1
|
Bae JA, Choi M, Ahn S, Ko G, Choe DT, Yim H, Nguyen KC, Kim JS, Hall DH, Lee J. Structural Diversity of Mitochondria in the Neuromuscular System across Development Revealed by 3D Electron Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411191. [PMID: 40047328 PMCID: PMC12120778 DOI: 10.1002/advs.202411191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/31/2025] [Indexed: 05/31/2025]
Abstract
As an animal matures, its neural circuit undergoes alterations, yet the developmental changes in intracellular organelles to facilitate these changes is less understood. Using 3D electron microscopy and deep learning, the study develops semi-automated methods for reconstructing mitochondria in C. elegans and collected mitochondria reconstructions from normal reproductive stages and dauer, enabling comparative study on mitochondria structure within the neuromuscular system. It is found that various mitochondria structural properties in neurons correlate with synaptic connections and these properties are preserved across development in different neural circuits. To test the necessity of these universal mitochondria properties, the study examines the behavior in drp-1 mutants with impaired mitochondria fission and discovers that it causes behavioral deficits. Moreover, it is observed that dauer neurons display distinctive mitochondrial features, and mitochondria in dauer muscles exhibit unique reticulum-like structure. It is proposed that these specialized mitochondria structures may serve as an adaptive mechanism to support stage-specific behavioral and physiological needs.
Collapse
Affiliation(s)
- J. Alexander Bae
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Myung‐kyu Choi
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Soungyub Ahn
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Gwanho Ko
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Daniel T. Choe
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Hyunsoo Yim
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Ken C. Nguyen
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNY10461USA
| | - Jinseop S. Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwon16419Republic of Korea
| | - David H. Hall
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNY10461USA
| | - Junho Lee
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Republic of Korea
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
2
|
Mangione CC, Frank A, Dalgard CL, Burnett BG, Flagg TP. Transcriptional reprogramming in SMA mouse hearts reveals signatures of early heart failure and dysregulated calcium signaling. Hum Mol Genet 2025:ddaf060. [PMID: 40287831 DOI: 10.1093/hmg/ddaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease that leads to loss of motor neurons in the anterior horn of the spinal cord with consequent muscle atrophy. SMA results from the functional deletions of the SMN1 gene, resulting in insufficient production of the survival motor neuron (SMN) protein. It is not known why lower motor neurons are particularly sensitive to the loss of SMN function, but it is increasingly apparent that extraneuronal tissues, such as cardiac and skeletal muscle, are also affected by SMN deficiency. We have previously shown that SMN deficiency in a mouse model of spinal muscular atrophy (SMNΔ7) impairs cardiomyocyte contraction and Ca2+ handling. In this study, we performed a comparative total mRNA sequencing analysis of whole hearts isolated at an early (P5) or late (P10) stage of the disease process to investigate the mechanisms contributing to cardiac pathology in SMA. The results demonstrate transcriptional signatures consistent with heart failure, dysregulation of Ca2+ signaling, and hypoxia induced changes occurring as early as P5 and persisting through P10. Similar transcriptomic changes in skeletal muscle tissue indicate that there are likely common, cell autonomous molecular mechanisms resulting in both cardiac and skeletal muscle due to SMN deficiency. The identification of these common themes suggests a link underlying the mechanism of neuronal and non-neuronal deficits in SMA.
Collapse
Affiliation(s)
- Cecelia C Mangione
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, 20814, United States
| | - Andrew Frank
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, 20814, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, 20814, United States
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, 20814, United States
| | - Thomas P Flagg
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, 20814, United States
| |
Collapse
|
3
|
Kamiyama D, Nishida Y, Kamiyama R, Sego A, Vining G, Bui K, Fitch M, Do H, Avraham O, Chihara T. The VAPB Axis Precisely Coordinates the Timing of Motoneuron Dendritogenesis in Neural Map Development. RESEARCH SQUARE 2024:rs.3.rs-5684747. [PMID: 39801516 PMCID: PMC11722539 DOI: 10.21203/rs.3.rs-5684747/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In Drosophila motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process. In this report, we further identify the upstream factors that activate Cdc42. Using single-cell genetics, FRET-based imaging, and biochemical techniques, we demonstrate that the guanine nucleotide exchange factor Vav is anchored to the plasma membrane via the Eph receptor tyrosine kinase, enabling Cdc42 activation. VAMP-associated protein 33 (Vap33), an Eph ligand supplied non-cell-autonomously, may induce Eph autophosphorylation, initiating downstream signaling. Traditionally known as an ER-resident protein, Vap33 is secreted extracellularly at the onset of Cdc42 activation, acting as a temporal cue. In humans, VAPB-the ortholog of Vap33-is similarly secreted in the spinal cord, and its dysregulation leads to amyotrophic lateral sclerosis type 8 (ALS8) and spinal muscular atrophy (SMA). Our findings provide a framework linking VAPB signaling to motor circuitry formation in both health and disease.
Collapse
|
4
|
Kamemura K, Kozono R, Tando M, Okumura M, Koga D, Kusumi S, Tamai K, Okumura A, Sekine S, Kamiyama D, Chihara T. Secretion of endoplasmic reticulum protein VAPB/ALS8 requires topological inversion. Nat Commun 2024; 15:8777. [PMID: 39389966 PMCID: PMC11467184 DOI: 10.1038/s41467-024-53097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
VAMP-associated protein (VAP) is a type IV integral transmembrane protein at the endoplasmic reticulum (ER). Mutations in human VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS). The N-terminal major sperm protein (MSP) domain of VAPB (Drosophila Vap33) is cleaved, secreted, and acts as a signaling ligand for several cell-surface receptors. Although extracellular functions of VAPB are beginning to be understood, it is unknown how the VAPB/Vap33 MSP domain facing the cytosol is secreted to the extracellular space. Here we show that Vap33 is transported to the plasma membrane, where the MSP domain is exposed extracellularly by topological inversion. The externalized MSP domain is cleaved by Matrix metalloproteinase 1/2 (Mmp1/2). Overexpression of Mmp1 restores decreased levels of extracellular MSP domain derived from ALS8-associated Vap33 mutants. We propose an unprecedented secretion mechanism for an ER-resident membrane protein, which may contribute to ALS8 pathogenesis.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Rio Kozono
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mizuki Tando
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Kusumi
- Department of Morphological Sciences, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kanako Tamai
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Aoi Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Sayaka Sekine
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
5
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
6
|
Thulasidharan A, Garg L, Tendulkar S, Ratnaparkhi GS. Age-dependent dynamics of neuronal VAPB ALS inclusions in the adult brain. Neurobiol Dis 2024; 196:106517. [PMID: 38679111 DOI: 10.1016/j.nbd.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.
Collapse
Affiliation(s)
- Aparna Thulasidharan
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Lovleen Garg
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Shweta Tendulkar
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India.
| |
Collapse
|
7
|
Rathor L, Curry S, Park Y, McElroy T, Robles B, Sheng Y, Chen WW, Min K, Xiao R, Lee MH, Han SM. Mitochondrial stress in GABAergic neurons non-cell autonomously regulates organismal health and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585932. [PMID: 38585797 PMCID: PMC10996468 DOI: 10.1101/2024.03.20.585932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.
Collapse
|
8
|
Drosophila melanogaster as a Tool for Amyotrophic Lateral Sclerosis Research. J Dev Biol 2022; 10:jdb10030036. [PMID: 36135369 PMCID: PMC9505035 DOI: 10.3390/jdb10030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Reliable animal model systems are an integral part of biological research. Ever since Thomas Hunt Morgan won a Nobel Prize for genetic work done using the fruit fly (Drosophila melanogaster) as a model organism, it has played a larger and more important role in genetic research. Drosophila models have long been used to study neurodegenerative diseases and have aided in identifying key disease progression biological pathways. Due to the availability of a vast array of genetic manipulation tools, its relatively short lifespan, and its ability to produce many progenies, D. melanogaster has provided the ability to conduct large-scale genetic screens to elucidate possible genetic and molecular interactions in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s Disease, and Amyotrophic Lateral Sclerosis (ALS). With regards to ALS, many of the gene mutations that have been discovered to be linked to the disease have been modeled in Drosophila to provide a look into a detailed model of pathogenesis. The aim of this review is to summarize key and newer developments in ALS research that have utilized Drosophila and to provide insight into the profound use of Drosophila as a tool for modeling this disease.
Collapse
|
9
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
10
|
Tendulkar S, Hegde S, Garg L, Thulasidharan A, Kaduskar B, Ratnaparkhi A, Ratnaparkhi GS. Caspar, an adapter for VAPB and TER94, modulates the progression of ALS8 by regulating IMD/NFκB mediated glial inflammation in a drosophila model of human disease. Hum Mol Genet 2022; 31:2857-2875. [PMID: 35377453 PMCID: PMC9433731 DOI: 10.1093/hmg/ddac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset, progressive motor neurodegenerative disorder. A key pathological feature of the disease is the presence of heavily ubiquitinated protein inclusions. Both the unfolded protein response and the ubiquitin–proteasome system appear significantly impaired in patients and animal models of ALS. We have studied cellular and molecular mechanisms involved in ALS using a vesicle-associated membrane protein-associated protein B (VAPB/ALS8) Drosophila model [Moustaqim-Barrette, A., Lin, Y.Q., Pradhan, S., Neely, G.G., Bellen, H.J. and Tsuda, H. (2014) The ALS 8 protein, VAP, is required for ER protein quality control. Hum. Mol. Genet., 23, 1975–1989], which mimics many systemic aspects of the human disease. Here, we show that VAPB, located on the cytoplasmic face of the endoplasmic reticulum membrane, interacts with Caspar, an orthologue of human fas associated factor 1 (FAF1). Caspar, in turn, interacts with transitional endoplasmic reticulum ATPase (TER94), a fly orthologue of ALS14 (VCP/p97, valosin-containing protein). Caspar overexpression in the glia extends lifespan and also slows the progression of motor dysfunction in the ALS8 disease model, a phenomenon that we ascribe to its ability to restrain age-dependent inflammation, which is modulated by Relish/NFκB signalling. Caspar binds to VAPB via an FFAT motif, and we find that Caspar’s ability to negatively regulate NFκB signalling is not dependent on the VAPB:Caspar interaction. We hypothesize that Caspar is a key molecule in the pathogenesis of ALS. The VAPB:Caspar:TER94 complex appears to be a candidate for regulating both protein homeostasis and NFκB signalling, with our study highlighting a role for Caspar in glial inflammation. We project human FAF1 as an important protein target to alleviate the progression of motor neuron disease.
Collapse
Affiliation(s)
- Shweta Tendulkar
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Lovleen Garg
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | | | | | | | | |
Collapse
|
11
|
Ho CH, Paolantoni C, Bawankar P, Tang Z, Brown S, Roignant J, Treisman JE. An exon junction complex-independent function of Barentsz in neuromuscular synapse growth. EMBO Rep 2022; 23:e53231. [PMID: 34726300 PMCID: PMC8728599 DOI: 10.15252/embr.202153231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
The exon junction complex controls the translation, degradation, and localization of spliced mRNAs, and three of its core subunits also play a role in splicing. Here, we show that a fourth subunit, Barentsz, has distinct functions within and separate from the exon junction complex in Drosophila neuromuscular development. The distribution of mitochondria in larval muscles requires Barentsz as well as other exon junction complex subunits and is not rescued by a Barentsz transgene in which residues required for binding to the core subunit eIF4AIII are mutated. In contrast, interactions with the exon junction complex are not required for Barentsz to promote the growth of neuromuscular synapses. We find that the Activin ligand Dawdle shows reduced expression in barentsz mutants and acts downstream of Barentsz to control synapse growth. Both barentsz and dawdle are required in motor neurons, muscles, and glia for normal synapse growth, and exogenous Dawdle can rescue synapse growth in the absence of barentsz. These results identify a biological function for Barentsz that is independent of the exon junction complex.
Collapse
Affiliation(s)
- Cheuk Hei Ho
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Praveen Bawankar
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Zuojian Tang
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
Computational Biology at Ridgefield US, Global Computational Biology and Digital ScienceBoehringer IngelheimRidgefieldCTUSA
| | - Stuart Brown
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
ExxonMobil Corporate Strategic ResearchAnnandaleNJUSA
| | - Jean‐Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| |
Collapse
|
12
|
Kors S, Costello JL, Schrader M. VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease. Front Cell Dev Biol 2022; 10:895856. [PMID: 35756994 PMCID: PMC9213790 DOI: 10.3389/fcell.2022.895856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Suzan Kors
- *Correspondence: Suzan Kors, ; Michael Schrader,
| | | | | |
Collapse
|
13
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
14
|
Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells. Toxicology 2021; 461:152924. [PMID: 34474090 DOI: 10.1016/j.tox.2021.152924] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
Bisphenol A (BPA) is a chemical compound commonly used in the production of plastics for daily lives and industry. As BPA is well known for its adverse health effects, several alternative materials have been developed. This study comprehensively analyzed the toxicity of BPA and its three substitutes including bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF) on aging, healthspan, and mitochondria using an in vivo Caenorhabditis elegans (C. elegans) model animal and cultured mammalian fibroblast cells. C. elegans treated with 1 mM BPA exhibited abnormalities in the four tested parameters related to development and growth, including delayed development, decreased body growth, reduced reproduction, and abnormal tissue morphology. Exposure to the same concentration of each alternative including TMBPF, which has been proposed as a relatively safe BPA alternative, detrimentally affected at least three of these events. Moreover, all bisphenols (except BPS) remarkably shortened the organismal lifespan and increased age-related changes in neurons. Exposure to BPA and BPF resulted in mitochondrial abnormalities, such as reduced oxygen consumption and mitochondrial membrane potential. In contrast, the ATP levels were noticeably higher after treatment with all bisphenols. In mammalian fibroblast cells, exposure to increasing concentrations of all bisphenols (ranging from 50 μM to 500 μM) caused a severe decrease in cell viability in a dose-dependent manner. BPA increased ATP levels and decreased ROS but did not affect mitochondrial permeability transition pores (mPTP). Notably, TMBPF was the only bisphenol that caused a significant increase in mitochondrial ROS and mPTP opening. These results suggest that the potentially harmful physiological effects of BPA alternatives should be considered.
Collapse
|
15
|
Sheng Y, Yang G, Casey K, Curry S, Oliver M, Han SM, Leeuwenburgh C, Xiao R. A novel role of the mitochondrial iron-sulfur cluster assembly protein ISCU-1/ISCU in longevity and stress response. GeroScience 2021; 43:691-707. [PMID: 33527323 PMCID: PMC8110660 DOI: 10.1007/s11357-021-00327-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an ancient cellular co-factor ubiquitously present in all domains of life, nearly all iron-sulfur ([Fe-S]) clusters are assembled in the mitochondrion. Although multiple mitochondrion-derived signalings are known to be key players in longevity regulation, whether the mitochondrial [Fe-S] cluster assembly machinery modulates lifespan is previously unknown. Here, we find that ISCU-1, the C. elegans ortholog of the evolutionarily conserved iron-sulfur cluster (ISC) assembly machinery central protein ISCU, regulates longevity and stress response. Specifically, ISCU-1 accelerates aging in the intestine. Moreover, we identify the Nrf2 transcription factor SKN-1 and a nuclear hormone receptor NHR-49 as the downstream factors of ISCU-1. Lastly, a mitochondrial outer membrane protein phosphatase PGAM-5 appears to link ISCU-1 to SKN-1 and NHR-49 in lifespan regulation. Together, we have identified a novel function of mitochondrial ISC assembly machinery in longevity modulation and stress response.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Kaitlyn Casey
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Shayla Curry
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Mason Oliver
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Sung Min Han
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA.
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Kamemura K, Chen CA, Okumura M, Miura M, Chihara T. Amyotrophic lateral sclerosis-associated Vap33 is required for maintaining neuronal dendrite morphology and organelle distribution in Drosophila. Genes Cells 2021; 26:230-239. [PMID: 33548103 DOI: 10.1111/gtc.12835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
VAMP-associated protein (VAP) is an endoplasmic reticulum (ER) membrane protein that functions as a tethering protein at the membrane contact sites between the ER and various intracellular organelles. Mutations such as P56S in human VAPB cause neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, VAP functions in neurons are poorly understood. Here, we utilized Drosophila olfactory projection neurons with a mosaic analysis with a repressible cell marker (MARCM) to analyze the neuronal function of Vap33, a Drosophila ortholog of human VAPB. In vap33 null mutant clones, the dendrites of projection neurons exhibited defects in the maintenance of their morphology. The subcellular localization of the Golgi apparatus and mitochondria were also abnormal. These results indicate that Vap33 is required for neuronal morphology and organelle distribution. Additionally, to examine the impact of ALS-associated mutations in neurons, we overexpressed human VAPB-P56S in vap33 null mutant clones (mosaic rescue experiments) and found that, in aged flies, human VAPB-P56S expression caused mislocalization of Bruchpilot, a presynaptic protein. These results implied that synaptic protein localization and ER quality control may be affected by disease mutations. We provide insights into the physiological and pathological functions of VAP in neurons.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Program of Biomedical Science and Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Chun-An Chen
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Misako Okumura
- Program of Biomedical Science and Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Chihara
- Program of Biomedical Science and Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Zein-Sabatto H, Cole T, Hoang HD, Tiwary E, Chang C, Miller MA. The type II integral ER membrane protein VAP-B homolog in C. elegans is cleaved to release the N-terminal MSP domain to signal non-cell-autonomously. Dev Biol 2020; 470:10-20. [PMID: 33160939 DOI: 10.1016/j.ydbio.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022]
Abstract
VAMP/synaptobrevin-associated protein B (VAP-B) is a type II ER membrane protein, but its N-terminal MSP domain (MSPd) can be cleaved and secreted. Mutations preventing the cleavage and secretion of MSPd have been implicated in cases of human neurodegenerative diseases. The site of VAP cleavage and the tissues capable in releasing the processed MSPd are not understood. In this study, we analyze the C. elegans VAP-B homolog, VPR-1, for its processing and secretion from the intestine. We show that intestine-specific expression of an N-terminally FLAG-tagged VPR-1 rescues underdeveloped gonad and sterility defects in vpr-1 null hermaphrodites. Immunofluorescence studies reveal that the tagged intestinal expressed VPR-1 is present at the distal gonad. Mass spectrometry analysis of a smaller product of the N-terminally tagged VPR-1 identifies a specific cleavage site at Leu156. Mutation of the leucine results in loss of gonadal MSPd signal and reduced activity of the mutant VPR-1. Thus, we report for the first time the cleavage site of VPR-1 and provide direct evidence that intestinally expressed VPR-1 can be released and signal in the distal gonad. These results establish the foundation for further exploration of VAP cleavage, MSPd secretion, and non-cell-autonomous signaling in development and diseases.
Collapse
Affiliation(s)
- Hala Zein-Sabatto
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA.
| | - Tim Cole
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Hieu D Hoang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Ekta Tiwary
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Michael A Miller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| |
Collapse
|
18
|
Johnson CK, Fernandez-Abascal J, Wang Y, Wang L, Bianchi L. The Na +-K +-ATPase is needed in glia of touch receptors for responses to touch in C. elegans. J Neurophysiol 2020; 123:2064-2074. [PMID: 32292107 PMCID: PMC7444924 DOI: 10.1152/jn.00636.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/15/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Four of the five types of mammalian mechanosensors are composed of nerve endings and accessory cells. In Caenorhabditis elegans we showed that glia support the function of nose touch neurons via the activity of glial Na+ and K+ channels. We show here that a third regulator of Na+ and K+, the Na+-K+-ATPase, is needed in glia of nose touch neurons for touch. Importantly, we show that two Na+-K+-ATPase genes are needed for the function rather than structural integrity and that their ion transport activity is crucial for touch. Finally, when glial Na+-K+-ATPase genes are knocked out, touch can be restored by activation of a third Na+-K+-ATPase. Taken together, these data show the requirement in glia of touch neurons of the function of the Na+-K+-ATPase. These data underscore the importance of the homeostasis of Na+ and K+, most likely in the space surrounding touch neurons, in touch sensation, a function that might be conserved across species.NEW & NOTEWORTHY Increasing evidence supports that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.
Collapse
Affiliation(s)
- Christina K Johnson
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ying Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int J Mol Sci 2020; 21:E3055. [PMID: 32357532 PMCID: PMC7246467 DOI: 10.3390/ijms21093055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Harris Bolus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Kassi Crocker
- Genetics Graduate Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | | |
Collapse
|
20
|
Gordaliza‐Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep 2019; 20:e47928. [PMID: 31418169 PMCID: PMC6726909 DOI: 10.15252/embr.201947928] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular organelles are not static but show dynamism-a property that is likely relevant for their function. In addition, they interact with other organelles in a highly dynamic manner. In this review, we analyze the proteins involved in the interaction between mitochondria and other cellular organelles, especially the endoplasmic reticulum, lipid droplets, and lysosomes. Recent results indicate that, on one hand, metabolic alterations perturb the interaction between mitochondria and other organelles, and, on the other hand, that deficiency in proteins involved in the tethering between mitochondria and the ER or in specific functions of the interaction leads to metabolic alterations in a variety of tissues. The interaction between organelles is an emerging field that will permit to identify key proteins, to delineate novel modulation pathways, and to elucidate their implications in human disease.
Collapse
Affiliation(s)
- Isabel Gordaliza‐Alaguero
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Carlos Cantó
- Nestle Institute of Health Sciences (NIHS)LausanneSwitzerland
- School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
21
|
Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog Neurobiol 2019; 181:101645. [PMID: 31229499 DOI: 10.1016/j.pneurobio.2019.101645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs), which are among the most important aging-related diseases, are typically characterized by neuronal damage and a progressive impairment in neurological function during aging. Few effective therapeutic targets for NDDs have been revealed; thus, an understanding of the pathogenesis of NDDs is important. Forkhead box O (FoxO) transcription factors have been implicated in the mechanisms regulating aging and longevity. The functions of FoxOs are regulated by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, methylation and glycosylation). FoxOs exert both detrimental and protective effects on NDDs. Therefore, an understanding of the precise function of FoxOs in NDDs will be helpful for developing appropriate treatment strategies. In this review, we first introduce the post-translational modifications of FoxOs. Next, the regulation of FoxO expression and post-translational modifications in the central nervous system (CNS) is described. Afterwards, we analyze and address the important roles of FoxOs in NDDs. Finally, novel potential directions of future FoxO research in NDDs are discussed. This review recapitulates essential facts and questions about the promise of FoxOs in treating NDDs, and it will likely be important for the design of further basic studies and to realize the potential for FoxOs as therapeutic targets in NDDs.
Collapse
|
22
|
Kamemura K, Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J Biochem 2019; 165:391-400. [PMID: 30726905 DOI: 10.1093/jb/mvz011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
VAP (VAMP-associated protein) is a type II integral membrane protein of the endoplasmic reticulum (ER), and its N-terminal major sperm protein (MSP) domain faces the cytoplasmic side. VAP functions as a tethering molecule at the membrane contact sites between the ER and intracellular organelles and regulates a wide variety of cellular functions, including lipid transport, membrane trafficking, microtubule reorganization and unfolded protein response. VAP-point mutations in human vapb are strongly associated with amyotrophic lateral sclerosis. Importantly, the MSP domain of VAP is cleaved, secreted and interacts with the axon growth cone guidance receptors (Eph, Robo, Lar), suggesting that VAP could function as a circulating hormone similar to the Caenorhabditis elegans MSP protein. In this review, we discuss not only the intracellular functions of VAP but also the recently discovered extracellular functions and their implications for neurodegenerative disease.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
23
|
Genevini P, Colombo MN, Venditti R, Marcuzzo S, Colombo SF, Bernasconi P, De Matteis MA, Borgese N, Navone F. VAPB depletion alters neuritogenesis and phosphoinositide balance in motoneuron-like cells: relevance to VAPB-linked amyotrophic lateral sclerosis. J Cell Sci 2019; 132:jcs.220061. [PMID: 30745341 DOI: 10.1242/jcs.220061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
VAPB and VAPA are ubiquitously expressed endoplasmic reticulum membrane proteins that play key roles in lipid exchange at membrane contact sites. A mutant, aggregation-prone, form of VAPB (P56S) is linked to a dominantly inherited form of amyotrophic lateral sclerosis; however, it has been unclear whether its pathogenicity is due to toxic gain of function, to negative dominance, or simply to insufficient levels of the wild-type protein produced from a single allele (haploinsufficiency). To investigate whether reduced levels of functional VAPB, independently from the presence of the mutant form, affect the physiology of mammalian motoneuron-like cells, we generated NSC34 clones, from which VAPB was partially or nearly completely depleted. VAPA levels, determined to be over fourfold higher than those of VAPB in untransfected cells, were unaffected. Nonetheless, cells with even partially depleted VAPB showed an increase in Golgi- and acidic vesicle-localized phosphatidylinositol-4-phosphate (PI4P) and reduced neurite extension when induced to differentiate. Conversely, the PI4 kinase inhibitors PIK93 and IN-10 increased neurite elongation. Thus, for long-term survival, motoneurons might require the full dose of functional VAPB, which may have unique function(s) that VAPA cannot perform.
Collapse
Affiliation(s)
- Paola Genevini
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Maria Nicol Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | | | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Sara Francesca Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli 80078, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80133, Italy
| | - Nica Borgese
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Francesca Navone
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| |
Collapse
|
24
|
Joseph GA, Hung M, Goel AJ, Hong M, Rieder MK, Beckmann ND, Serasinghe MN, Chipuk JE, Devarakonda PM, Goldhamer DJ, Aldana-Hernandez P, Curtis J, Jacobs RL, Krauss RS. Late-onset megaconial myopathy in mice lacking group I Paks. Skelet Muscle 2019; 9:5. [PMID: 30791960 PMCID: PMC6383276 DOI: 10.1186/s13395-019-0191-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Group I Paks are serine/threonine kinases that function as major effectors of the small GTPases Rac1 and Cdc42, and they regulate cytoskeletal dynamics, cell polarity, and transcription. We previously demonstrated that Pak1 and Pak2 function redundantly to promote skeletal myoblast differentiation during postnatal development and regeneration in mice. However, the roles of Pak1 and Pak2 in adult muscle homeostasis are unknown. Choline kinase β (Chk β) is important for adult muscle homeostasis, as autosomal recessive mutations in CHKβ are associated with two human muscle diseases, megaconial congenital muscular dystrophy and proximal myopathy with focal depletion of mitochondria. METHODS We analyzed mice conditionally lacking Pak1 and Pak2 in the skeletal muscle lineage (double knockout (dKO) mice) over 1 year of age. Muscle integrity in dKO mice was assessed with histological stains, immunofluorescence, electron microscopy, and western blotting. Assays for mitochondrial respiratory complex function were performed, as was mass spectrometric quantification of products of choline kinase. Mice and cultured myoblasts deficient for choline kinase β (Chk β) were analyzed for Pak1/2 phosphorylation. RESULTS dKO mice developed an age-related myopathy. By 10 months of age, dKO mouse muscles displayed centrally-nucleated myofibers, fibrosis, and signs of degeneration. Disease severity occurred in a rostrocaudal gradient, hindlimbs more strongly affected than forelimbs. A distinctive feature of this myopathy was elongated and branched intermyofibrillar (megaconial) mitochondria, accompanied by focal mitochondrial depletion in the central region of the fiber. dKO muscles showed reduced mitochondrial respiratory complex I and II activity. These phenotypes resemble those of rmd mice, which lack Chkβ and are a model for human diseases associated with CHKβ deficiency. Pak1/2 and Chkβ activities were not interdependent in mouse skeletal muscle, suggesting a more complex relationship in regulation of mitochondria and muscle homeostasis. CONCLUSIONS Conditional loss of Pak1 and Pak2 in mice resulted in an age-dependent myopathy with similarity to mice and humans with CHKβ deficiency. Protein kinases are major regulators of most biological processes but few have been implicated in muscle maintenance or disease. Pak1/Pak2 dKO mice offer new insights into these processes.
Collapse
Affiliation(s)
- Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Present address: Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Aviva J Goel
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Marysia-Kolbe Rieder
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Noam D Beckmann
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Parvathi M Devarakonda
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - David J Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Paulina Aldana-Hernandez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Jonathan Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA. .,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Mao D, Lin G, Tepe B, Zuo Z, Tan KL, Senturk M, Zhang S, Arenkiel BR, Sardiello M, Bellen HJ. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019; 15:1214-1233. [PMID: 30741620 DOI: 10.1080/15548627.2019.1580103] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).
Collapse
Affiliation(s)
- Dongxue Mao
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Guang Lin
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Burak Tepe
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Zhongyuan Zuo
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Kai Li Tan
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Mumine Senturk
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Sheng Zhang
- c The Brown Foundation Institute of Molecular Medicine , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,d Department of Neurobiology and Anatomy , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,e Programs in Genetics & Epigenetics and Neuroscience , University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS) , Houston , TX , USA
| | - Benjamin R Arenkiel
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA
| | - Marco Sardiello
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA
| | - Hugo J Bellen
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,h Baylor College of Medicine , Howard Hughes Medical Institute , Houston , TX , USA
| |
Collapse
|
26
|
Chaplot K, Pimpale L, Ramalingam B, Deivasigamani S, Kamat SS, Ratnaparkhi GS. SOD1 activity threshold and TOR signalling modulate VAP(P58S) aggregation via reactive oxygen species-induced proteasomal degradation in a Drosophila model of amyotrophic lateral sclerosis. Dis Model Mech 2019; 12:dmm.033803. [PMID: 30635270 PMCID: PMC6398501 DOI: 10.1242/dmm.033803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is an incurable, late-onset motor neuron disease, linked strongly to various causative genetic loci. ALS8 codes for a missense mutation, P56S, in VAMP-associated protein B (VAPB) that causes the protein to misfold and form cellular aggregates. Uncovering genes and mechanisms that affect aggregation dynamics would greatly help increase our understanding of the disease and lead to potential therapeutics. We developed a quantitative high-throughput Drosophila S2R+ cell-based kinetic assay coupled with fluorescent microscopy to score for genes involved in the modulation of aggregates of the fly orthologue, VAP(P58S), fused with GFP. A targeted RNA interference screen against 900 genes identified 150 hits that modify aggregation, including the ALS loci Sod1 and TDP43 (also known as TBPH), as well as genes belonging to the mTOR pathway. Further, a system to measure the extent of VAP(P58S) aggregation in the Drosophila larval brain was developed in order to validate the hits from the cell-based screen. In the larval brain, we find that reduction of SOD1 levels or decreased mTOR signalling reduces aggregation, presumably by increasing the levels of cellular reactive oxygen species (ROS). The mechanism of aggregate clearance is, primarily, proteasomal degradation, which appears to be triggered by an increase in ROS. We have thus uncovered an interesting interplay between SOD1, ROS and mTOR signalling that regulates the dynamics of VAP aggregation. Mechanistic processes underlying such cellular regulatory networks will lead to better understanding of the initiation and progression of ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kriti Chaplot
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Lokesh Pimpale
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | | | | | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
27
|
Kim JY, Jang A, Reddy R, Yoon WH, Jankowsky JL. Neuronal overexpression of human VAPB slows motor impairment and neuromuscular denervation in a mouse model of ALS. Hum Mol Genet 2018; 25:4661-4673. [PMID: 28173107 DOI: 10.1093/hmg/ddw294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Four mutations in the VAMP/synaptobrevin-associated protein B (VAPB) gene have been linked to amyotrophic lateral sclerosis (ALS) type 8. The mechanism by which VAPB mutations cause motor neuron disease is unclear, but studies of the most common P56S variant suggest both loss of function and dominant-negative sequestration of wild-type protein. Diminished levels of VAPB and its proteolytic cleavage fragment have also been reported in sporadic ALS cases, suggesting that VAPB loss of function may be a common mechanism of disease. Here, we tested whether neuronal overexpression of wild-type human VAPB would attenuate disease in a mouse model of familial ALS1. We used neonatal intraventricular viral injections to express VAPB or YFP throughout the brain and spinal cord of superoxide dismutase (SOD1) G93A transgenic mice. Lifelong elevation of neuronal VAPB slowed the decline of neurological impairment, delayed denervation of hindlimb muscles, and prolonged survival of spinal motor neurons. Collectively, these changes produced a slight but significant extension in lifespan, even in this highly aggressive model of disease. Our findings lend support for a protective role of VAPB in neuromuscular health.
Collapse
Affiliation(s)
- Ji-Yoen Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, TX , USA
| | - Ava Jang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX , USA.,Department of Psychology, Baylor College of Medicine, Houston, TX , USA
| | - Rohit Reddy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX , USA.,Department of Cognitive Science, Rice University, Houston, TX, USA
| | - Wan Hee Yoon
- Howard Hughes Medical Institute,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX , USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Azuma Y, Mizuta I, Tokuda T, Mizuno T. Amyotrophic Lateral Sclerosis Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:79-95. [PMID: 29951816 DOI: 10.1007/978-981-13-0529-0_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects upper and lower motor neurons in the brain and the spinal cord. Due to the progressive neurodegeneration, ALS leads to paralysis and death caused by respiratory failure 2-5 years after the onset of symptoms. There is no effective cure available. Most ALS cases are sporadic, without family history, whereas 10% of the cases are familial. Identification of variants in more than 30 different loci has provided insight into the pathogenic molecular mechanisms mediating disease pathogenesis. Studies of a Drosophila melanogaster model for each of the ALS genes can contribute to uncovering pathophysiological mechanism of ALS and finding targets of the disease-modifying therapy. In this review, we focus on three ALS-causing genes: TAR DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and chromosome 9 open reading frame 72 (C9orf72).
Collapse
Affiliation(s)
- Yumiko Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
29
|
Sarasija S, Norman KR. Analysis of Mitochondrial Structure in the Body Wall Muscle of Caenorhabditis elegans. Bio Protoc 2018; 8:e2801. [PMID: 29707607 DOI: 10.21769/bioprotoc.2801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Mitochondrial function is altered in various pathologies, highlighting the crucial role mitochondria plays in maintaining cellular homeostasis. Mitochondrial structure undergoes constant fission and fusion in response to changing cellular environment. Due to this, analyzing mitochondrial structure could provide insight into the physiological state of the cell. In this protocol, we describe a method to analyze mitochondrial structure in body wall muscles in the nematode Caenorhabditis elegans, using both transgenic and dye-based approaches.
Collapse
Affiliation(s)
- Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
30
|
Schultz J, Lee SJ, Cole T, Hoang HD, Vibbert J, Cottee PA, Miller MA, Han SM. The secreted MSP domain of C. elegans VAPB homolog VPR-1 patterns the adult striated muscle mitochondrial reticulum via SMN-1. Development 2017. [PMID: 28634272 PMCID: PMC5482996 DOI: 10.1242/dev.152025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major sperm protein domain (MSPd) has an extracellular signaling function implicated in amyotrophic lateral sclerosis. Secreted MSPds derived from the C. elegans VAPB homolog VPR-1 promote mitochondrial localization to actin-rich I-bands in body wall muscle. Here we show that the nervous system and germ line are key MSPd secretion tissues. MSPd signals are transduced through the CLR-1 Lar-like tyrosine phosphatase receptor. We show that CLR-1 is expressed throughout the muscle plasma membrane, where it is accessible to MSPd within the pseudocoelomic fluid. MSPd signaling is sufficient to remodel the muscle mitochondrial reticulum during adulthood. An RNAi suppressor screen identified survival of motor neuron 1 (SMN-1) as a downstream effector. SMN-1 acts in muscle, where it colocalizes at myofilaments with ARX-2, a component of the Arp2/3 actin-nucleation complex. Genetic studies suggest that SMN-1 promotes Arp2/3 activity important for localizing mitochondria to I-bands. Our results support the model that VAPB homologs are circulating hormones that pattern the striated muscle mitochondrial reticulum. This function is crucial in adults and requires SMN-1 in muscle, likely independent of its role in pre-mRNA splicing.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Se-Jin Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim Cole
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack Vibbert
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pauline A Cottee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sung Min Han
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
31
|
Cottee PA, Cole T, Schultz J, Hoang HD, Vibbert J, Han SM, Miller MA. The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development. Development 2017. [PMID: 28634273 PMCID: PMC5482997 DOI: 10.1242/dev.152207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. Highlighted Article:vpr-1 null mutants are sterile upon hatching, a defect rescued by the expression of MSPd from almost any tissue except for the somatic gonad itself. See also the companion paper by Schultz et al.
Collapse
Affiliation(s)
- Pauline A Cottee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim Cole
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack Vibbert
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sung Min Han
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
32
|
Mitigating Motor Neuronal Loss in C. elegans Model of ALS8. Sci Rep 2017; 7:11582. [PMID: 28912432 PMCID: PMC5599522 DOI: 10.1038/s41598-017-11798-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
ALS8 is a late-onset familial autosomal dominant form of Amyotrophic Lateral Sclerosis (ALS) caused by a point mutation (P56S) in the VAPB gene (VAMP associated protein isoform B). Here, we generated two C. elegans models of the disease: a transgenic model where human VAPB wild-type (WT) or P56S mutant was expressed in a subset of motor neurons, and a second model that targeted inducible knockdown of the worm’s orthologue, vpr-1. Overexpression of human VAPB in DA neurons caused a backward locomotion defect, axonal misguidance, and premature neuronal death. Knockdown of vpr-1 recapitulated the reduction in VAPB expression associated with sporadic cases of human ALS. It also caused backward locomotion defects as well as an uncoordinated phenotype, and age-dependent, progressive motor neuronal death. Furthermore, inhibiting phosphatidylinositol-4 (PtdIns 4)-kinase activity with PIK-93 reduced the incidence of DA motor neuron loss and improved backward locomotion. This supports the loss of VAPB function in ALS8 pathogenesis and suggests that reducing intracellular PtdIns4P might be an effective therapeutic strategy in delaying progressive loss of motor neurons.
Collapse
|
33
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Walck-Shannon E, Lucas B, Chin-Sang I, Reiner D, Kumfer K, Cochran H, Bothfeld W, Hardin J. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis. PLoS Genet 2016; 12:e1006415. [PMID: 27861585 PMCID: PMC5127194 DOI: 10.1371/journal.pgen.1006415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation. As embryos develop, tissues must change shape to establish an animal’s form. One key form-shaping movement, cell intercalation, often occurs when a tissue elongates in a preferred direction. How cells in epithelial sheets can intercalate while maintaining tissue integrity is not well understood. Here we use the dorsal epidermis in embryos of the nematode worm, C. elegans, to study cell intercalation. As cells begin to intercalate, they form highly polarized tips that lead their migration. While some mechanisms that polarize intercalating cells have been established in other systems, our work identifies a new role for CDC-42—a highly conserved, highly regulated protein that controls the actin cytoskeleton. We previously established that a related protein, Rac, is involved in tip extension during dorsal intercalation. CDC-42 also contributes to this process in addition to helping orient the extending tip. CDC-42 appears to work in conjunction with two other known cell polarity proteins, PAR-3 and PAR-6, and the cell surface receptor, VAB-1. Our work identifies a novel pathway involving proteins conserved from worms to humans that regulates a ubiquitous process during animal development.
Collapse
Affiliation(s)
- Elise Walck-Shannon
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - David Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology and Department of Medical Physiology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Kraig Kumfer
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hunter Cochran
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William Bothfeld
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeff Hardin
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease causing the death of motor neurons with consequent muscle atrophy and paralysis. Several neurodegenerative diseases have been modeled in Drosophila and genetic studies on this model organism led to the elucidation of crucial aspects of disease mechanisms. ALS, however, has lagged somewhat behind possibly because of the lack of a suitable genetic model. We were the first to develop a fly model for ALS and over the last few years, we have implemented and used this model for a large scale, unbiased modifier screen. We also report an extensive bioinformatic analysis of the genetic modifiers and we show that most of them are associated in a network of interacting genes controlling known as well as novel cellular processes involved in ALS pathogenesis. A similar analysis for the human homologues of the Drosophila modifiers and the validation of a subset of them in human tissues confirm and expand the significance of the data for the human disease. Finally, we analyze a possible application of the model in the process of therapeutic discovery in ALS and we discuss the importance of novel “non-obvious” models for the disease.
Collapse
Affiliation(s)
- Andrea Chai
- a Euan McDonald Center for Motor Neurone Disease Research.,b Centre for Integrative Physiology; University of Edinburgh ; Edinburgh ; UK
| | - Giuseppa Pennetta
- a Euan McDonald Center for Motor Neurone Disease Research.,b Centre for Integrative Physiology; University of Edinburgh ; Edinburgh ; UK
| |
Collapse
|
36
|
Ernst WL, Shome K, Wu CC, Gong X, Frizzell RA, Aridor M. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis. J Biol Chem 2016; 291:5206-20. [PMID: 26740627 DOI: 10.1074/jbc.m115.692749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/27/2022] Open
Abstract
Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.
Collapse
Affiliation(s)
- Wayne L Ernst
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kuntala Shome
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Christine C Wu
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xiaoyan Gong
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Raymond A Frizzell
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Meir Aridor
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
37
|
A γ-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics 2015; 201:1453-66. [PMID: 26500256 DOI: 10.1534/genetics.115.182808] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria.
Collapse
|
38
|
Larroquette F, Seto L, Gaub PL, Kamal B, Wallis D, Larivière R, Vallée J, Robitaille R, Tsuda H. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response. Hum Mol Genet 2015; 24:6515-29. [PMID: 26362257 DOI: 10.1093/hmg/ddv360] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022] Open
Abstract
Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises.
Collapse
Affiliation(s)
- Frédérique Larroquette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Lesley Seto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Perrine L Gaub
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Brishna Kamal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, Cypress, TX, USA and
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Joanne Vallée
- Departement of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Richard Robitaille
- Departement of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Hiroshi Tsuda
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4,
| |
Collapse
|
39
|
Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS. Cells 2015; 4:354-86. [PMID: 26287246 PMCID: PMC4588041 DOI: 10.3390/cells4030354] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/07/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a major role in the elimination of cellular waste components, the renewal of intracellular proteins and the prevention of the build-up of redundant or defective material. It is fundamental for the maintenance of homeostasis and especially important in post-mitotic neuronal cells, which, without competent autophagy, accumulate protein aggregates and degenerate. Many neurodegenerative diseases are associated with defective autophagy; however, whether altered protein turnover or accumulation of misfolded, aggregate-prone proteins is the primary insult in neurodegeneration has long been a matter of debate. Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by selective degeneration of motor neurons. Most of the ALS cases occur in sporadic forms (SALS), while 10%–15% of the cases have a positive familial history (FALS). The accumulation in the cell of misfolded/abnormal proteins is a hallmark of both SALS and FALS, and altered protein degradation due to autophagy dysregulation has been proposed to contribute to ALS pathogenesis. In this review, we focus on the main molecular features of autophagy to provide a framework for discussion of our recent findings about the role in disease pathogenesis of the ALS-linked form of the VAPB gene product, a mutant protein that drives the generation of unusual cytoplasmic inclusions.
Collapse
|
40
|
Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol: A Focus on Several Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392169. [PMID: 26180587 PMCID: PMC4477222 DOI: 10.1155/2015/392169] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, School of Medicine, Catholic University, L. go F. Vito n.1, 00168 Rome, Italy
- C.N.R. Institute of Chemistry of Molecular Recognition, L. go F. Vito n.1, 00168 Rome, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
41
|
Sanhueza M, Chai A, Smith C, McCray BA, Simpson TI, Taylor JP, Pennetta G. Network analyses reveal novel aspects of ALS pathogenesis. PLoS Genet 2015; 11:e1005107. [PMID: 25826266 PMCID: PMC4380362 DOI: 10.1371/journal.pgen.1005107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention. Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease causing loss of motor neurons and consequently a progressive deterioration of motor functions. ALS is uniformly fatal with death occurring 5 years after onset of symptoms. There is currently no effective treatment for ALS. Several mutations in a gene called hVAPB have shown that this gene is causative of a type of ALS known as ALS8. In this study we sought to identify genes and cellular processes that are involved in the toxicity conferred by the defective ALS8 allele. By using the power of Drosophila genetics, we performed a large scale genomic screen and identified a number of genes that can affect hVAPB-mediated toxicity. These modifiers cluster into functional pathways known to be involved in ALS as well as novel ones. The relevance of these modifiers and mechanisms for the human disease was confirmed by showing that the human homologues of the fly modifiers can be organized into a network that closely resembles that of the Drosophila genes. Identifying cellular processes and proteins that modulate hVAPB pathological activity can facilitate the discovery of an effective treatment for ALS.
Collapse
Affiliation(s)
- Mario Sanhueza
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrea Chai
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Houston, Texas, United States of America
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brett A. McCray
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - T. Ian Simpson
- Biomathematics and Statistics Scotland, University of Edinburgh, United Kingdom
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, United Kingdom
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Giuseppa Pennetta
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Deivasigamani S, Verma HK, Ueda R, Ratnaparkhi A, Ratnaparkhi GS. A genetic screen identifies Tor as an interactor of VAPB in a Drosophila model of amyotrophic lateral sclerosis. Biol Open 2014; 3:1127-38. [PMID: 25361581 PMCID: PMC4232771 DOI: 10.1242/bio.201410066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by selective death of motor neurons. In 5–10% of the familial cases, the disease is inherited because of mutations. One such mutation, P56S, was identified in human VAPB that behaves in a dominant negative manner, sequestering wild type protein into cytoplasmic inclusions. We have conducted a reverse genetic screen to identify interactors of Drosophila VAPB. We screened 2635 genes and identified 103 interactors, of which 45 were enhancers and 58 were suppressors of VAPB function. Interestingly, the screen identified known ALS loci – TBPH, alsin2 and SOD1. Also identified were genes involved in cellular energetics and homeostasis which were used to build a gene regulatory network of VAPB modifiers. One key modifier identified was Tor, whose knockdown reversed the large bouton phenotype associated with VAP(P58S) expression in neurons. A similar reversal was seen by over-expressing Tuberous Sclerosis Complex (Tsc1,2) that negatively regulates TOR signaling as also by reduction of S6K activity. In comparison, the small bouton phenotype associated with VAP(wt) expression was reversed with Tsc1 knock down as well as S6K-CA expression. Tor therefore interacts with both VAP(wt) and VAP(P58S), but in a contrasting manner. Reversal of VAP(P58S) bouton phenotypes in larvae fed with the TOR inhibitor Rapamycin suggests upregulation of TOR signaling in response to VAP(P58S) expression. The VAPB network and further mechanistic understanding of interactions with key pathways, such as the TOR cassette, will pave the way for a better understanding of the mechanisms of onset and progression of motor neuron disease.
Collapse
Affiliation(s)
| | | | - Ryu Ueda
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
43
|
Casci I, Pandey UB. A fruitful endeavor: modeling ALS in the fruit fly. Brain Res 2014; 1607:47-74. [PMID: 25289585 DOI: 10.1016/j.brainres.2014.09.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
For over a century Drosophila melanogaster, commonly known as the fruit fly, has been instrumental in genetics research and disease modeling. In more recent years, it has been a powerful tool for modeling and studying neurodegenerative diseases, including the devastating and fatal amyotrophic lateral sclerosis (ALS). The success of this model organism in ALS research comes from the availability of tools to manipulate gene/protein expression in a number of desired cell-types, and the subsequent recapitulation of cellular and molecular phenotypic features of the disease. Several Drosophila models have now been developed for studying the roles of ALS-associated genes in disease pathogenesis that allowed us to understand the molecular pathways that lead to motor neuron degeneration in ALS patients. Our primary goal in this review is to highlight the lessons we have learned using Drosophila models pertaining to ALS research. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Ian Casci
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| |
Collapse
|
44
|
Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. Proc Natl Acad Sci U S A 2014; 111:E3880-9. [PMID: 25187565 DOI: 10.1073/pnas.1414748111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as cholesterol and ubiquinone, as well as other metabolites. In humans, an age-dependent decrease in ubiquinone levels and changes in cholesterol homeostasis suggest that mevalonate pathway activity changes with age. However, our knowledge of the mechanistic basis of these changes remains rudimentary. We have identified a regulatory circuit controlling the sumoylation state of Caenorhabditis elegans HMG-CoA synthase (HMGS-1). This protein is the ortholog of human HMGCS1 enzyme, which mediates the first committed step of the mevalonate pathway. In vivo, HMGS-1 undergoes an age-dependent sumoylation that is balanced by the activity of ULP-4 small ubiquitin-like modifier protease. ULP-4 exhibits an age-regulated expression pattern and a dynamic cytoplasm-to-mitochondria translocation. Thus, spatiotemporal ULP-4 activity controls the HMGS-1 sumoylation state in a mechanism that orchestrates mevalonate pathway activity with the age of the organism. To expand the HMGS-1 regulatory network, we combined proteomic analyses with knockout studies and found that the HMGS-1 level is also governed by the ubiquitin-proteasome pathway. We propose that these conserved molecular circuits have evolved to govern the level of mevalonate pathway flux during aging, a flux whose dysregulation is associated with numerous age-dependent cardiovascular and cancer pathologies.
Collapse
|
45
|
Charng WL, Yamamoto S, Bellen HJ. Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases. Curr Opin Neurobiol 2014; 27:158-164. [PMID: 24762652 PMCID: PMC4122633 DOI: 10.1016/j.conb.2014.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/21/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Signaling pathways and cellular processes that regulate neural development are used post-developmentally for proper function and maintenance of the nervous system. Genes that have been studied in the context of the development of Drosophila peripheral nervous system (PNS) and neuromuscular junction (NMJ) have been identified as players in the pathogenesis of human neurodegenerative diseases, including spinocerebellar ataxia, amyotrophic lateral sclerosis, and spinal muscular atrophy. Hence, by unraveling the molecular mechanisms that underlie proneural induction, cell fate determination, axonal targeting, dendritic branching, and synapse formation in Drosophila, novel features related to these disorders have been revealed. In this review, we summarize and discuss how studies of Drosophila PNS and NMJ development have provided guidance in experimental approaches for these diseases.
Collapse
Affiliation(s)
- Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; Howard Hughes Medical Institute, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Rodriguez A, McKay K, Graham M, Dittrich J, Holgado AM. Analysis of differential gene expression profiles in Caenorhabditis elegans knockouts for the v-SNARE master protein 1. J Neurosci Res 2014; 92:772-82. [PMID: 24615917 DOI: 10.1002/jnr.23353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
At chemical synapses, neurons communicate information to other cells by secreting neurotransmitters or neuropeptides into the synaptic cleft, which then bind to receptors on the target cell. Preliminary work performed in our laboratory has shown that mutant nematodes lacking a protein called VSM-1 have increased synaptic density compared with the wild type. Consequently, we hypothesized that genes expressed in vsm-1 mutants mediate enhanced synaptogenesis. To identify these genes of interest, we utilized microarray technology and quantitative PCR. To this end, first we isolated the total RNA from young-adult wild-type and vsm-1 mutant Caenorhabditis elegans. Next, we synthesized cDNA from reverse transcription of the isolated RNA. Hybridization of the cDNA to a microarray was performed to facilitate gene expression profiling. Finally, fluorescently labeled microarrays were analyzed, and the identities of induced and repressed genes were uncovered in the open-source software Magic Tool. Analyses of microarray experiments performed using three independent biological samples per strain and three technical replicas and dye swaps showed induction of genes coding for major sperm proteins and repression of SPP-2 in vsm-1 mutants. Microarray results were also validated and quantified by using quantitative PCR.
Collapse
Affiliation(s)
- Ashley Rodriguez
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma
| | | | | | | | | |
Collapse
|
47
|
Sanhueza M, Zechini L, Gillespie T, Pennetta G. Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles. Biol Open 2014; 3:59-71. [PMID: 24326187 PMCID: PMC3892161 DOI: 10.1242/bio.20137070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a motor neuron degenerative disease characterized by a progressive, and ultimately fatal, muscle paralysis. The human VAMP-Associated Protein B (hVAPB) is the causative gene of ALS type 8. Previous studies have shown that a loss-of-function mechanism is responsible for VAPB-induced ALS. Recently, a novel mutation in hVAPB (V234I) has been identified but its pathogenic potential has not been assessed. We found that neuronal expression of the V234I mutant allele in Drosophila (DVAP-V260I) induces defects in synaptic structure and microtubule architecture that are opposite to those associated with DVAP mutants and transgenic expression of other ALS-linked alleles. Expression of DVAP-V260I also induces aggregate formation, reduced viability, wing postural defects, abnormal locomotion behavior, nuclear abnormalities, neurodegeneration and upregulation of the heat-shock-mediated stress response. Similar, albeit milder, phenotypes are associated with the overexpression of the wild-type protein. These data show that overexpressing the wild-type DVAP is sufficient to induce the disease and that DVAP-V260I is a pathogenic allele with increased wild-type activity. We propose that a combination of gain- and loss-of-function mechanisms is responsible for VAPB-induced ALS.
Collapse
Affiliation(s)
- Mario Sanhueza
- Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neuron Disease Research, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
48
|
Deidda I, Galizzi G, Passantino R, Cascio C, Russo D, Colletti T, La Bella V, Guarneri P. Expression of vesicle-associated membrane-protein-associated protein B cleavage products in peripheral blood leukocytes and cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Eur J Neurol 2013; 21:478-85. [PMID: 24372953 DOI: 10.1111/ene.12334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Vesicle-associated membrane-protein-associated protein B (VAPB) is an endoplasmic reticulum (ER) resident protein participating in ER function, vesicle trafficking, calcium homeostasis and lipid transport. Its N-terminal domain, named MSP, is cleaved and secreted, serving as an extracellular ligand. VAPB mutations are linked to autosomal-dominant motor neuron diseases, including amyotrophic lateral sclerosis (ALS) type 8. An altered VAPB function is also suspected in sporadic ALS (SALS). METHODS The expression pattern of VAPB cleavage and secreted products in the peripheral blood leukocytes (PBL) and cerebrospinal fluid (CSF) of SALS patients and neurological controls was assessed. PBL from healthy controls were also analyzed. Assays were carried out through western blotting, using an anti-VAPB (N-terminal) antibody. RESULTS Two VAPB fragments containing the MSP domain (17 kDa and 14 kDa molecular sizes) were identified in PBL of SALS and controls, with no significant differences amongst groups. In CSF, only the 14 kDa VAPB MSP fragment was expressed and a corresponding VAPA fragment was not detected. The CSF VAPB fragment was absent in 58.7% of SALS patients, of whom 79.2% were bulbar onset (P = 0.001, bulbar versus spinal). CONCLUSIONS The absence of the CSF VAPB MSP fragment from most bulbar-onset SALS patients suggests a specific alteration of brain-derived VAPB cleavage and secretion in this group of patients, and hints at a role of VAPB in the pathophysiology of this motor neuron disease.
Collapse
Affiliation(s)
- I Deidda
- Neuroscience Unit, CNR Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Moustaqim-Barrette A, Lin YQ, Pradhan S, Neely GG, Bellen HJ, Tsuda H. The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum Mol Genet 2013; 23:1975-89. [PMID: 24271015 DOI: 10.1093/hmg/ddt594] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A familial form of Amyotrophic lateral sclerosis (ALS8) is caused by a point mutation (P56S) in the vesicle-associated membrane protein associated protein B (VapB). Human VapB and Drosophila Vap-33-1 (Vap) are homologous type II transmembrane proteins that are localized to the ER. However, the precise consequences of the defects associated with the P56S mutation in the endoplasmic reticulum (ER) and its role in the pathology of ALS are not well understood. Here we show that Vap is required for ER protein quality control (ERQC). Loss of Vap in flies shows various ERQC associated defects, including protein accumulation, ER expansion, and ER stress. We also show that wild type Vap, but not the ALS8 mutant Vap, interacts with a lipid-binding protein, Oxysterol binding protein (Osbp), and that Vap is required for the proper localization of Osbp to the ER. Restoring the expression of Osbp in the ER suppresses the defects associated with loss of Vap and the ALS8 mutant Vap. Hence, we propose that the ALS8 mutation impairs the interaction of Vap with Osbp, resulting in hypomorphic defects that might contribute to the pathology of ALS8.
Collapse
Affiliation(s)
- Amina Moustaqim-Barrette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4 Canada
| | | | | | | | | | | |
Collapse
|
50
|
Han SM, El Oussini H, Scekic-Zahirovic J, Vibbert J, Cottee P, Prasain JK, Bellen HJ, Dupuis L, Miller MA. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans. PLoS Genet 2013; 9:e1003738. [PMID: 24039594 PMCID: PMC3764199 DOI: 10.1371/journal.pgen.1003738] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP). Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO) homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sung Min Han
- Department of Cell, Developmental, and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Hajer El Oussini
- INSERM, U1118, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
- Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Jelena Scekic-Zahirovic
- INSERM, U1118, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
- Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Jack Vibbert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Pauline Cottee
- Department of Cell, Developmental, and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Hugo J. Bellen
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Luc Dupuis
- INSERM, U1118, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
- Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Michael A. Miller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| |
Collapse
|