: 10.1002/path.5141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/16/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Unstable and dysfunctional tumor vasculature promotes cancer progression and spread. Signal transduction by the pro‐angiogenic vascular endothelial growth factor (VEGF) receptor‐2 (VEGFR2) is modulated by VEGFA‐dependent complex formation with neuropilin 1 (NRP1). NRP1 expressed on tumor cells can form VEGFR2/NRP1 trans‐complexes between tumor cells and endothelial cells which arrests VEGFR2 on the endothelial surface, thus interfering with productive VEGFR2 signaling. In mouse fibrosarcoma, VEGFR2/NRP1 trans‐complexes correlated with reduced tumor vessel branching and reduced tumor cell proliferation. Pancreatic ductal adenocarcinoma (PDAC) strongly expressed NRP1 on both tumor cells and endothelial cells, in contrast to other common cancer forms. Using proximity ligation assay, VEGFR2/NRP1 trans‐complexes were identified in human PDAC tumor tissue, and its presence was associated with reduced tumor vessel branching, reduced tumor cell proliferation, and improved patient survival after adjusting for other known survival predictors. We conclude that VEGFR2/NRP1 trans‐complex formation is an independent predictor of PDAC patient survival. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eric Morin
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Elin Sjöberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Vegard Tjomsland
- University of Oslo, Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Institute of Clinical Medicine, Oslo, Norway
| | - Chiara Testini
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Cecilia Lindskog
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Oskar Franklin
- Umeå University, Department of Surgery and Perioperative Sciences, Umeå, Sweden
| | - Malin Sund
- Umeå University, Department of Surgery and Perioperative Sciences, Umeå, Sweden
| | - Daniel Öhlund
- Umeå University, Department of Radiation Sciences, Umeå, Sweden.,Umeå University, Wallenberg Centre for Molecular Medicine, Umeå, Sweden
| | - Sara Kiflemariam
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Tobias Sjöblom
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|