1
|
Gascon E, Goldy C, Lebecq A, Moulin S, Cerutti G, Bayle V, Gacon F, Bauer A, Fangain A, Azaïs R, Ali O, Caillaud MC. Conserved mechanical hallmark guides four-way junction avoidance during plant cytokinesis. Curr Biol 2025:S0960-9822(25)00510-X. [PMID: 40345197 DOI: 10.1016/j.cub.2025.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/24/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
When building an organ, adjacent cells coordinate to form topologically stable junctions by integrating mechanosensitive signaling pathways. Positioning the newly formed tricellular junction in walled multicellular organisms is critical, as cells cannot migrate. The cell division site must avoid existing cellular junctions to prevent unstable four-way junctions. The microtubule preprophase band (PPB) is a guideline for the plant cell's future cell division site. Yet, mutants impaired in PPB formation hardly display defects, suggesting the presence of an alternative mechanism. Here, we report the existence of a process that guides the cell division site close to an adjacent tricellular junction. This PPB-independent mechanism depends on the phosphoinositide phosphatase SUPPRESSION OF ACTIN 9 (SAC9): in the Arabidopsis mutant sac9-3, the cell plate abnormally attaches at two equidistant positions from an adjacent tricellular junction. Numerical simulations suggest that elastic energy accumulation at the subcellular level within walls, due to their rheological response to mechanical stresses, could act as positional cues revealing the positions of tricellular junctions. Moreover, perturbation of the root mechanical homeostasis results in four-way junction formation. This provides a scenario in which cells avoid four-way junction formation during cytokinesis through discrete subcellular mechanical hallmarks.
Collapse
Affiliation(s)
- Elsa Gascon
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Camila Goldy
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Samantha Moulin
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Guillaume Cerutti
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Florian Gacon
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Amelie Bauer
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France; IRBV, Department of Biological Sciences, University of Montreal, Montreal, QC, Canada
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Romain Azaïs
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France
| | - Olivier Ali
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France.
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, 69342 Lyon, France.
| |
Collapse
|
2
|
McLellan MM, Aerne BL, Banerjee Dhoul JJ, Holder MV, Auchynnikava T, Tapon N. Meru co-ordinates spindle orientation with cell polarity and cell cycle progression. EMBO J 2025; 44:2949-2975. [PMID: 40169811 DOI: 10.1038/s44318-025-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Correct mitotic spindle alignment is essential for tissue architecture and plays an important role in cell fate specification through asymmetric cell division. Spindle tethering factors such as Drosophila Mud (NuMA in mammals) are recruited to the cell cortex and capture astral microtubules, pulling the spindle in the correct orientation. However, how spindle tethering complexes read the cell polarity axis and how spindle attachment is coupled to mitotic progression remains poorly understood. We explore these questions in Drosophila sensory organ precursors (SOPs), which divide asymmetrically to give rise to epidermal mechanosensory bristles. We show that the scaffold protein Meru, which is enriched at the posterior cortex by the Frizzled/Dishevelled planar cell polarity complex, in turn recruits Mud, linking the spindle tethering and polarity machineries. Furthermore, Cyclin A/Cdk1 associates with Meru at the posterior cortex, promoting the formation of the Mud/Meru/Dsh complex via Meru and Dsh phosphorylation. Thus, Meru couples spindle orientation with cell polarity and provides a cell cycle-dependent cue for spindle tethering.
Collapse
Affiliation(s)
- Melissa M McLellan
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jennifer J Banerjee Dhoul
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maxine V Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Tania Auchynnikava
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
3
|
Lamb H, Fernholz M, Liro MJ, Myles KM, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the Caenorhabditis elegans EMS blastomere. Genetics 2025; 229:iyaf020. [PMID: 39891664 PMCID: PMC12005263 DOI: 10.1093/genetics/iyaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The endomesodermal precursor cell (EMS) of the 4-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 transmembrane protein localized at the EMS-P2 cell contact and the cytoplasmic kinase SRC-1. In response to these signals, the EMS nuclear-centrosome complex rotates, so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here, we identify the Rac1 homolog CED-10 as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification in the EMS cell. SRC-1 dependent phosphorylation at the EMS-P2 contact is reduced. However, the asymmetric division of the P2 cell, which is also MES-1 and SRC-1 dependent, appears normal in ced-10 mutants. These and other results suggest that CED-10 acts upstream of, or at the level of, SRC-1 activity in the EMS cell. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS-P2 cell contact site, in a CED-10-dependent manner. Loss of ARX-2 results in EMS spindle orientation defects, suggesting that CED-10 acts through branched actin to promote spindle orientation in the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Małgorzata J Liro
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Krista M Myles
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
5
|
Sun J, Hosen MB, Deng WM, Tian A. Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms. Bioessays 2025; 47:e202400189. [PMID: 39737681 DOI: 10.1002/bies.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance. To preserve tissue integrity while removing dying or unwanted cells, epithelial tissues employ cell extrusion. This process removes both dead and live cells from the epithelial layer, typically causing detached cells to undergo apoptosis. Transformed cells, however, often resist apoptosis, leading to multilayered structures and early carcinogenesis. Malignant cells may invade neighboring tissues. Loss of cell polarity can lead to multilayer formation, cell extrusion, and invasion. Recent studies indicate that multilayer formation in epithelial cells with polarity loss involves a mixture of wild-type and mutant cells, leading to apical or basal accumulation. The directionality of accumulation is regulated by mutations in polarity complex genes. This phenomenon, distinct from traditional apical or basal extrusion, exhibits similarities to the endophytic or exophytic growth observed in human tumors. This review explores the regulation and implications of these phenomena for tissue biology and disease pathology.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Md Biplob Hosen
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Zellag RM, Poupart V, Negishi T, Labbé JC, Gerhold AR. The spatiotemporal distribution of LIN-5/NuMA regulates spindle orientation in the C. elegans germ line. Cell Rep 2025; 44:115296. [PMID: 39946234 DOI: 10.1016/j.celrep.2025.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Mitotic spindle orientation contributes to tissue organization and shape by setting the cell division plane. How spindle orientation is coupled to diverse tissue architectures is incompletely understood. The C. elegans gonad is a tube-shaped organ with germ cells forming a circumferential monolayer around a common cytoplasmic lumen. How this organization is maintained during development is unclear, as germ cells lack the canonical cell-cell junctions that ensure spindle orientation in other tissue types. Here, we show that the microtubule force generator dynein and its conserved regulator LIN-5/NuMA regulate germ cell spindle orientation and are required for germline tissue organization. We uncover a cyclic, polarized pattern of LIN-5/NuMA cortical localization that predicts centrosome positioning throughout the cell cycle, providing a means to align spindle orientation with the tissue plane. This work reveals a new mechanism by which oriented cell division can be achieved to maintain tissue organization during animal development.
Collapse
Affiliation(s)
- Réda M Zellag
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada
| | - Takefumi Negishi
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.
| | - Abigail R Gerhold
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada.
| |
Collapse
|
7
|
Leem J, Gowett M, Bolarinwa S, Mogessie B. On the origin of mitosis-derived human embryo aneuploidy. Nat Commun 2024; 15:10391. [PMID: 39613785 DOI: 10.1038/s41467-024-54953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Affiliation(s)
- Jiyeon Leem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Madison Gowett
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sarah Bolarinwa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Atajanova T, Kang EM, Postnikova A, Price AL, Doerr S, Du M, Ugenti A, Ragkousi K. Lateral cell polarization drives organization of epithelia in sea anemone embryos and embryonic cell aggregates. Proc Natl Acad Sci U S A 2024; 121:e2408763121. [PMID: 39471210 PMCID: PMC11573592 DOI: 10.1073/pnas.2408763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
One of the first organizing processes during animal development is the assembly of embryonic cells into epithelia. Common features unite epithelialization across select bilaterians, however, we know less about the molecular and cellular mechanisms that drive epithelial emergence in early branching nonbilaterians. In sea anemones, epithelia emerge both during embryonic development and after cell aggregation of dissociated tissues. Although adhesion is required to keep cells together, it is not clear whether cell polarization plays a role as epithelia emerge from disordered aggregates. Here, we use the embryos of the sea anemone Nematostella vectensis to investigate the evolutionary origins of epithelial development. We demonstrate that lateral cell polarization is essential for epithelial organization in both embryos and aggregates. With disrupted lateral polarization, cell contact in the aggregate is not sufficient to trigger epithelialization and further tissue development. Specifically, knockdown of the conserved lateral polarity and tumor suppressor protein Lethal giant larvae (Lgl) disrupts epithelia in developing embryos and impairs the capacity of dissociated cells to epithelialize from aggregates. In contrast to other systems, cells in Nematostella lgl knockdown embryos do not undergo excessive proliferation. Cells with reduced Lgl levels lose their columnar shape and proper positioning of their mitotic spindles and basal bodies. Due to misoriented divisions and aberrant shapes, cells arrange nonuniformly without forming a monolayer. Together our data show that, in Nematostella, Lgl drives epithelialization in embryos and cell aggregates through its effect on cell shape and organelle localization.
Collapse
Affiliation(s)
| | | | | | | | - Sophia Doerr
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Michael Du
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Alicia Ugenti
- Department of Biology, Amherst College, Amherst, MA 01002
| | | |
Collapse
|
9
|
Perales IE, Jones SD, Duan T, Geyer PK. Maintenance of germline stem cell homeostasis despite severe nuclear distortion. Dev Biol 2024; 515:139-150. [PMID: 39038593 PMCID: PMC11317214 DOI: 10.1016/j.ydbio.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Stem cell loss in aging and disease is associated with nuclear deformation. Yet, how nuclear shape influences stem cell homeostasis is poorly understood. We investigated this connection using Drosophila germline stem cells, as survival of these stem cells is compromised by dysfunction of the nuclear lamina, the extensive protein network that lines the inner nuclear membrane and gives shape to the nucleus. To induce nuclear distortion in germline stem cells, we used the GAL4-UAS system to increase expression of the permanently farnesylated nuclear lamina protein, Kugelkern, a rate limiting factor for nuclear growth. We show that elevated Kugelkern levels cause severe nuclear distortion in germline stem cells, including extensive thickening and lobulation of the nuclear envelope and nuclear lamina, as well as alteration of internal nuclear compartments. Despite these changes, germline stem cell number, proliferation, and female fertility are preserved, even as females age. Collectively, these data demonstrate that disruption of nuclear architecture does not cause a failure of germline stem cell survival or homeostasis, revealing that nuclear deformation does not invariably promote stem cell loss.
Collapse
Affiliation(s)
- Isabella E Perales
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel D Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tingting Duan
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Huang S, Fu M, Gu A, Zhao R, Liu Z, Hua W, Mao Y, Wen W. mInsc coordinates Par3 and NuMA condensates for assembly of the spindle orientation machinery in asymmetric cell division. Int J Biol Macromol 2024; 279:135126. [PMID: 39218187 DOI: 10.1016/j.ijbiomac.2024.135126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
As a fundamental process governing the self-renewal and differentiation of stem cells, asymmetric cell division is controlled by several conserved regulators, including the polarity protein Par3 and the microtubule-associated protein NuMA, which orchestrate the assembly and interplay of the Par3/Par6/mInsc/LGN complex at the apical cortex and the LGN/Gαi/NuMA/Dynein complex at the mitotic spindle to ensure asymmetric segregation of cell fate determinants. However, this model, which is well-supported by genetic studies, has been challenged by evidence of competitive interaction between NuMA and mInsc for LGN. Here, the solved crystal structure of the Par3/mInsc complex reveals that mInsc competes with Par6β for Par3, raising questions about how proteins assemble overlapping targets into functional macromolecular complexes. Unanticipatedly, we discover that Par3 can recruit both Par6β and mInsc by forming a dynamic condensate through phase separation. Similarly, the phase-separated NuMA condensate enables the coexistence of competitive NuMA and mInsc with LGN in the same compartment. Bridge by mInsc, Par3/Par6β and LGN/NuMA condensates coacervate, robustly enriching all five proteins both in vitro and within cells. These findings highlight the pivotal role of protein condensates in assembling multi-component signalosomes that incorporate competitive protein-protein interaction pairs, effectively overcoming stoichiometric constraints encountered in conventional protein complexes.
Collapse
Affiliation(s)
- Shijing Huang
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ziheng Liu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Ng TT, Lau CC, Tan MP, Wong LL, Sung YY, Muhammad TST, Liying S, Danish-Daniel M. Comparative Transcriptome Analysis Reveals Differential Cutaneous Gene Expression in the Color Variation of Two Ornamental Discus, Red Melon and Red Cover. Pigment Cell Melanoma Res 2024; 37:881-888. [PMID: 39140294 DOI: 10.1111/pcmr.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Red Melon (RM) and Red Cover (RC) discus (Symphysodon spp.) are ornamental fish varieties that were selectively bred from the wild parental lineages of the brown discus S. aquafaciatus over many generations, resulting in distinct cutaneous patterns from juveniles to adults. To better understand the underlying mechanisms, skin samples were collected from juveniles aged 60 days and adults aged 1 year from RM and RC for investigations. Microscopic observation detected xanthophores and erythrophores in all samples, except RC juveniles with no erythrophores. Melanophores were presented only in RC. The comparative analysis revealed that genes involved in pteridine synthesis (gch1 and zgc:153031), one-carbon metabolism (aldh1l2 and zgc153031), and lipid metabolism (apoda and klf1) were differentially expressed in RM juveniles, which may be associated with the development of erythrophores and xanthophores. The temporal inhibition of melanophore differentiation and development was observed in RM juveniles, coupled with elevated expression of notum2 and sost, two antagonist genes in Wnt-signaling, suggesting their roles in melanophore development. Distinct pigment pattern between RM and RC since the juvenile stage may be driven by the differential expression of multiple axial developmental genes, including GATA, ankyrin, and mitotic spindle orientation proteins. This is the first report to describe the differential growth of cutaneous pigments and the molecular processes involved in red discus. The results provided valuable insights into pigment pattern differences in an interesting ornamental fish model.
Collapse
Affiliation(s)
- Tian Tsyh Ng
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Aquacity Tropical Fish Sdn. Bhd., Kuala Lumpur, Malaysia
| | - Cher Chien Lau
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Min Pau Tan
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Li Lian Wong
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Tengku Sifzizul Tengku Muhammad
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Sui Liying
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
12
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
UNLABELLED Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
13
|
Anjur-Dietrich MI, Gomez Hererra V, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Mechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein. Dev Cell 2024; 59:2429-2442.e4. [PMID: 38866013 DOI: 10.1016/j.devcel.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The forces that orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed at which it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼5 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
14
|
Pazzaglia UE, Zecca PA, Terova G, Serena F, Mancusi C, Raimondi G, Zarattini G, Raspanti M, Reguzzoni M. Comparative Morphology of Skeletal Development in Homo sapiens and Raja asterias: Divergent Stiffening Patterns Due to Different Matrix Calcification Processes. Animals (Basel) 2024; 14:2575. [PMID: 39272360 PMCID: PMC11394434 DOI: 10.3390/ani14172575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Before calcification begins, the early embryonic and fetal skeletal development of both mammalian Homo sapiens and the chondrichthyan fish Raja asterias consists exclusively of cartilage. This cartilage is formed and shaped through processes involving tissue segmentation and the frequency, distribution, and orientation of chondrocyte mitoses. In the subsequent developmental phase, mineral deposition in the cartilage matrix conditions the development further. The stiffness and structural layout of the mineralized cartilage have a significant impact on the shape of the anlagen (early formative structure of a tissue, a scaffold on which the new bone is formed) and the mechanical properties of the skeletal segments. The fundamental difference between the two studied species lies in how calcified cartilage serves as a scaffold for osteoblasts to deposit bone matrix, which is then remodeled. In contrast, chondrichthyans retain the calcified cartilage as the definitive skeletal structure. This study documents the distinct mineral deposition pattern in the cartilage of the chondrichthyan R. asterias, in which calcification progresses with the formation of focal calcification nuclei or "tesserae". These are arranged on the flat surface of the endo-skeleton (crustal pattern) or aligned in columns (catenated pattern) in the radials of the appendicular skeleton. This anatomical structure is well adapted to meet the mechanical requirements of locomotion in the water column. Conversely, in terrestrial mammals, endochondral ossification (associated with the remodeling of the calcified matrix) provides limb bones with the necessary stiffness to withstand the strong bending and twisting stresses of terrestrial locomotion. In this study, radiographs of marine mammals (reproduced from previously published studies) document how the endochondral ossification in dolphin flippers adapts to the mechanical demands of aquatic locomotion. This adaptation includes the reduction in the length of the stylopodium and zeugopodium and an increase in the number of elements in the autopodium's central rays.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Piero A Zecca
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Fabrizio Serena
- Institute of Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIN), 80131 Mazara del Vallo, Italy
| | - Cecilia Mancusi
- Environmental Protection Agency of Tuscany Region (ARPAT), 56127 Pisa, Italy
| | | | - Guido Zarattini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Mario Raspanti
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
15
|
Hargreaves D, Woolner S, Jensen OE. Relaxation and Noise-Driven Oscillations in a Model of Mitotic Spindle Dynamics. Bull Math Biol 2024; 86:113. [PMID: 39096399 PMCID: PMC11297845 DOI: 10.1007/s11538-024-01341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024]
Abstract
During cell division, the mitotic spindle moves dynamically through the cell to position the chromosomes and determine the ultimate spatial position of the two daughter cells. These movements have been attributed to the action of cortical force generators which pull on the astral microtubules to position the spindle, as well as pushing events by these same microtubules against the cell cortex and plasma membrane. Attachment and detachment of cortical force generators working antagonistically against centring forces of microtubules have been modelled previously (Grill et al. in Phys Rev Lett 94:108104, 2005) via stochastic simulations and mean-field Fokker-Planck equations (describing random motion of force generators) to predict oscillations of a spindle pole in one spatial dimension. Using systematic asymptotic methods, we reduce the Fokker-Planck system to a set of ordinary differential equations (ODEs), consistent with a set proposed by Grill et al., which can provide accurate predictions of the conditions for the Fokker-Planck system to exhibit oscillations. In the limit of small restoring forces, we derive an algebraic prediction of the amplitude of spindle-pole oscillations and demonstrate the relaxation structure of nonlinear oscillations. We also show how noise-induced oscillations can arise in stochastic simulations for conditions in which the mean-field Fokker-Planck system predicts stability, but for which the period can be estimated directly by the ODE model and the amplitude by a related stochastic differential equation that incorporates random binding kinetics.
Collapse
Affiliation(s)
- Dionn Hargreaves
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Sarah Woolner
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Oliver E Jensen
- Department of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
16
|
Smolen P, Ruiz L, Barai A, Minc N, Delacour D. [A role of astral microtubules in the orientation of cell division: when length counts… too!]. Med Sci (Paris) 2024; 40:608-612. [PMID: 39303109 DOI: 10.1051/medsci/2024087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Affiliation(s)
- Prune Smolen
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| | - Laura Ruiz
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| | - Amlan Barai
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France - Équipe labellisée La ligue contre le cancer
| | - Delphine Delacour
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| |
Collapse
|
17
|
Chen HF, Wu KJ. LncRNAs and asymmetric cell division: The epigenetic mechanisms. Biomed J 2024; 48:100774. [PMID: 39059582 PMCID: PMC12001117 DOI: 10.1016/j.bj.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, Taiwan; Graduate Institutes of Cell Biology, China Medical University, Taichung, Taiwan.
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
19
|
Werren EA, Peirent ER, Jantti H, Guxholli A, Srivastava KR, Orenstein N, Narayanan V, Wiszniewski W, Dawidziuk M, Gawlinski P, Umair M, Khan A, Khan SN, Geneviève D, Lehalle D, van Gassen KLI, Giltay JC, Oegema R, van Jaarsveld RH, Rafiullah R, Rappold GA, Rabin R, Pappas JG, Wheeler MM, Bamshad MJ, Tsan YC, Johnson MB, Keegan CE, Srivastava A, Bielas SL. Biallelic variants in CSMD1 are implicated in a neurodevelopmental disorder with intellectual disability and variable cortical malformations. Cell Death Dis 2024; 15:379. [PMID: 38816421 PMCID: PMC11140003 DOI: 10.1038/s41419-024-06768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CTt, 06032, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henna Jantti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kinshuk Raj Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Naama Orenstein
- Schneider Children's Medical Center of Israel, Petah Tikva, 4920235, Israel
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Wojciech Wiszniewski
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mateusz Dawidziuk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Punjab, 54770, Pakistan
| | - Amjad Khan
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa, 28420, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - David Geneviève
- Montpellier University, Inserm Unit U1183, Reference Center for Rare Diseases and Developmental Anomalies, CHU, 34000, Montpellier, France
| | - Daphné Lehalle
- Sorbonne University, Department of Medical Genetics, Hospital Armand Trousseau, 75012, Paris, France
| | - K L I van Gassen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Richard H van Jaarsveld
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 EA, The Netherlands
| | - Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences, BUITEMS, Quetta, 87300, Pakistan
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, 69120, Germany
| | - Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - John G Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute, Washington, 98195, USA
| | - Yao-Chang Tsan
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew B Johnson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anshika Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India.
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Blanchard GB, Scarpa E, Muresan L, Sanson B. Mechanical stress combines with planar polarised patterning during metaphase to orient embryonic epithelial cell divisions. Development 2024; 151:dev202862. [PMID: 38639390 PMCID: PMC11165716 DOI: 10.1242/dev.202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
21
|
Lamb H, Liro M, Myles K, Fernholz M, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the C. elegans EMS blastomere. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588162. [PMID: 38645195 PMCID: PMC11030239 DOI: 10.1101/2024.04.04.588162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in ced-10 embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Małgorzata Liro
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Krista Myles
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Lesilee S. Rose
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| |
Collapse
|
22
|
Atajanova T, Kang EM, Postnikova A, Price AL, Doerr S, Du M, Ugenti A, Ragkousi K. Lateral cell polarization drives organization of epithelia in sea anemone embryos and embryonic cell aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588493. [PMID: 38645007 PMCID: PMC11030385 DOI: 10.1101/2024.04.07.588493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
One of the first organizing processes during animal development is the assembly of embryonic cells into epithelia. In certain animals, including Hydra and sea anemones, epithelia also emerge when cells from dissociated tissues are aggregated back together. Although cell adhesion is required to keep cells together, it is not clear whether cell polarization plays a role as epithelia emerge from disordered aggregates. Here, we demonstrate that lateral cell polarization is essential for epithelial organization in both embryos and aggregates of the sea anemone Nematostella vectensis. Specifically, knock down of the lateral polarity protein Lgl disrupts epithelia in developing embryos and impairs the capacity of dissociated cells to epithelialize from aggregates. Cells in lgl mutant epithelia lose their columnar shape and have mispositioned mitotic spindles and ciliary basal bodies. Together, our data suggest that in Nematostella, Lgl is required to establish lateral cell polarity and position cytoskeletal organelles in cells of embryos and aggregates during de novo epithelial organization.
Collapse
Affiliation(s)
- Tavus Atajanova
- Department of Biology, Amherst College, Amherst, MA 01002, USA
- Present address: Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Anna Postnikova
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | | | - Sophia Doerr
- Department of Biology, Amherst College, Amherst, MA 01002, USA
- Present address: Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Michael Du
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Alicia Ugenti
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | | |
Collapse
|
23
|
Yu L, Kong N, Lin Y, Qiu P, Xu Q, Zhang Y, Zhen X, Yan G, Sun H, Mei J, Cao G. NUSAP1 regulates mouse oocyte meiotic maturation. J Cell Biochem 2023; 124:1931-1947. [PMID: 37992207 DOI: 10.1002/jcb.30498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.
Collapse
Affiliation(s)
- Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yuling Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Panpan Qiu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Qian Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jie Mei
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
24
|
Watson JL, Krüger LK, Ben-Sasson AJ, Bittleston A, Shahbazi MN, Planelles-Herrero VJ, Chambers JE, Manton JD, Baker D, Derivery E. Synthetic Par polarity induces cytoskeleton asymmetry in unpolarized mammalian cells. Cell 2023; 186:4710-4727.e35. [PMID: 37774705 PMCID: PMC10765089 DOI: 10.1016/j.cell.2023.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.
Collapse
Affiliation(s)
- Joseph L Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Lara K Krüger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Ariel J Ben-Sasson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alice Bittleston
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | | | - Joseph E Chambers
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Hills Rd, Cambridge, UK
| | - James D Manton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
25
|
Anjur-Dietrich MI, Hererra VG, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Clustering of cortical dynein regulates the mechanics of spindle orientation in human mitotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557210. [PMID: 37745442 PMCID: PMC10515834 DOI: 10.1101/2023.09.11.557210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The forces which orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ~1 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I. Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J. Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J. Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
26
|
Saleh J, Fardin MA, Barai A, Soleilhac M, Frenoy O, Gaston C, Cui H, Dang T, Gaudin N, Vincent A, Minc N, Delacour D. Length limitation of astral microtubules orients cell divisions in murine intestinal crypts. Dev Cell 2023; 58:1519-1533.e6. [PMID: 37419117 DOI: 10.1016/j.devcel.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Planar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues. Using high-resolution 3D imaging, simulations, and cell-shape and cytoskeleton manipulations, we show that planar divisions resulted from a length limitation in astral microtubules (MTs) which precludes them from interacting with basal polarity, and orient spindles from the local geometry of apical domains. Accordingly, lengthening MTs affected spindle planarity, cell positioning, and crypt arrangement. We conclude that MT length regulation may serve as a key mechanism for spindles to sense local cell shapes and tissue forces to preserve mammalian epithelial architecture.
Collapse
Affiliation(s)
- Jad Saleh
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Amlan Barai
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Matis Soleilhac
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Olivia Frenoy
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Cécile Gaston
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Hongyue Cui
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tien Dang
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Noémie Gaudin
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Audrey Vincent
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France; ORGALille Core Facility, CANTHER, Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée La Ligue Contre le Cancer, France.
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
27
|
Parra AS, Moezzi CA, Johnston CA. Drosophila Adducin facilitates phase separation and function of a conserved spindle orientation complex. Front Cell Dev Biol 2023; 11:1220529. [PMID: 37655159 PMCID: PMC10467427 DOI: 10.3389/fcell.2023.1220529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Asymmetric cell division (ACD) allows stem cells to generate differentiating progeny while simultaneously maintaining their own pluripotent state. ACD involves coupling mitotic spindle orientation with cortical polarity cues to direct unequal segregation of cell fate determinants. In Drosophila neural stem cells (neuroblasts; NBs), spindles orient along an apical-basal polarity axis through a conserved complex of Partner of Inscuteable (Pins; human LGN) and Mushroom body defect (Mud; human NuMA). While many details of its function are well known, the molecular mechanics that drive assembly of the cortical Pins/Mud complex remain unclear, particularly with respect to the mutually exclusive Pins complex formed with the apical scaffold protein Inscuteable (Insc). Here we identify Hu li tai shao (Hts; human Adducin) as a direct Mud-binding protein, using an aldolase fold within its head domain (HtsHEAD) to bind a short Mud coiled-coil domain (MudCC) that is adjacent to the Pins-binding domain (MudPBD). Hts is expressed throughout the larval central brain and apically polarizes in mitotic NBs where it is required for Mud-dependent spindle orientation. In vitro analyses reveal that Pins undergoes liquid-liquid phase separation with Mud, but not with Insc, suggesting a potential molecular basis for differential assembly mechanics between these two competing apical protein complexes. Furthermore, we find that Hts binds an intact Pins/Mud complex, reduces the concentration threshold for its phase separation, and alters the liquid-like property of the resulting phase separated droplets. Domain mapping and mutational analyses implicate critical roles for both multivalent interactions (via MudCC oligomerization) and protein disorder (via an intrinsically disordered region in Hts; HtsIDR) in phase separation of the Hts/Mud/Pins complex. Our study identifies a new component of the spindle positioning machinery in NBs and suggests that phase separation of specific protein complexes might regulate ordered assembly within the apical domain to ensure proper signaling output.
Collapse
|
28
|
Faienza F, Polverino F, Rajendraprasad G, Milletti G, Hu Z, Colella B, Gargano D, Strappazzon F, Rizza S, Vistesen MV, Luo Y, Antonioli M, Cianfanelli V, Ferraina C, Fimia GM, Filomeni G, De Zio D, Dengjel J, Barisic M, Guarguaglini G, Di Bartolomeo S, Cecconi F. AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation. Cell Mol Life Sci 2023; 80:251. [PMID: 37584777 PMCID: PMC10432340 DOI: 10.1007/s00018-023-04878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.
Collapse
Affiliation(s)
- Fiorella Faienza
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | | | - Giacomo Milletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Barbara Colella
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Deborah Gargano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène, Univ Lyon, Univ Lyon 1, CNRS, INSERM, 69008, Lyon, France
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Mette Vixø Vistesen
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Manuela Antonioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Science, University "ROMA TRE", 00146, Rome, Italy
- Department of Woman and Child Health and Public Health, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Caterina Ferraina
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Institute, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University Of Copenhagen, Copenhagen, Denmark
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | | | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
29
|
Chen Q, Weng K, Lin M, Jiang M, Fang Y, Chung SSW, Huang X, Zhong Q, Liu Z, Huang Z, Lin J, Li P, El-Rifai W, Zaika A, Li H, Rustgi AK, Nakagawa H, Abrams JA, Wang TC, Lu C, Huang C, Que J. SOX9 Modulates the Transformation of Gastric Stem Cells Through Biased Symmetric Cell Division. Gastroenterology 2023; 164:1119-1136.e12. [PMID: 36740200 PMCID: PMC10200757 DOI: 10.1053/j.gastro.2023.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Transformation of stem/progenitor cells has been associated with tumorigenesis in multiple tissues, but stem cells in the stomach have been hard to localize. We therefore aimed to use a combination of several markers to better target oncogenes to gastric stem cells and understand their behavior in the initial stages of gastric tumorigenesis. METHODS Mouse models of gastric metaplasia and cancer by targeting stem/progenitor cells were generated and analyzed with techniques including reanalysis of single-cell RNA sequencing and immunostaining. Gastric cancer cell organoids were genetically manipulated with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for functional studies. Cell division was determined by bromodeoxyuridine-chasing assay and the assessment of the orientation of the mitotic spindles. Gastric tissues from patients were examined by histopathology and immunostaining. RESULTS Oncogenic insults lead to expansion of SOX9+ progenitor cells in the mouse stomach. Genetic lineage tracing and organoid culture studies show that SOX9+ gastric epithelial cells overlap with SOX2+ progenitors and include stem cells that can self-renew and differentiate to generate all gastric epithelial cells. Moreover, oncogenic targeting of SOX9+SOX2+ cells leads to invasive gastric cancer in our novel mouse model (Sox2-CreERT;Sox9-loxp(66)-rtTA-T2A-Flpo-IRES-loxp(71);Kras(Frt-STOP-Frt-G12D);P53R172H), which combines Cre-loxp and Flippase-Frt genetic recombination systems. Sox9 deletion impedes the expansion of gastric progenitor cells and blocks neoplasia after Kras activation. Although Sox9 is not required for maintaining tissue homeostasis where asymmetric division predominates, loss of Sox9 in the setting of Kras activation leads to reduced symmetric cell division and effectively attenuates the Kras-dependent expansion of stem/progenitor cells. Similarly, Sox9 deletion in gastric cancer organoids reduces symmetric cell division, organoid number, and organoid size. In patients with gastric cancer, high levels of SOX9 are associated with recurrence and poor prognosis. CONCLUSION SOX9 marks gastric stem cells and modulates biased symmetric cell division, which appears to be required for the malignant transformation of gastric stem cells.
Collapse
Affiliation(s)
- Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Ming Jiang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Sanny S W Chung
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Xiaobo Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhiyu Liu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Alexander Zaika
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Haiyan Li
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
30
|
Neville KE, Finegan TM, Lowe N, Bellomio PM, Na D, Bergstralh DT. The Drosophila mitotic spindle orientation machinery requires activation, not just localization. EMBO Rep 2023; 24:e56074. [PMID: 36629398 PMCID: PMC9986814 DOI: 10.15252/embr.202256074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The orientation of the mitotic spindle at metaphase determines the placement of the daughter cells. Spindle orientation in animals typically relies on an evolutionarily conserved biological machine comprised of at least four proteins - called Pins, Gαi, Mud, and Dynein in flies - that exerts a pulling force on astral microtubules and reels the spindle into alignment. The canonical model for spindle orientation holds that the direction of pulling is determined by asymmetric placement of this machinery at the cell cortex. In most cell types, this placement is thought to be mediated by Pins, and a substantial body of literature is therefore devoted to identifying polarized cues that govern localized cortical enrichment of Pins. In this study we revisit the canonical model and find that it is incomplete. Spindle orientation in the Drosophila follicular epithelium and embryonic ectoderm requires not only Pins localization but also direct interaction between Pins and the multifunctional protein Discs large. This requirement can be over-ridden by interaction with another Pins interacting protein, Inscuteable.
Collapse
Affiliation(s)
| | - Tara M Finegan
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Nicholas Lowe
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | | | - Daxiang Na
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Dan T Bergstralh
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
- Department of Physics & AstronomyUniversity of RochesterRochesterNew YorkUSA
- Department of Biomedical GeneticsUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
31
|
Boman BM, Dinh TN, Decker K, Emerick B, Modarai S, Opdenaker L, Fields JZ, Raymond C, Schleiniger G. Beyond the Genetic Code: A Tissue Code?. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36945600 PMCID: PMC10028806 DOI: 10.1101/2023.03.05.531161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The genetic code determines how the precise amino acid sequence of proteins is specified by genomic information in cells. But what specifies the precise histologic organization of cells in plant and animal tissues is unclear. We now hypothesize that another code, the tissue code , exists at an even higher level of complexity which determines how tissue organization is dynamically maintained. Accordingly, we modeled spatial and temporal asymmetries of cell division and established that five simple mathematical laws ("the tissue code") convey a set of biological rules that maintain the specific organization and continuous self-renewal dynamics of cells in tissues. These laws might even help us understand wound healing, and how tissue disorganization leads to birth defects and tissue pathology like cancer.
Collapse
|
32
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
33
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
34
|
De la Cruz G, Nikolaishvili Feinberg N, Williams SE. Automated Immunofluorescence Staining for Analysis of Mitotic Stages and Division Orientation in Brain Sections. Methods Mol Biol 2023; 2583:63-79. [PMID: 36418726 DOI: 10.1007/978-1-0716-2752-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microcephaly often results from mitotic defects in neuronal progenitors, frequently by decreasing proliferation rates or shifting cell fates. During neurogenesis, oriented cell division-the molecular control of mitotic spindle positioning to control the axis of division-represents an important mechanism to balance expansion of the progenitor pool with generating cellular diversity. While mostly studied in the context of cortical development, more recently, spindle orientation has emerged as a key player in the formation of other brain regions such as the cerebellum. Here we describe methods to perform automated dual-color fluorescent immunohistochemistry on murine cerebellar sections using the mitotic markers phospho-Histone H3 and Survivin, and detail analytical and statistical approaches to display and compare division orientation datasets.
Collapse
Affiliation(s)
- Gabriela De la Cruz
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Nikolaishvili Feinberg
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E Williams
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Napoli FR, Daly CM, Neal S, McCulloch KJ, Zaloga AR, Liu A, Koenig KM. Cephalopod retinal development shows vertebrate-like mechanisms of neurogenesis. Curr Biol 2022; 32:5045-5056.e3. [PMID: 36356573 PMCID: PMC9729453 DOI: 10.1016/j.cub.2022.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
Coleoid cephalopods, including squid, cuttlefish, and octopus, have large and complex nervous systems and high-acuity, camera-type eyes. These traits are comparable only to features that are independently evolved in the vertebrate lineage. The size of animal nervous systems and the diversity of their constituent cell types is a result of the tight regulation of cellular proliferation and differentiation in development. Changes in the process of development during evolution that result in a diversity of neural cell types and variable nervous system size are not well understood. Here, we have pioneered live-imaging techniques and performed functional interrogation to show that the squid Doryteuthis pealeii utilizes mechanisms during retinal neurogenesis that are hallmarks of vertebrate processes. We find that retinal progenitor cells in the squid undergo nuclear migration until they exit the cell cycle. We identify retinal organization corresponding to progenitor, post-mitotic, and differentiated cells. Finally, we find that Notch signaling may regulate both retinal cell cycle and cell fate. Given the convergent evolution of elaborate visual systems in cephalopods and vertebrates, these results reveal common mechanisms that underlie the growth of highly proliferative neurogenic primordia. This work highlights mechanisms that may alter ontogenetic allometry and contribute to the evolution of complexity and growth in animal nervous systems.
Collapse
Affiliation(s)
- Francesca R Napoli
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Neal
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kyle J McCulloch
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alexandra R Zaloga
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Lodde V, Garcia Barros R, Terzaghi L, Franciosi F, Luciano AM. Insights on the Role of PGRMC1 in Mitotic and Meiotic Cell Division. Cancers (Basel) 2022; 14:cancers14235755. [PMID: 36497237 PMCID: PMC9736406 DOI: 10.3390/cancers14235755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, chromosome missegregation and cytokinesis defects have been recognized as hallmarks of cancer cells. Cytoskeletal elements composing the spindle and the contractile ring and their associated proteins play crucial roles in the faithful progression of mitotic cell division. The hypothesis that PGRMC1, most likely as a part of a yet-to-be-defined complex, is involved in the regulation of spindle function and, more broadly, the cytoskeletal machinery driving cell division is particularly appealing. Nevertheless, more than ten years after the preliminary observation that PGRMC1 changes its localization dynamically during meiotic and mitotic cell division, this field of research has remained a niche and needs to be fully explored. To encourage research in this fascinating field, in this review, we will recap the current knowledge on PGRMC1 function during mitotic and meiotic cell division, critically highlighting the strengths and limitations of the experimental approaches used so far. We will focus on known interacting partners as well as new putative associated proteins that have recently arisen in the literature and that might support current as well as new hypotheses of a role for PGRMC1 in specific spindle subcompartments, such as the centrosome, kinetochores, and the midzone/midbody.
Collapse
|
37
|
Lobert VH, Skardal ML, Malerød L, Simensen JE, Algra HA, Andersen AN, Fleischer T, Enserink HA, Liestøl K, Heath JK, Rusten TE, Stenmark HA. PHLPP1 regulates CFTR activity and lumen expansion through AMPK. Development 2022; 149:276412. [PMID: 35997536 PMCID: PMC9534488 DOI: 10.1242/dev.200955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Complex organ development depends on single lumen formation and its expansion during tubulogenesis. This can be achieved by correct mitotic spindle orientation during cell division, combined with luminal fluid filling that generates hydrostatic pressure. Using a human 3D cell culture model, we have identified two regulators of these processes. We find that pleckstrin homology leucine-rich repeat protein phosphatase (PHLPP) 2 regulates mitotic spindle orientation, and thereby midbody positioning and maintenance of a single lumen. Silencing the sole PHLPP family phosphatase in Drosophila melanogaster, phlpp, resulted in defective spindle orientation in Drosophila neuroblasts. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) is the main channel regulating fluid transport in this system, stimulated by phosphorylation by protein kinase A and inhibited by the AMP-activated protein kinase AMPK. During lumen expansion, CFTR remains open through the action of PHLPP1, which stops activated AMPK from inhibiting ion transport through CFTR. In the absence of PHLPP1, the restraint on AMPK activity is lost and this tips the balance in the favour of channel closing, resulting in the lack of lumen expansion and accumulation of mucus.
Collapse
Affiliation(s)
- Viola H. Lobert
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Maren L. Skardal
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Lene Malerød
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Julia E. Simensen
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Hermine A. Algra
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Aram N. Andersen
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Thomas Fleischer
- Institute for Cancer Research, Oslo University Hospital 3 Department of Cancer Genetics , , Montebello, Oslo 0379 , Norway
| | - Hilde A. Enserink
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Knut Liestøl
- University of Oslo 4 Department of Informatics , , Oslo 0316 , Norway
| | - Joan K. Heath
- Walter and Eliza Hall Institute of Medical Research 5 Epigenetics and Development Division , , Parkville, Victoria 3052 , Australia
| | - Tor Erik Rusten
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Harald A. Stenmark
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| |
Collapse
|
38
|
Akbar H, Cao J, Wang D, Yuan X, Zhang M, Muthusamy S, Song X, Liu X, Aikhionbare F, Yao X, Gao X, Liu X. Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 2022; 14:6747133. [PMID: 36190325 PMCID: PMC9926331 DOI: 10.1093/jmcb/mjac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | | | | | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| |
Collapse
|
39
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
40
|
Camuglia J, Chanet S, Martin AC. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. eLife 2022; 11:e78779. [PMID: 35796436 PMCID: PMC9262390 DOI: 10.7554/elife.78779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 01/03/2023] Open
Abstract
Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.
Collapse
Affiliation(s)
- Jaclyn Camuglia
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| | - Soline Chanet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSLParisFrance
| | - Adam C Martin
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| |
Collapse
|
41
|
Kelkar M, Bohec P, Smith MB, Sreenivasan V, Lisica A, Valon L, Ferber E, Baum B, Salbreux G, Charras G. Spindle reorientation in response to mechanical stress is an emergent property of the spindle positioning mechanisms. Proc Natl Acad Sci U S A 2022; 119:e2121868119. [PMID: 35727980 PMCID: PMC9245638 DOI: 10.1073/pnas.2121868119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Proper orientation of the mitotic spindle plays a crucial role in embryos, during tissue development, and in adults, where it functions to dissipate mechanical stress to maintain tissue integrity and homeostasis. While mitotic spindles have been shown to reorient in response to external mechanical stresses, the subcellular cues that mediate spindle reorientation remain unclear. Here, we used a combination of optogenetics and computational modeling to investigate how mitotic spindles respond to inhomogeneous tension within the actomyosin cortex. Strikingly, we found that the optogenetic activation of RhoA only influences spindle orientation when it is induced at both poles of the cell. Under these conditions, the sudden local increase in cortical tension induced by RhoA activation reduces pulling forces exerted by cortical regulators on astral microtubules. This leads to a perturbation of the balance of torques exerted on the spindle, which causes it to rotate. Thus, spindle rotation in response to mechanical stress is an emergent phenomenon arising from the interaction between the spindle positioning machinery and the cell cortex.
Collapse
Affiliation(s)
- Manasi Kelkar
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Pierre Bohec
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | | | - Varun Sreenivasan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, United Kingdom
| | - Ana Lisica
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris , France
| | - Emma Ferber
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Buzz Baum
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Genetics and Evolution, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
42
|
Tao R, Bi J, Zhu F, Wang X, Jia C, Xu H, He X, Li J. Division Behaviors and Their Effects on Preimplantation Development of Pig Embryos. Reprod Domest Anim 2022; 57:1016-1028. [PMID: 35662274 DOI: 10.1111/rda.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
Quality of preimplantation embryos could affect development efficiency after embryo transfer. However, assessment of preimplantation embryos was unsatisfied especially in pig embryos to date. Therefore, the present study was design to investigate available and applicable parameters which indicating development potential and quality of porcine preimplantation embryos produced by handmade cloning (HMC), parthenogenetic activation without zona pellucida (PAZF) and with zona pellucida (PAZI). Results firstly detected a common division behavior that formation of uneven division with two unequal size blastomeres (UD 2-cell), especially in HMC embryos, the proportion of UD 2-cell was significantly higher than that of equal size blastomeres (ED 2-cell) with 72.56 ± 4.56 vs. 24.57 ± 1.92. Formation of UD 2-cell might due to spindle migrates along the long axis in 1-cell stage, and the cleavage furrow not formed in the center of cytoplasm. In the two sister blastomeres of UD 2-cell, unevenly distribution of organelles (mitochondria and lipid droplet) was observed with lower proportion in the smaller one (p<0.05). Althoug no difference of blastocyst rate was observed between UD and ED 2-cell embryos, the cell number per blastocyst from UD 2-cell embryos was lower than that from ED 2-cell embryos (44.15 ± 2.05 vs. 51.55 ± 1.83). Besides, because of nonsynchronized division of each blastomeres, another common behavior that three cleavage routes were observed in all of HMC/PAZF/PAZI embryos that T1 (2-cell → 3-cell → 4-cell → ≥ 5-cell → morula → blastocyst), T2 (2-cell → 3-cell → 4-cell → morula → blastocyst), and T3 (2-cell → 3-cell / 4-cell → morula → blastocyst). Therefore, in pig in vitro produced embryos, division behaviors of uneven volume of cytoplasm and nonsynchronized cell cycles were observed at the early embryonic developmental stage, which might be another potential factor to evaluate embryonic development.
Collapse
Affiliation(s)
- Ruixin Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaying Bi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xuguang Wang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urimuqi, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongxia Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xu He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Darnat P, Burg A, Sallé J, Lacoste J, Louvet-Vallée S, Gho M, Audibert A. Cortical Cyclin A controls spindle orientation during asymmetric cell divisions in Drosophila. Nat Commun 2022; 13:2723. [PMID: 35581185 PMCID: PMC9114397 DOI: 10.1038/s41467-022-30182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
The coordination between cell proliferation and cell polarity is crucial to orient the asymmetric cell divisions to generate cell diversity in epithelia. In many instances, the Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is spatially and temporally coordinated with cell cycle progression has remained elusive. Using Drosophila sensory organ precursor cells as a model system, we show that Cyclin A, the main Cyclin driving the transition to M-phase of the cell cycle, is recruited to the apical-posterior cortex in prophase by the Frizzled/Dishevelled complex. This cortically localized Cyclin A then regulates the orientation of the division by recruiting Mud, a homologue of NuMA, the well-known spindle-associated protein. The observed non-canonical subcellular localization of Cyclin A reveals this mitotic factor as a direct link between cell proliferation, cell polarity and spindle orientation. The Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is coordinated with the cell cycle is unclear. Here, the authors show with Drosophila sensory organ precursor cells that Cyclin A is recruited in prophase by Frizzled/Dishevelled, regulating division orientation.
Collapse
Affiliation(s)
- Pénélope Darnat
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Angélique Burg
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, Université Paris Diderot/CNRS, Cellular Spatial Organization Team, F-75005, Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Sophie Louvet-Vallée
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Michel Gho
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| | - Agnès Audibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| |
Collapse
|
44
|
Pascal A, Gallaud E, Giet R, Benaud C. Annexin A2 and Ahnak control cortical NuMA-dynein localization and mitotic spindle orientation. J Cell Sci 2022; 135:274948. [PMID: 35362526 DOI: 10.1242/jcs.259344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Proper mitotic spindle orientation depends on the correct anchorage of astral microtubules to the cortex. It relies on the remodeling of the cell cortex, a process not fully understood. Annexin A2 (Anx2) is a protein known to be involved in cortical domain remodeling. Here, we report that in early mitosis, Anx2 recruits the scaffold protein Ahnak at the cell cortex facing spindle poles, and the distribution of both proteins is controlled by cell adhesion. Depletion of either protein or impaired cortical Ahnak localization result in delayed anaphase onset and unstable spindle anchoring, which leads to altered spindle orientation. We find that Ahnak is present in a complex with dynein-dynactin. Furthermore, Ahnak and Anx2 are required for dynein and NuMA proper cortical localization and dynamics. We propose that the Ahnak/Anx2 complex influences the cortical organization of the astral microtubule anchoring complex, and thereby mitotic spindle positioning in human cells.
Collapse
Affiliation(s)
- Aude Pascal
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, ERL U1305, F-35000 Rennes, France
| | - Emmanuel Gallaud
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, ERL U1305, F-35000 Rennes, France
| | - Regis Giet
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, ERL U1305, F-35000 Rennes, France
| | - Christelle Benaud
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, ERL U1305, F-35000 Rennes, France
| |
Collapse
|
45
|
Donà F, Eli S, Mapelli M. Insights Into Mechanisms of Oriented Division From Studies in 3D Cellular Models. Front Cell Dev Biol 2022; 10:847801. [PMID: 35356279 PMCID: PMC8959941 DOI: 10.3389/fcell.2022.847801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue. Division orientation, specified by mitotic spindle placement with respect to epithelial apico-basal polarity, controls not only the partitioning of cellular components but also the positioning of the daughter cells within the tissue, and hence the contacts that daughter cells retain with the surrounding microenvironment. Daughter cells positioning is important to determine signal sensing and fate, and therefore the final function of the developing organ. In this review, we will discuss recent discoveries regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing technologies and model systems used to study oriented cell divisions in vitro such as three-dimensional cysts of immortalized cells and intestinal organoids. We also highlight how misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of pathological conditions.
Collapse
Affiliation(s)
- Federico Donà
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
46
|
Serjanov D, Bachay G, Hunter DD, Brunken WJ. Laminin β2 Chain Regulates Cell Cycle Dynamics in the Developing Retina. Front Cell Dev Biol 2022; 9:802593. [PMID: 35096830 PMCID: PMC8790539 DOI: 10.3389/fcell.2021.802593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.
Collapse
Affiliation(s)
- Dmitri Serjanov
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Dale D Hunter
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
47
|
Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nat Chem Biol 2021; 17:1314-1323. [PMID: 34608293 DOI: 10.1038/s41589-021-00875-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Spindle position control is essential for cell fate determination and organogenesis. Early studies indicate the essential role of the evolutionarily conserved Gαi/LGN/NuMA network in spindle positioning. However, the regulatory mechanisms that couple astral microtubules dynamics to the spindle orientation remain elusive. Here we delineated a new mitosis-specific crotonylation-regulated astral microtubule-EB1-NuMA interaction in mitosis. EB1 is a substrate of TIP60, and TIP60-dependent crotonylation of EB1 tunes accurate spindle positioning in mitosis. Mechanistically, TIP60 crotonylation of EB1 at Lys66 forms a dynamic link between accurate attachment of astral microtubules to the lateral cell cortex defined by NuMA-LGN and fine tune of spindle positioning. Real-time imaging of chromosome movements in HeLa cells expressing genetically encoded crotonylated EB1 revealed the importance of crotonylation dynamics for accurate control of spindle orientation during metaphase-anaphase transition. These findings delineate a general signaling cascade that integrates protein crotonylation with accurate spindle positioning for chromosome stability in mitosis.
Collapse
|
48
|
Overexpression of Lin28A in neural progenitor cells in vivo does not lead to brain tumor formation but results in reduced spine density. Acta Neuropathol Commun 2021; 9:185. [PMID: 34801069 PMCID: PMC8606090 DOI: 10.1186/s40478-021-01289-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
LIN28A overexpression has been identified in malignant brain tumors called embryonal tumors with multilayered rosettes (ETMR) but its specific role during brain development remains largely unknown. Radial glia cells of the ventricular zone (VZ) are proposed as a cell of origin for ETMR. We asked whether an overexpression of LIN28A in such cells might affect brain development or result in the formation of brain tumors.Constitutive overexpression of LIN28A in hGFAP-cre::lsl-Lin28A (GL) mice led to a transient increase of proliferation in the cortical VZ at embryonic stages but no postnatal brain tumor formation. Postnatally, GL mice displayed a pyramidal cell layer dispersion of the hippocampus and altered spine and dendrite morphology, including reduced dendritic spine densities in the hippocampus and cortex. GL mice displayed hyperkinetic activity and differential quantitative MS-based proteomics revealed altered time dependent molecular functions regarding mRNA processing and spine morphogenesis. Phosphoproteomic analyses indicated a downregulation of mTOR pathway modulated proteins such as Map1b being involved in microtubule dynamics.In conclusion, we show that Lin28A overexpression transiently increases proliferation of neural precursor cells but it is not sufficient to drive brain tumors in vivo. In contrast, Lin28A impacts on protein abundancy patterns related to spine morphogenesis and phosphorylation levels of proteins involved in microtubule dynamics, resulting in decreased spine densities of neurons in the hippocampus and cortex as well as in altered behavior. Our work provides new insights into the role of LIN28A for neuronal morphogenesis and development and may reveal future targets for treatment of ETMR patients.
Collapse
|
49
|
Wilsch-Bräuninger M, Huttner WB. Primary Cilia and Centrosomes in Neocortex Development. Front Neurosci 2021; 15:755867. [PMID: 34744618 PMCID: PMC8566538 DOI: 10.3389/fnins.2021.755867] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
During mammalian brain development, neural stem and progenitor cells generate the neurons for the six-layered neocortex. The proliferative capacity of the different types of progenitor cells within the germinal zones of the developing neocortex is a major determinant for the number of neurons generated. Furthermore, the various modes of progenitor cell divisions, for which the orientation of the mitotic spindle of progenitor cells has a pivotal role, are a key parameter to ensure the appropriate size and proper cytoarchitecture of the neocortex. Here, we review the roles of primary cilia and centrosomes of progenitor cells in these processes during neocortical development. We specifically focus on the apical progenitor cells in the ventricular zone. In particular, we address the alternating, dual role of the mother centriole (i) as a component of one of the spindle poles during mitosis, and (ii) as the basal body of the primary cilium in interphase, which is pivotal for the fate of apical progenitor cells and their proliferative capacity. We also discuss the interactions of these organelles with the microtubule and actin cytoskeleton, and with junctional complexes. Centriolar appendages have a specific role in this interaction with the cell cortex and the plasma membrane. Another topic of this review is the specific molecular composition of the ciliary membrane and the membrane vesicle traffic to the primary cilium of apical progenitors, which underlie the ciliary signaling during neocortical development; this signaling itself, however, is not covered in depth here. We also discuss the recently emerging evidence regarding the composition and roles of primary cilia and centrosomes in basal progenitors, a class of progenitors thought to be of particular importance for neocortex expansion in development and evolution. While the tight interplay between primary cilia and centrosomes makes it difficult to allocate independent roles to either organelle, mutations in genes encoding ciliary and/or centrosome proteins indicate that both are necessary for the formation of a properly sized and functioning neocortex during development. Human neocortical malformations, like microcephaly, underpin the importance of primary cilia/centrosome-related processes in neocortical development and provide fundamental insight into the underlying mechanisms involved.
Collapse
Affiliation(s)
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
50
|
Deans MR. Conserved and Divergent Principles of Planar Polarity Revealed by Hair Cell Development and Function. Front Neurosci 2021; 15:742391. [PMID: 34733133 PMCID: PMC8558554 DOI: 10.3389/fnins.2021.742391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.
Collapse
Affiliation(s)
- Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|