1
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Time to match; when do homologous chromosomes become closer? Chromosoma 2022; 131:193-205. [PMID: 35960388 DOI: 10.1007/s00412-022-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022]
Abstract
In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a three-dimensional fluorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.
Collapse
|
3
|
SUMOylation of the chromodomain factor MRG-1 in C. elegans affects chromatin-regulatory dynamics. Biotechniques 2022; 73:5-17. [PMID: 35698829 DOI: 10.2144/btn-2021-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenetic mechanisms control chromatin accessibility and gene expression to ensure proper cell fate specification. Histone proteins are integral chromatin components, and their modification promotes gene expression regulation. Specific proteins recognize modified histones such as the chromodomain protein MRG-1. MRG-1 is the Caenorhabditis elegans ortholog of mammalian MRG15, which is involved in DNA repair. MRG-1 binds methylated histone H3 and is important for germline maturation and safeguarding. To elucidate interacting proteins that modulate MRG-1 activity, we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass spectrometry. We detected strong association with the Small ubiquitin-like modifier SUMO, and found that MRG-1 is post-translationally modified by SUMO. SUMOylation affects chromatin-binding dynamics of MRG-1, suggesting an epigenetic regulation pathway, which may be conserved.
Collapse
|
4
|
McManus CE, Mazzetto M, Wei G, Han M, Reinke V. The zinc-finger protein OEF-1 stabilizes histone modification patterns and promotes efficient splicing in the C. elegans germ line. G3-GENES GENOMES GENETICS 2021; 11:6370151. [PMID: 34519784 PMCID: PMC8664474 DOI: 10.1093/g3journal/jkab329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022]
Abstract
To ensure stable transmission of genetic information to the next generation, germ cells frequently silence sex chromosomes, as well as autosomal loci that promote inappropriate differentiation programs. In Caenorhabditis elegans, silenced and active genomic domains are established in germ cells by the histone modification complexes MES-2/3/6 and MES-4, which promote silent and active chromatin states, respectively. These states are generally mutually exclusive and modulation of one state influences the pattern of the other. Here, we identify the zinc-finger protein OEF-1 as a novel modifier of this epigenetic balance in the C. elegans germline. Loss of oef-1 genetically enhances mes mutant phenotypes. Moreover, OEF-1 binding correlates with the active modification H3K36me3 and sustains H3K36me3 levels in the absence of MES-4 activity. OEF-1 also promotes efficient mRNA splicing activity, a process that is influenced by H3K36me3 levels. Finally, OEF-1 limits deposition of the silencing modification H3K27me3 on the X chromosome and at repressed autosomal loci. We propose that OEF-1 might act as an intermediary to mediate the downstream effects of H3K36me3 that promote transcript integrity, and indirectly affect gene silencing as a consequence.
Collapse
Affiliation(s)
- Catherine E McManus
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mariateresa Mazzetto
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mei Han
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
DasGupta A, Lee TL, Li C, Saltzman AL. Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. Front Cell Dev Biol 2020; 8:590195. [PMID: 33195254 PMCID: PMC7649781 DOI: 10.3389/fcell.2020.590195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
In most eukaryotes, the genome is packaged with histones and other proteins to form chromatin. One of the major mechanisms for chromatin regulation is through post-translational modification of histone proteins. Recognition of these modifications by effector proteins, often dubbed histone “readers,” provides a link between the chromatin landscape and gene regulation. The diversity of histone reader proteins for each modification provides an added layer of regulatory complexity. In this review, we will focus on the roles of chromatin organization modifier (chromo) domain containing proteins in the model nematode, Caenorhabditis elegans. An amenability to genetic and cell biological approaches, well-studied development and a short life cycle make C. elegans a powerful system to investigate the diversity of chromo domain protein functions in metazoans. We will highlight recent insights into the roles of chromo domain proteins in the regulation of heterochromatin and the spatial conformation of the genome as well as their functions in cell fate, fertility, small RNA pathways and transgenerational epigenetic inheritance. The spectrum of different chromatin readers may represent a layer of regulation that integrates chromatin landscape, genome organization and gene expression.
Collapse
Affiliation(s)
- Abhimanyu DasGupta
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Arneet L Saltzman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Construction and analysis of artificial chromosomes with de novo holocentromeres in Caenorhabditis elegans. Essays Biochem 2020; 64:233-249. [PMID: 32756873 DOI: 10.1042/ebc20190067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Artificial chromosomes (ACs), generated in yeast (YACs) and human cells (HACs), have facilitated our understanding of the trans-acting proteins, cis-acting elements, such as the centromere, and epigenetic environments that are necessary to maintain chromosome stability. The centromere is the unique chromosomal region that assembles the kinetochore and connects to microtubules to orchestrate chromosome movement during cell division. While monocentromeres are the most commonly characterized centromere organization found in studied organisms, diffused holocentromeres along the chromosome length are observed in some plants, insects and nematodes. Based on the well-established DNA microinjection method in holocentric Caenorhabditis elegans, concatemerization of foreign DNA can efficiently generate megabase-sized extrachromosomal arrays (Exs), or worm ACs (WACs), for analyzing the mechanisms of WAC formation, de novo centromere formation, and segregation through mitosis and meiosis. This review summarizes the structural, size and stability characteristics of WACs. Incorporating LacO repeats in WACs and expressing LacI::GFP allows real-time tracking of newly formed WACs in vivo, whereas expressing LacI::GFP-chromatin modifier fusions can specifically adjust the chromatin environment of WACs. The WACs mature from passive transmission to autonomous segregation by establishing a holocentromere efficiently in a few cell cycles. Importantly, WAC formation does not require any C. elegans genomic DNA sequence. Thus, DNA substrates injected can be changed to evaluate the effects of DNA sequence and structure in WAC segregation. By injecting a complex mixture of DNA, a less repetitive WAC can be generated and propagated in successive generations for DNA sequencing and analysis of the established holocentromere on the WAC.
Collapse
|
7
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
8
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
9
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
10
|
Hajduskova M, Baytek G, Kolundzic E, Gosdschan A, Kazmierczak M, Ofenbauer A, Beato Del Rosal ML, Herzog S, Ul Fatima N, Mertins P, Seelk-Müthel S, Tursun B. MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in Caenorhabditis elegans. Genetics 2019; 211:121-139. [PMID: 30425042 PMCID: PMC6325694 DOI: 10.1534/genetics.118.301674] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin regulators play important roles in the safeguarding of cell identities by opposing the induction of ectopic cell fates and, thereby, preventing forced conversion of cell identities by reprogramming approaches. Our knowledge of chromatin regulators acting as reprogramming barriers in living organisms needs improvement as most studies use tissue culture. We used Caenorhabditis elegans as an in vivo gene discovery model and automated solid-phase RNA interference screening, by which we identified 10 chromatin-regulating factors that protect cells against ectopic fate induction. Specifically, the chromodomain protein MRG-1 safeguards germ cells against conversion into neurons. MRG-1 is the ortholog of mammalian MRG15 (MORF-related gene on chromosome 15) and is required during germline development in C. elegans However, MRG-1's function as a barrier for germ cell reprogramming has not been revealed previously. Here, we further provide protein-protein and genome interactions of MRG-1 to characterize its molecular functions. Conserved chromatin regulators may have similar functions in higher organisms, and therefore, understanding cell fate protection in C. elegans may also help to facilitate reprogramming of human cells.
Collapse
Affiliation(s)
- Martina Hajduskova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Gülkiz Baytek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Ena Kolundzic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Alexander Gosdschan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Marlon Kazmierczak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Andreas Ofenbauer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Maria Lena Beato Del Rosal
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Sergej Herzog
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Nida Ul Fatima
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefanie Seelk-Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Baris Tursun
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| |
Collapse
|
11
|
McManus CE, Reinke V. The Germline-Specific Factor OEF-1 Facilitates Coordinated Progression Through Germ Cell Development in Caenorhabditis elegans. Genetics 2018; 208:549-563. [PMID: 29167199 PMCID: PMC5788521 DOI: 10.1534/genetics.117.1123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
The purpose of germ cells is to ensure the faithful transmission of genetic material to the next generation. To develop into mature gametes, germ cells must pass through cell cycle checkpoints while maintaining totipotency and genomic integrity. How germ cells coordinate developmental events while simultaneously protecting their unique fate is not well understood. Here, we characterize a novel nuclear protein, Oocyte-Excluded Factor-1 (OEF-1), with highly specific germline expression in Caenorhabditis elegans OEF-1 is initially detected early in embryogenesis and is expressed in the nuclei of all germ cells during larval stages. In adults, OEF-1 expression abruptly decreases just prior to oocyte differentiation. In oef-1 mutants, the developmental progression of germ cells is accelerated, resulting in subtle defects at multiple stages of germ cell development. Lastly, OEF-1 is primarily associated with the bodies of germline-expressed genes, and as such is excluded from the X chromosome. We hypothesize that OEF-1 may regulate the rate of progression through germ cell development, providing insight into how these critical maturation events are coordinated.
Collapse
Affiliation(s)
- Catherine E McManus
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
12
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
13
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
14
|
Mei F, Chen PF, Dombecki CR, Aljabban I, Nabeshima K. A Defective Meiotic Outcome of a Failure in Homologous Pairing and Synapsis Is Masked by Meiotic Quality Control. PLoS One 2015; 10:e0134871. [PMID: 26247362 PMCID: PMC4527744 DOI: 10.1371/journal.pone.0134871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Successful gamete production is ensured by meiotic quality control, a process in which germ cells that fail in bivalent chromosome formation are eliminated during meiotic prophase. To date, numerous meiotic mutants have been isolated in a variety of model organisms, using defects associated with a failure in bivalent formation as hallmarks of the mutant. Presumably, the meiotic quality control mechanism in those mutants is overwhelmed. In these mutants, all germ cells fail in bivalent formation, and a subset of cells seem to survive the elimination process and develop into gametes. It is possible that mutants that are partially defective in bivalent formation were missed in past genetic screens, because no evident meiotic defects associated with failure in bivalent formation would have been detectable. Meiotic quality control effectively eliminates most failed germ cells, leaving predominately successful ones. Here, we provide evidence supporting this possibility. The Caenorhabditis elegans mrg-1 loss-of-function mutant does not appear to be defective in bivalent formation in diakinesis oocytes. However, defects in homologous chromosome pairing and synapsis during the preceding meiotic prophase, prerequisites for successful bivalent formation, were observed in most, but not all, germ cells. Failed bivalent formation in the oocytes became evident once meiotic quality control was abrogated in the mrg-1 mutant. Both double-strand break repair and synapsis checkpoints are partly responsible for eliminating failed germ cells in the mrg-1 mutant. Interestingly, removal of both checkpoint activities from the mrg-1 mutant is not sufficient to completely suppress the increased germline apoptosis, suggesting the presence of a novel meiotic checkpoint mechanism.
Collapse
Affiliation(s)
- Frank Mei
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter F. Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carolyn R. Dombecki
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Imad Aljabban
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kentaro Nabeshima
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D. Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 2015; 142:291-302. [PMID: 25564623 DOI: 10.1242/dev.115147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line.
Collapse
Affiliation(s)
- Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Lindsay Leahul
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Brendan Bakos
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Katie Jasper
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
16
|
Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2. G3-GENES GENOMES GENETICS 2015; 5:803-17. [PMID: 25758823 PMCID: PMC4426367 DOI: 10.1534/g3.115.016634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15). Like Cap-H2, Mrg15 is required for interphase chromosome compaction and homolog pairing. However, the mechanism by which Mrg15 and Cap-H2 cooperate to maintain interphase chromatin organization remains unclear. Here, we show that Cap-H2 localizes to interband regions on polytene chromosomes and co-localizes with Mrg15 at regions of active transcription across the genome. We show that co-localization of Cap-H2 on polytene chromosomes is partially dependent on Mrg15. We have identified a binding motif within Cap-H2 that is essential for its interaction with Mrg15, and have found that mutation of this motif results in loss of localization of Cap-H2 on polytene chromosomes and results in partial suppression of Cap-H2-mediated compaction and homolog unpairing. Our data are consistent with a model in which Mrg15 acts as a loading factor to facilitate Cap-H2 binding to chromatin and mediate changes in chromatin organization.
Collapse
|
17
|
Xu Y, Gan ES, Zhou J, Wee WY, Zhang X, Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res 2014; 42:10960-74. [PMID: 25183522 PMCID: PMC4176166 DOI: 10.1093/nar/gku781] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trimethylation of lysine 36 of histone H3 (H3K36me3) is found to be associated with various transcription events. In Arabidopsis, the H3K36me3 level peaks in the first half of coding regions, which is in contrast to the 3'-end enrichment in animals. The MRG15 family proteins function as 'reader' proteins by binding to H3K36me3 to control alternative splicing or prevent spurious intragenic transcription in animals. Here, we demonstrate that two closely related Arabidopsis homologues (MRG1 and MRG2) are localised to the euchromatin and redundantly ensure the increased transcriptional levels of two flowering time genes with opposing functions, FLOWERING LOCUS C and FLOWERING LOCUS T (FT). MRG2 directly binds to the FT locus and elevates the expression in an H3K36me3-dependent manner. MRG1/2 binds to H3K36me3 with their chromodomain and interact with the histone H4-specific acetyltransferases (HAM1 and HAM2) to achieve a high expression level through active histone acetylation at the promoter and 5' regions of target loci. Together, this study presents a mechanistic link between H3K36me3 and histone H4 acetylation. Our data also indicate that the biological functions of MRG1/2 have diversified from their animal homologues during evolution, yet they still maintain their conserved H3K36me3-binding molecular function.
Collapse
Affiliation(s)
- Yifeng Xu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Eng-Seng Gan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Jie Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Wan-Yi Wee
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA 30602-7271, USA
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
18
|
Ishiguro KI, Kim J, Shibuya H, Hernández-Hernández A, Suzuki A, Fukagawa T, Shioi G, Kiyonari H, Li XC, Schimenti J, Höög C, Watanabe Y. Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes Dev 2014; 28:594-607. [PMID: 24589552 PMCID: PMC3967048 DOI: 10.1101/gad.237313.113] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
During meiosis, homologous chromosome (homolog) pairing is promoted by several layers of regulation that include dynamic chromosome movement and meiotic recombination. However, the way in which homologs recognize each other remains a fundamental issue in chromosome biology. Here, we show that homolog recognition or association initiates upon entry into meiotic prophase before axis assembly and double-strand break (DSB) formation. This homolog association develops into tight pairing only during or after axis formation. Intriguingly, the ability to recognize homologs is retained in Sun1 knockout spermatocytes, in which telomere-directed chromosome movement is abolished, and this is the case even in Spo11 knockout spermatocytes, in which DSB-dependent DNA homology search is absent. Disruption of meiosis-specific cohesin RAD21L precludes the initial association of homologs as well as the subsequent pairing in spermatocytes. These findings suggest the intriguing possibility that homolog recognition is achieved primarily by searching for homology in the chromosome architecture as defined by meiosis-specific cohesin rather than in the DNA sequence itself.
Collapse
Affiliation(s)
- Kei-ichiro Ishiguro
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-0032, Japan
| | - Hiroki Shibuya
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-0032, Japan
| | | | - Aussie Suzuki
- Department of Molecular Genetics, National Institute of Genetics, the Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics, the Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Kobe 650-0047, Japan
| | - Xin C. Li
- Department of Biomedical Sciences, Center for Vertebrate Genomics, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA
| | - John Schimenti
- Department of Biomedical Sciences, Center for Vertebrate Genomics, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm S171 77, Sweden
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
19
|
Abstract
In preparation for meiotic chromosome segregation, homologous chromosomes need to pair, synapse (i.e., assemble the synaptonemal complex, SC), and then recombine to generate a physical linkage (i.e., chiasma) between them. In many organisms meiotic pairing capacity distributed along the entire chromosome length supports presynaptic alignment. In contrast, the prevailing model for C. elegans proposes that presynaptic homologous pairing is performed solely by a master pairing-site, the pairing center (PC). In this model, the remaining chromosomal regions (the non-PC regions) are not actively involved in presynaptic pairing, and the SC assembling from the PC aligns the homologous chromosomes along non-PC regions and holds them together. Our recent work, however, demonstrates that C. elegans chromosomes establish presynaptic alignment along the entire chromosome length, suggesting that the non-PC regions are also actively involved in the presynaptic pairing process. Furthermore, we have also discovered that the chromodomain protein MRG-1 facilitates this presynaptic non-PC pairing. The phenotype of the mrg-1 mutant indicates that the PC and the non-PC collaborate in successful pairing and synapsis. Therefore, homologous pairing mechanisms in C. elegans possibly share more similarity with those in other organisms than previously thought. Here, we elaborate on these observations and discuss a hypothetical model for presynaptic pairing in C. elegans based on our novel findings.
Collapse
Affiliation(s)
- Kentaro Nabeshima
- Department of Cell and Developmental Biology; University of Michigan Medical School; Ann Arbor, MI USA
| |
Collapse
|
20
|
Maintenance of interphase chromosome compaction and homolog pairing in Drosophila is regulated by the condensin cap-h2 and its partner Mrg15. Genetics 2013; 195:127-46. [PMID: 23821596 PMCID: PMC3761296 DOI: 10.1534/genetics.113.153544] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo activities of condensins are regulated and how functional interactors target condensins to chromatin are not well understood. To better understand how Drosophila melanogaster condensin is regulated, we performed a yeast two-hybrid screen and identified the chromo-barrel domain protein Mrg15 to interact with the Cap-H2 condensin subunit. Genetic interactions demonstrate that Mrg15 function is required for Cap-H2-mediated unpairing of polytene chromosomes in ovarian nurse cells and salivary gland cells. In diploid tissues, transvection assays demonstrate that Mrg15 inhibits transvection at Ubx and cooperates with Cap-H2 to antagonize transvection at yellow. In cultured cells, we show that levels of chromatin-bound Cap-H2 protein are partially dependent on Mrg15 and that Cap-H2-mediated homolog unpairing is suppressed by RNA interference depletion of Mrg15. Thus, maintenance of interphase chromosome compaction and homolog pairing status requires both Mrg15 and Cap-H2. We propose a model where the Mrg15 and Cap-H2 protein–protein interaction may serve to recruit Cap-H2 to chromatin and facilitates compaction of interphase chromatin.
Collapse
|
21
|
Labrador L, Barroso C, Lightfoot J, Müller-Reichert T, Flibotte S, Taylor J, Moerman DG, Villeneuve AM, Martinez-Perez E. Chromosome movements promoted by the mitochondrial protein SPD-3 are required for homology search during Caenorhabditis elegans meiosis. PLoS Genet 2013; 9:e1003497. [PMID: 23671424 PMCID: PMC3649994 DOI: 10.1371/journal.pgen.1003497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/21/2013] [Indexed: 11/29/2022] Open
Abstract
Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC). These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18) mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote homolog pairing and suggests that efficient homology search at the onset of meiosis is largely dependent on motor-driven chromosome movement. Sexually reproducing organisms carry two copies of each chromosome (homologs), which must be separated during gamete formation to prevent chromosome duplication in each generation. This chromosome halving is achieved during meiosis, a type of cell division in which the homologs recognize and pair with one another before they become intimately glued together by a structure called the synaptonemal complex (SC). Homolog pairing and SC assembly coincide with movement of chromosomes inside the nucleus, but how chromosome mobility impacts these events is not understood. We find that the mitochondrial protein SPD-3 is required to ensure normal levels of motor-driven chromosome movement and that, although pairing-promoting proteins are normally recruited at the start of meiosis in spd-3 mutants, reduced chromosome mobility impairs homolog pairing. In contrast, SC assembly is normally started, leading to the installation of SC between non-homologous chromosomes and demonstrating a failure in the coordination of pairing and SC assembly. Reduced movement also causes a controlled delay in exit from early meiotic stages characterized by chromosome clustering and active homology search. Our findings show how the different events that lead to the correct association of homologous chromosomes during early meiosis are affected by chromosome mobility.
Collapse
Affiliation(s)
- Leticia Labrador
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - Consuelo Barroso
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - James Lightfoot
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Enrique Martinez-Perez
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Assembly of the Synaptonemal Complex Is a Highly Temperature-Sensitive Process That Is Supported by PGL-1 During Caenorhabditis elegans Meiosis. G3-GENES GENOMES GENETICS 2013; 3:585-595. [PMID: 23550120 PMCID: PMC3618346 DOI: 10.1534/g3.112.005165] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Successful chromosome segregation during meiosis depends on the synaptonemal complex (SC), a structure that stabilizes pairing between aligned homologous chromosomes. Here we show that SC assembly is a temperature-sensitive process during Caenorhabditis elegans meiosis. Temperature sensitivity of SC assembly initially was revealed through identification of the germline-specific P-granule component PGL-1 as a factor promoting stable homolog pairing. Using an assay system that monitors homolog pairing in vivo, we showed that depletion of PGL-1 at 25° disrupts homolog pairing. Analysis of homolog pairing at other chromosomal loci in a pgl-1−null mutant revealed a pairing defect similar to that observed in mutants lacking SC central region components. Furthermore, loss of pgl-1 function at temperatures ≥25° results in severe impairment in loading of SC central region component SYP-1 onto chromosomes, resulting in formation of SYP-1 aggregates. SC assembly is also temperature sensitive in wild-type worms, which exhibit similar SYP-1 loading defects and formation of SYP-1 aggregates at temperatures ≥26.5°. Temperature shift analyses suggest that assembly of the SC is temperature sensitive, but maintenance of the SC is not. We suggest that the temperature sensitive (ts) nature of SC assembly may contribute to fitness and adaptation capacity in C. elegans by enabling meiotic disruption in response to environmental change, thereby increasing the production of male progeny available for outcrossing.
Collapse
|
23
|
Rog O, Dernburg AF. Chromosome pairing and synapsis during Caenorhabditis elegans meiosis. Curr Opin Cell Biol 2013; 25:349-56. [PMID: 23578368 DOI: 10.1016/j.ceb.2013.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/27/2013] [Accepted: 03/12/2013] [Indexed: 11/18/2022]
Abstract
Meiosis is the specialized cell division cycle that produces haploid gametes to enable sexual reproduction. Reduction of chromosome number by half requires elaborate chromosome dynamics that occur in meiotic prophase to establish physical linkages between each pair of homologous chromosomes. Caenorhabditis elegans has emerged as an excellent model organism for molecular studies of meiosis, enabling investigators to combine the power of molecular genetics, cytology, and live analysis. Here we focus on recent studies that have shed light on how chromosomes find and identify their homologous partners, and the structural changes that accompany and mediate these interactions.
Collapse
Affiliation(s)
- Ofer Rog
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, United States
| | | |
Collapse
|
24
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Lamelza P, Bhalla N. Histone methyltransferases MES-4 and MET-1 promote meiotic checkpoint activation in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003089. [PMID: 23166523 PMCID: PMC3499413 DOI: 10.1371/journal.pgen.1003089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
Chromosomes that fail to synapse during meiosis become enriched for chromatin marks associated with heterochromatin assembly. This response, called meiotic silencing of unsynapsed or unpaired chromatin (MSUC), is conserved from fungi to mammals. In Caenorhabditis elegans, unsynapsed chromosomes also activate a meiotic checkpoint that monitors synapsis. The synapsis checkpoint signal is dependent on cis-acting loci called Pairing Centers (PCs). How PCs signal to activate the synapsis checkpoint is currently unknown. We show that a chromosomal duplication with PC activity is sufficient to activate the synapsis checkpoint and that it undergoes heterochromatin assembly less readily than a duplication of a non-PC region, suggesting that the chromatin state of these loci is important for checkpoint function. Consistent with this hypothesis, MES-4 and MET-1, chromatin-modifying enzymes associated with transcriptional activity, are required for the synapsis checkpoint. In addition, a duplication with PC activity undergoes heterochromatin assembly when mes-4 activity is reduced. MES-4 function is required specifically for the X chromosome, while MES-4 and MET-1 act redundantly to monitor autosomal synapsis. We propose that MES-4 and MET-1 antagonize heterochromatin assembly at PCs of unsynapsed chromosomes by promoting a transcriptionally permissive chromatin environment that is required for meiotic checkpoint function. Moreover, we suggest that different genetic requirements to monitor the behavior of sex chromosomes and autosomes allow for the lone unsynapsed X present in male germlines to be shielded from inappropriate checkpoint activation.
Collapse
Affiliation(s)
| | - Needhi Bhalla
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|