1
|
Clarke DN, Miller PW, Martin AC. EGFR-dependent actomyosin patterning coordinates morphogenetic movements between tissues in Drosophila melanogaster. Dev Cell 2025; 60:270-287.e6. [PMID: 39461341 PMCID: PMC11755374 DOI: 10.1016/j.devcel.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The movements that give rise to the body's structure are powered by cell shape changes and rearrangements that are coordinated at supracellular scales. How such cellular coordination arises and integrates different morphogenetic programs is unclear. Using quantitative imaging, we found a complex pattern of adherens junction (AJ) levels in the ectoderm prior to gastrulation onset in Drosophila. AJ intensity exhibited a double-sided gradient, with peaks at the dorsal midline and ventral neuroectoderm. We show that this dorsal-ventral AJ pattern is regulated by epidermal growth factor (EGF) signaling and that this signal is required for ectoderm cell movement during mesoderm invagination and axis extension. We identify AJ levels and junctional actomyosin as downstream effectors of EGFR signaling. Overall, our study demonstrates an EGF-patterned mechanical feedback mechanism that coordinates tissue folding and convergent extension to facilitate embryo-wide gastrulation movements.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pearson W Miller
- Department of Mathematics, University of California, San Diego, La Jolla, CA, USA.
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Claussen NH, Brauns F, Shraiman BI. A geometric-tension-dynamics model of epithelial convergent extension. Proc Natl Acad Sci U S A 2024; 121:e2321928121. [PMID: 39331407 PMCID: PMC11459161 DOI: 10.1073/pnas.2321928121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/17/2024] [Indexed: 09/28/2024] Open
Abstract
Convergent extension of epithelial tissue is a key motif of animal morphogenesis. On a coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial cells adhere to each other and maintain the tissue layer under actively generated internal tension. To resolve this apparent paradox, we formulate a model in which tissue flow in the tension-dominated regime occurs through adiabatic remodeling of force balance in the network of adherens junctions. We propose that the slow dynamics within the manifold of force-balanced configurations is driven by positive feedback on myosin-generated cytoskeletal tension. Shifting force balance within a tension network causes active cell rearrangements (T1 transitions) resulting in net tissue deformation oriented by initial tension anisotropy. Strikingly, we find that the total extent of tissue deformation depends on the initial cellular packing order. T1s degrade this order so that tissue flow is self-limiting. We explain these findings by showing that coordination of T1s depends on coherence in local tension configurations, quantified by a geometric order parameter in tension space. Our model reproduces the salient tissue- and cell-scale features of germ band elongation during Drosophila gastrulation, in particular the slowdown of tissue flow after approximately twofold elongation concomitant with a loss of order in tension configurations. This suggests local cell geometry contains morphogenetic information and yields experimentally testable predictions. Defining biologically controlled active tension dynamics on the manifold of force-balanced states may provide a general approach to the description of morphogenetic flow.
Collapse
Affiliation(s)
- Nikolas H. Claussen
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Boris I. Shraiman
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA93106
| |
Collapse
|
3
|
Goins LM, Girard JR, Mondal BC, Buran S, Su CC, Tang R, Biswas T, Kissi JA, Banerjee U. Wnt signaling couples G2 phase control with differentiation during hematopoiesis in Drosophila. Dev Cell 2024; 59:2477-2496.e5. [PMID: 38866012 PMCID: PMC11421984 DOI: 10.1016/j.devcel.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a β-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical β-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of β-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Bama Charan Mondal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sausan Buran
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chloe C Su
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruby Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Titash Biswas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica A Kissi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Inter-plane feedback coordinates cell morphogenesis and maintains 3D tissue organization in the Drosophila pupal retina. Development 2024; 151:dev201757. [PMID: 38533736 PMCID: PMC11006395 DOI: 10.1242/dev.201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/12/2024] [Indexed: 03/28/2024]
Abstract
How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Xiao Sun
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Decker
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
6
|
Clarke DN, Martin AC. EGFR-dependent actomyosin patterning coordinates morphogenetic movements between tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573057. [PMID: 38187543 PMCID: PMC10769333 DOI: 10.1101/2023.12.22.573057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The movements that give rise to the body's structure are powered by cell shape changes and rearrangements that are coordinated at supracellular scales. How such cellular coordination arises and integrates different morphogenetic programs is unclear. Using quantitative imaging, we found a complex pattern of adherens junction (AJ) levels in the ectoderm prior to gastrulation onset in Drosophila. AJ intensity exhibited a double-sided gradient, with peaks at the dorsal midline and ventral neuroectoderm. We show that this dorsal-ventral AJ pattern is regulated by epidermal growth factor (EGF) signaling and that this signal is required for ectoderm cell movement during mesoderm invagination and axis extension. We identify AJ levels and junctional actomyosin as downstream effectors of EGFR signaling. Overall, our study demonstrates a mechanism of coordination between tissue folding and convergent extension that facilitates embryo-wide gastrulation movements.
Collapse
Affiliation(s)
| | - Adam C Martin
- Dept. of Biology, Massachusetts Institute of Technology
| |
Collapse
|
7
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. Mol Biol Cell 2023; 34:ar81. [PMID: 37163320 PMCID: PMC10398881 DOI: 10.1091/mbc.e23-03-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
During embryonic development, dramatic cell shape changes and movements reshape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by mechanosensitive multiprotein complexes assembled via multivalent connections. Here we combine genetic, cell biological, and modeling approaches to define the mechanism of action and functions of an important player, Drosophila polychaetoid, homologue of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways, perhaps in distinct subcomplexes, but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Jörg Grosshans
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
8
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Orthogonal coupling of a 3D cytoskeletal scaffold coordinates cell morphogenesis and maintains tissue organization in the Drosophila pupal retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531386. [PMID: 36945525 PMCID: PMC10028844 DOI: 10.1101/2023.03.06.531386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How complex three-dimensional (3D) organs coordinate cellular morphogenetic events to achieve the correct final form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells coordinately organize tissue pattern to support retinal integrity. Our experiments revealed an unanticipated intercellular feedback mechanism whereby correct cellular differentiation of either cell type can non-autonomously induce cytoskeletal remodeling in the other Abl mutant cell type, restoring retinal pattern and integrity. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
|
9
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530634. [PMID: 36909597 PMCID: PMC10002719 DOI: 10.1101/2023.03.01.530634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During embryonic development dramatic cell shape changes and movements re-shape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by a mechanosensitive multiprotein complex assembled via multivalent connections. Here we combine genetic, cell biological and modeling approaches to define the mechanism of action and functions of an important player, Drosophila Polychaetoid, homolog of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York, USA 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics & Bateson Centre, University of Sheffield, Sheffield, UK
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jörg Grosshans
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
10
|
Chandran L, Backer W, Schleutker R, Kong D, Beati SAH, Luschnig S, Müller HAJ. Src42A is required for E-cadherin dynamics at cell junctions during Drosophila axis elongation. Development 2023; 150:286529. [PMID: 36628974 DOI: 10.1242/dev.201119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Src kinases are important regulators of cell adhesion. Here, we have explored the function of Src42A in junction remodelling during Drosophila gastrulation. Src42A is required for tyrosine phosphorylation at bicellular (bAJ) and tricellular (tAJ) junctions in germband cells, and localizes to hotspots of mechanical tension. The role of Src42A was investigated using maternal RNAi and CRISPR-Cas9-induced germline mosaics. We find that, during cell intercalations, Src42A is required for the contraction of junctions at anterior-posterior cell interfaces. The planar polarity of E-cadherin is compromised and E-cadherin accumulates at tricellular junctions after Src42A knockdown. Furthermore, we show that Src42A acts in concert with Abl kinase, which has also been implicated in cell intercalations. Our data suggest that Src42A is involved in two related processes: in addition to establishing tension generated by the planar polarity of MyoII, it may also act as a signalling factor at tAJs to control E-cadherin residence time.
Collapse
Affiliation(s)
- Lenin Chandran
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| | - Wilko Backer
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - Raphael Schleutker
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - Deqing Kong
- Developmental Genetics, Fachbereich Biologie, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Seyed A H Beati
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| | - Stefan Luschnig
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - H-Arno J Müller
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| |
Collapse
|
11
|
Notch-dependent Abl signaling regulates cell motility during ommatidial rotation in Drosophila. Cell Rep 2022; 41:111788. [PMID: 36476875 PMCID: PMC9887719 DOI: 10.1016/j.celrep.2022.111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
A collective cell motility event that occurs during Drosophila eye development, ommatidial rotation (OR), serves as a paradigm for signaling-pathway-regulated directed movement of cell clusters. OR is instructed by the EGFR and Notch pathways and Frizzled/planar cell polarity (Fz/PCP) signaling, all of which are associated with photoreceptor R3 and R4 specification. Here, we show that Abl kinase negatively regulates OR through its activity in the R3/R4 pair. Abl is localized to apical junctional regions in R4, but not in R3, during OR, and this apical localization requires Notch signaling. We demonstrate that Abl and Notch interact genetically during OR, and Abl co-immunoprecipitates in complexes with Notch in eye discs. Perturbations of Abl interfere with adherens junctional organization of ommatidial preclusters, which mediate the OR process. Together, our data suggest that Abl kinase acts directly downstream of Notch in R4 to fine-tune OR via its effect on adherens junctions.
Collapse
|
12
|
Founounou N, Farhadifar R, Collu GM, Weber U, Shelley MJ, Mlodzik M. Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nat Commun 2021; 12:6974. [PMID: 34848713 PMCID: PMC8632910 DOI: 10.1038/s41467-021-27253-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
The phenomenon of tissue fluidity-cells' ability to rearrange relative to each other in confluent tissues-has been linked to several morphogenetic processes and diseases, yet few molecular regulators of tissue fluidity are known. Ommatidial rotation (OR), directed by planar cell polarity signaling, occurs during Drosophila eye morphogenesis and shares many features with polarized cellular migration in vertebrates. We utilize in vivo live imaging analysis tools to quantify dynamic cellular morphologies during OR, revealing that OR is driven autonomously by ommatidial cell clusters rotating in successive pulses within a permissive substrate. Through analysis of a rotation-specific nemo mutant, we demonstrate that precise regulation of junctional E-cadherin levels is critical for modulating the mechanical properties of the tissue to allow rotation to progress. Our study defines Nemo as a molecular tool to induce a transition from solid-like tissues to more viscoelastic tissues broadening our molecular understanding of tissue fluidity.
Collapse
Affiliation(s)
- Nabila Founounou
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Reza Farhadifar
- grid.430264.7Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5th Ave, New York, NY 10010 USA ,grid.38142.3c000000041936754XDepartment of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138 USA
| | - Giovanna M. Collu
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Ursula Weber
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Michael J. Shelley
- grid.430264.7Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5th Ave, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753Courant Institute, New York University, 251 Mercer St, New York, NY 10012 USA
| | - Marek Mlodzik
- Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
13
|
Tan SE, Tan W, Fisher K, Strutt D. QuantifyPolarity, a new tool-kit for measuring planar polarized protein distributions and cell properties in developing tissues. Development 2021; 148:272072. [PMID: 34351416 PMCID: PMC8451067 DOI: 10.1242/dev.198952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
The coordination of cells or structures within the plane of a tissue is known as planar polarization. It is often governed by the asymmetric distribution of planar polarity proteins within cells. A number of quantitative methods have been developed to provide a readout of planar polarized protein distributions. However, previous planar polarity quantification methods can be affected by variation in cell geometry. Hence, we developed a novel planar polarity quantification method based on Principal Component Analysis (PCA) that is shape insensitive. Here, we compare this method with other state-of-the-art methods on simulated models and biological datasets. We found that the PCA method performs robustly in quantifying planar polarity independently of variation in cell geometry and other image conditions. We designed a user-friendly graphical user interface called QuantifyPolarity, equipped with three polarity methods for automated quantification of polarity. QuantifyPolarity also provides tools to quantify cell morphology and packing geometry, allowing the relationship of these characteristics to planar polarization to be investigated. This tool enables experimentalists with no prior computational expertise to perform high-throughput cell polarity and shape analysis automatically and efficiently. Summary: We present a novel planar polarity quantification method based on Principal Component Analysis that performs robustly in quantifying planar polarity independently of variation in cell geometry and other image properties.
Collapse
Affiliation(s)
- Su Ee Tan
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Weijie Tan
- School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
| | - Katherine Fisher
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
14
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
15
|
Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Dev Cell 2021; 56:1589-1602.e9. [PMID: 33932332 DOI: 10.1016/j.devcel.2021.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors are essential for animal development and survival, with conserved roles in innate immunity, tissue patterning, and cell behavior. The mechanisms by which Toll receptors signal to the nucleus are well characterized, but how Toll receptors generate rapid, localized signals at the cell membrane to produce acute changes in cell polarity and behavior is not known. We show that Drosophila Toll receptors direct epithelial convergent extension by inducing planar-polarized patterns of Src and PI3-kinase (PI3K) activity. Toll receptors target Src activity to specific sites at the membrane, and Src recruits PI3K to the Toll-2 complex through tyrosine phosphorylation of the Toll-2 cytoplasmic domain. Reducing Src or PI3K activity disrupts planar-polarized myosin assembly, cell intercalation, and convergent extension, whereas constitutive Src activity promotes ectopic PI3K and myosin cortical localization. These results demonstrate that Toll receptors direct cell polarity and behavior by locally mobilizing Src and PI3K activity.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jay Shi
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Kia S Bourdot
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sara Supriyatno
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Karl H Palmquist
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Omar L Gutierrez-Ruiz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
16
|
Rogers EM, Allred SC, Peifer M. Abelson kinase's intrinsically disordered region plays essential roles in protein function and protein stability. Cell Commun Signal 2021; 19:27. [PMID: 33627133 PMCID: PMC7905622 DOI: 10.1186/s12964-020-00703-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Background The non-receptor tyrosine kinase Abelson (Abl) is a key player in oncogenesis, with kinase inhibitors serving as paradigms of targeted therapy. Abl also is a critical regulator of normal development, playing conserved roles in regulating cell behavior, brain development and morphogenesis. Drosophila offers a superb model for studying Abl’s normal function, because, unlike mammals, there is only a single fly Abl family member. In exploring the mechanism of action of multi-domain scaffolding proteins like Abl, one route is to define the roles of their individual domains. Research into Abl’s diverse roles in embryonic morphogenesis revealed many surprises. For instance, kinase activity, while important, is not crucial for all Abl activities, and the C-terminal F-actin binding domain plays a very modest role. This turned our attention to one of Abl’s least understood features—the long intrinsically-disordered region (IDR) linking Abl’s kinase and F-actin binding domains. The past decade revealed unexpected, important roles for IDRs in diverse cell functions, as sites of posttranslational modifications, mediating multivalent interactions and enabling assembly of biomolecular condensates via phase separation. Previous work deleting conserved regions in Abl’s IDR revealed an important role for a PXXP motif, but did not identify any other essential regions. Methods Here we extend this analysis by deleting the entire IDR, and asking whether Abl∆IDR rescues the diverse roles of Abl in viability and embryonic morphogenesis in Drosophila. Results This revealed that the IDR is essential for embryonic and adult viability, and for cell shape changes and cytoskeletal regulation during embryonic morphogenesis, and, most surprisingly, revealed a role in modulating protein stability. Conclusion Our data provide new insights into the role of the IDR in an important signaling protein, the non-receptor kinase Abl, suggesting that it is essential for all aspects of protein function during embryogenesis, and revealing a role in protein stability. These data will stimulate new explorations of the mechanisms by which the IDR regulates Abl stability and function, both in Drosophila and also in mammals. They also will stimulate further interest in the broader roles IDRs play in diverse signaling proteins. Video Abstract
Collapse
Affiliation(s)
- Edward M Rogers
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - S Colby Allred
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Yu HH, Zallen JA. Abl and Canoe/Afadin mediate mechanotransduction at tricellular junctions. Science 2021; 370:370/6520/eaba5528. [PMID: 33243859 DOI: 10.1126/science.aba5528] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Epithelial structure is generated by the dynamic reorganization of cells in response to mechanical forces. Adherens junctions transmit forces between cells, but how cells sense and respond to these forces in vivo is not well understood. We identify a mechanotransduction pathway involving the Abl tyrosine kinase and Canoe/Afadin that stabilizes cell adhesion under tension at tricellular junctions in the Drosophila embryo. Canoe is recruited to tricellular junctions in response to actomyosin contractility, and this mechanosensitivity requires Abl-dependent phosphorylation of a conserved tyrosine in the Canoe actin-binding domain. Preventing Canoe tyrosine phosphorylation destabilizes tricellular adhesion, and anchoring Canoe at tricellular junctions independently of mechanical inputs aberrantly stabilizes adhesion, arresting cell rearrangement. These results identify a force-responsive mechanism that stabilizes tricellular adhesion under tension during epithelial remodeling.
Collapse
Affiliation(s)
- Huapeng H Yu
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bellary Road, Bangalore 560065, India.
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
19
|
Gheisari E, Aakhte M, Müller HAJ. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech Dev 2020; 163:103629. [PMID: 32615151 DOI: 10.1016/j.mod.2020.103629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023]
Abstract
Gastrulation is generally understood as the morphogenetic processes that result in the spatial organization of the blastomere into the three germ layers, ectoderm, mesoderm and endoderm. This review summarizes our current knowledge of the morphogenetic mechanisms in Drosophila gastrulation. In addition to the events that drive mesoderm invagination and germband elongation, we pay particular attention to other, less well-known mechanisms including midgut invagination, cephalic furrow formation, dorsal fold formation, and mesoderm layer formation. This review covers topics ranging from the identification and functional characterization of developmental and morphogenetic control genes to the analysis of the physical properties of cells and tissues and the control of cell and tissue mechanics of the morphogenetic movements in the gastrula.
Collapse
Affiliation(s)
- Elham Gheisari
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - Mostafa Aakhte
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - H-Arno J Müller
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany.
| |
Collapse
|
20
|
Rizzo AN, Belvitch P, Demeritte R, Garcia JGN, Letsiou E, Dudek SM. Arg mediates LPS-induced disruption of the pulmonary endothelial barrier. Vascul Pharmacol 2020; 128-129:106677. [PMID: 32240815 DOI: 10.1016/j.vph.2020.106677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/23/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a devastating disease process that involves dysregulated inflammation and decreased alveolar-capillary barrier function. Despite increased understanding of the pathophysiology, no effective targeted therapies exist to treat ARDS. Recent preclinical studies suggest that the multi-tyrosine kinase inhibitor, imatinib, which targets the Abl kinases c-Abl and Arg, has the potential to restore endothelial dysfunction caused by inflammatory agonists. Prior work demonstrates that imatinib attenuates LPS (lipopolysaccharide)-induced vascular leak and inflammation; however, the mechanisms underlying these effects remain incompletely understood. In the current study, we demonstrate that imatinib inhibits LPS-induced increase in the phosphorylation of CrkL, a specific substrate of Abl kinases, in human pulmonary endothelial cells. Specific silencing of Arg, and not c-Abl, attenuated LPS-induced pulmonary vascular permeability as measured by electrical cellular impedance sensing (ECIS) and gap formation assays. In addition, direct activation of Abl family kinases with the small molecule activator DPH resulted in endothelial barrier disruption that was attenuated by Arg siRNA. In complementary studies to characterize the mechanisms by which Arg mediates endothelial barrier function, Arg silencing was found to inhibit LPS-induced disruption of adherens junctions and phosphorylation of myosin light chains (MLC). Overall, these results characterize the mechanisms by which imatinib protects against LPS-induced endothelial barrier disruption and suggest that Arg inhibition may represent a novel strategy to enhance endothelial barrier function.
Collapse
Affiliation(s)
- Alicia N Rizzo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Regaina Demeritte
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
21
|
Abstract
Convergent extension is a conserved mechanism for elongating tissues. In the Drosophila embryo, convergent extension is driven by planar polarized cell intercalation and is a paradigm for understanding the cellular, molecular, and biophysical mechanisms that establish tissue structure. Studies of convergent extension in Drosophila have provided key insights into the force-generating molecules that promote convergent extension in epithelial tissues, as well as the global systems of spatial information that systematically organize these cell behaviors. A general framework has emerged in which asymmetrically localized proteins involved in cytoskeletal tension and cell adhesion direct oriented cell movements, and spatial signals provided by the Toll, Tartan, and Teneurin receptor families break planar symmetry to establish and coordinate planar cell polarity throughout the tissue. In this chapter, we describe the cellular, molecular, and biophysical mechanisms that regulate cell intercalation in the Drosophila embryo, and discuss how research in this system has revealed conserved biological principles that control the organization of multicellular tissues and animal body plans.
Collapse
Affiliation(s)
- Adam C Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States.
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
22
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Manning LA, Perez-Vale KZ, Schaefer KN, Sewell MT, Peifer M. The Drosophila Afadin and ZO-1 homologues Canoe and Polychaetoid act in parallel to maintain epithelial integrity when challenged by adherens junction remodeling. Mol Biol Cell 2019; 30:1938-1960. [PMID: 31188739 PMCID: PMC6727765 DOI: 10.1091/mbc.e19-04-0209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During morphogenesis, cells must change shape and move without disrupting tissue integrity. This requires cell-cell junctions to allow dynamic remodeling while resisting forces generated by the actomyosin cytoskeleton. Multiple proteins play roles in junctional-cytoskeletal linkage, but the mechanisms by which they act remain unclear. Drosophila Canoe maintains adherens junction-cytoskeletal linkage during gastrulation. Canoe's mammalian homologue Afadin plays similar roles in cultured cells, working in parallel with ZO-1 proteins, particularly at multicellular junctions. We take these insights back to the fly embryo, exploring how cells maintain epithelial integrity when challenged by adherens junction remodeling during germband extension and dorsal closure. We found that Canoe helps cells maintain junctional-cytoskeletal linkage when challenged by the junctional remodeling inherent in mitosis, cell intercalation, and neuroblast invagination or by forces generated by the actomyosin cable at the leading edge. However, even in the absence of Canoe, many cells retain epithelial integrity. This is explained by a parallel role played by the ZO-1 homologue Polychaetoid. In embryos lacking both Canoe and Polychaetoid, cell junctions fail early, with multicellular junctions especially sensitive, leading to widespread loss of epithelial integrity. Our data suggest that Canoe and Polychaetoid stabilize Bazooka/Par3 at cell-cell junctions, helping maintain balanced apical contractility and tissue integrity.
Collapse
Affiliation(s)
- Lathiena A Manning
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mycah T Sewell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
24
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
25
|
Razzell W, Bustillo ME, Zallen JA. The force-sensitive protein Ajuba regulates cell adhesion during epithelial morphogenesis. J Cell Biol 2018; 217:3715-3730. [PMID: 30006462 PMCID: PMC6168262 DOI: 10.1083/jcb.201801171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
The reorganization of cells in response to mechanical forces converts simple epithelial sheets into complex tissues of various shapes and dimensions. Epithelial integrity is maintained throughout tissue remodeling, but the mechanisms that regulate dynamic changes in cell adhesion under tension are not well understood. In Drosophila melanogaster, planar polarized actomyosin forces direct spatially organized cell rearrangements that elongate the body axis. We show that the LIM-domain protein Ajuba is recruited to adherens junctions in a tension-dependent fashion during axis elongation. Ajuba localizes to sites of myosin accumulation at adherens junctions within seconds, and the force-sensitive localization of Ajuba requires its N-terminal domain and two of its three LIM domains. We demonstrate that Ajuba stabilizes adherens junctions in regions of high tension during axis elongation, and that Ajuba activity is required to maintain cell adhesion during cell rearrangement and epithelial closure. These results demonstrate that Ajuba plays an essential role in regulating cell adhesion in response to mechanical forces generated by epithelial morphogenesis.
Collapse
Affiliation(s)
- William Razzell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Maria E Bustillo
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
26
|
Siang LC, Fernandez-Gonzalez R, Feng JJ. Modeling cell intercalation during Drosophila germband extension. Phys Biol 2018; 15:066008. [DOI: 10.1088/1478-3975/aad865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Yap AS, Duszyc K, Viasnoff V. Mechanosensing and Mechanotransduction at Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028761. [PMID: 28778874 DOI: 10.1101/cshperspect.a028761] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell adhesion systems are defined by their ability to resist detachment force. Our understanding of the biology of cell-cell adhesions has recently been transformed by the realization that many of the forces that act on those adhesions are generated by the cells that they couple together; and that force at adhesive junctions can be sensed to regulate cell behavior. Here, we consider the mechanisms responsible for applying force to cell-cell junctions and the mechanosensory pathways that detect those forces. We focus on cadherins, as these are the best-studied examples to date, but it is likely that similar principles will apply to other molecular systems that can engage with force-generators within cells and physically couple those cells together.
Collapse
Affiliation(s)
- Alpha S Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Kinga Duszyc
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,CNRS, Singapore 117411
| |
Collapse
|
28
|
Röper JC, Mitrossilis D, Stirnemann G, Waharte F, Brito I, Fernandez-Sanchez ME, Baaden M, Salamero J, Farge E. The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. eLife 2018; 7:33381. [PMID: 30024850 PMCID: PMC6053302 DOI: 10.7554/elife.33381] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
In vivo, the primary molecular mechanotransductive events mechanically initiating cell differentiation remain unknown. Here we find the molecular stretching of the highly conserved Y654-β-catenin-D665-E-cadherin binding site as mechanically induced by tissue strain. It triggers the increase of accessibility of the Y654 site, target of the Src42A kinase phosphorylation leading to irreversible unbinding. Molecular dynamics simulations of the β-catenin/E-cadherin complex under a force mimicking a 6 pN physiological mechanical strain predict a local 45% stretching between the two α-helices linked by the site and a 15% increase in accessibility of the phosphorylation site. Both are quantitatively observed using FRET lifetime imaging and non-phospho Y654 specific antibody labelling, in response to the mechanical strains developed by endogenous and magnetically mimicked early mesoderm invagination of gastrulating Drosophila embryos. This is followed by the predicted release of 16% of β-catenin from junctions, observed in FRAP, which initiates the mechanical activation of the β-catenin pathway process.
Collapse
Affiliation(s)
- Jens-Christian Röper
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| | - Démosthène Mitrossilis
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Paris, France
| | - François Waharte
- Space-Time Imaging of Endomembranes Dynamics, Cell and Tissue Imaging Facility, Institut Curie, CNRS UMR 144, PSL University, Inria, France
| | - Isabel Brito
- CBIO-Centre for Computational Biology, MINES ParisTech, Institut Curie, INSERM, PSL University, Paris, France
| | - Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| | - Marc Baaden
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Paris, France
| | - Jean Salamero
- Space-Time Imaging of Endomembranes Dynamics, Cell and Tissue Imaging Facility, Institut Curie, CNRS UMR 144, PSL University, Inria, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| |
Collapse
|
29
|
Chiasson-MacKenzie C, McClatchey AI. Cell-Cell Contact and Receptor Tyrosine Kinase Signaling. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029215. [PMID: 28716887 DOI: 10.1101/cshperspect.a029215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The behavior of cells within tissues is governed by the activities of adhesion receptors that provide spatial cues and transmit forces through intercellular junctions, and by growth-factor receptors, particularly receptor tyrosine kinases (RTKs), that respond to biochemical signals from the environment. Coordination of these two activities is essential for the patterning and polarized migration of cells during morphogenesis and for homeostasis in mature tissues; loss of this coordination is a hallmark of developing cancer and driver of metastatic progression. Although much is known about the individual functions of adhesion and growth factor receptors, we have a surprisingly superficial understanding of the mechanisms by which their activities are coordinated.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| |
Collapse
|
30
|
Lamballe F, Toscano S, Conti F, Arechederra M, Baeza N, Figarella-Branger D, Helmbacher F, Maina F. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget 2018; 7:74747-74767. [PMID: 27732969 PMCID: PMC5342699 DOI: 10.18632/oncotarget.12546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
The cytoplasmic tyrosine kinase ABL exerts positive or negative effects in solid tumours according to the cellular context, thus functioning as a “switch modulator”. The therapeutic effects of drugs targeting a set of signals encompassing ABL have been explored in several solid tumours. However, the net contribution of ABL inhibition by these agents remains elusive as these drugs also act on other signalling components. Here, using glioblastoma (GBM) as a cellular paradigm, we report that ABL inhibition exacerbates mesenchymal features as highlighted by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Cells with permanent ABL inhibition exhibit enhanced motility and invasive capabilities, while proliferation and tumorigenic properties are reduced. Intriguingly, permanent ABL inhibition also interferes with GBM neurosphere formation and with expression of stemness markers in sphere-cultured GBM cells. Furthermore, we show that the molecular and biological characteristics of GBM cells with impaired ABL are reversible by restoring ABL levels, thus uncovering a remarkable plasticity of GBM cells to ABL threshold. A phospho-signalling screen revealed that loss of tumorigenic and self-renewal properties in GBM cells under permanent ABL inhibition coincide with drastic changes in the expression and/or phosphorylation levels of multiple signalling components. Our findings identify ABL as a crucial player for migration, invasion, proliferation, tumorigenic, and stem-cell like properties of GBM cells. Taken together, this work supports the notion that the oncogenic role of ABL in GBM cells is associated with its capability to coordinate a signalling setting that determines tumorigenic and stem-cell like properties.
Collapse
Affiliation(s)
- Fabienne Lamballe
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Sara Toscano
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Filippo Conti
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Maria Arechederra
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Nathalie Baeza
- Aix-Marseille Université, Inserm, CRO2 UMR S911, Marseille, France
| | | | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
31
|
Chen CL, Wang SH, Chan PC, Shen MR, Chen HC. Phosphorylation of E-cadherin at threonine 790 by protein kinase Cδ reduces β-catenin binding and suppresses the function of E-cadherin. Oncotarget 2018; 7:37260-37276. [PMID: 27203386 PMCID: PMC5095074 DOI: 10.18632/oncotarget.9403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/10/2016] [Indexed: 02/07/2023] Open
Abstract
Proper control of cell-cell adhesion is crucial for embryogenesis and tissue homeostasis. In this study, we show that protein kinase C (PKC)δ, a member of the novel PKC subfamily, localizes at cell-cell contacts of epithelial cells through its C2-like domain in an F-actin-dependent manner. Upon hepatocyte growth factor stimulation, PKCδ is phosphorylated and activated by Src, which then phosphorylates E-cadherin at Thr790. Phosphorylation of E-cadherin at Thr790 diminishes its interaction with β-catenin and impairs the homophilic interaction between the ectodomains of E-cadherin. The suppression of PKCδ by its dominant-negative mutants or specific short-hairpin RNA inhibits the disruption of cell-cell adhesions induced by hepatocyte growth factor. Elevated PKCδ expression in cancer cells is correlated with increased phosphorylation of E-cadherin at Thr790, reduced binding of E-cadherin to β-catenin, and poor homophilic interaction between E-cadherin. Analysis of surgical specimens confirmed that PKCδ is overexpressed in cervical cancer tissues, accompanied by increased phosphorylation of E-cadherin at Thr790. Together, our findings unveil a negative role for PKCδ in cell-cell adhesion through phosphorylation of E-cadherin.
Collapse
Affiliation(s)
- Chien-Lin Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Hui Wang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Po-Chao Chan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, National Cheng Kung University, Tainan 704, Taiwan.,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
32
|
Cheong HSJ, VanBerkum MFA. Long disordered regions of the C-terminal domain of Abelson tyrosine kinase have specific and additive functions in regulation and axon localization. PLoS One 2017; 12:e0189338. [PMID: 29232713 PMCID: PMC5726718 DOI: 10.1371/journal.pone.0189338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 01/28/2023] Open
Abstract
Abelson tyrosine kinase (Abl) is a key regulator of actin-related morphogenetic processes including axon guidance, where it functions downstream of several guidance receptors. While the long C-terminal domain (CTD) of Abl is required for function, its role is poorly understood. Here, a battery of mutants of Drosophila Abl was created that systematically deleted large segments of the CTD from Abl or added them back to the N-terminus alone. The functionality of these Abl transgenes was assessed through rescue of axon guidance defects and adult lethality in Abl loss-of-function, as well as through gain-of-function effects in sensitized slit or frazzled backgrounds that perturb midline guidance in the Drosophila embryonic nerve cord. Two regions of the CTD play important and distinct roles, but additive effects for other regions were also detected. The first quarter of the CTD, including a conserved PxxP motif and its surrounding sequence, regulates Abl function while the third quarter localizes Abl to axons. These regions feature long stretches of intrinsically disordered sequence typically found in hub proteins and are associated with diverse protein-protein interactions. Thus, the CTD of Abl appears to use these disordered regions to establish a variety of different signaling complexes required during formation of axon tracts.
Collapse
Affiliation(s)
- Han S J Cheong
- Department of Biological Sciences, Wayne State University, Detroit, United States of America
| | - Mark F A VanBerkum
- Department of Biological Sciences, Wayne State University, Detroit, United States of America
| |
Collapse
|
33
|
Curran S, Strandkvist C, Bathmann J, de Gennes M, Kabla A, Salbreux G, Baum B. Myosin II Controls Junction Fluctuations to Guide Epithelial Tissue Ordering. Dev Cell 2017; 43:480-492.e6. [PMID: 29107560 PMCID: PMC5703647 DOI: 10.1016/j.devcel.2017.09.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 07/24/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022]
Abstract
Under conditions of homeostasis, dynamic changes in the length of individual adherens junctions (AJs) provide epithelia with the fluidity required to maintain tissue integrity in the face of intrinsic and extrinsic forces. While the contribution of AJ remodeling to developmental morphogenesis has been intensively studied, less is known about AJ dynamics in other circumstances. Here, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order, without concomitant large-scale changes in tissue size or shape. We find that neighbor exchange events are driven by stochastic fluctuations in junction length, regulated in part by junctional actomyosin. In this context, the developmental increase of isotropic junctional actomyosin reduces the rate of neighbor exchange, contributing to tissue order. We propose a model in which the local variance in tension between junctions determines whether actomyosin-based forces will inhibit or drive the topological transitions that either refine or deform a tissue.
Collapse
Affiliation(s)
- Scott Curran
- Medical Research Council - Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Charlotte Strandkvist
- Medical Research Council - Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jasper Bathmann
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marc de Gennes
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alexandre Kabla
- Department of Engineering, University of Cambridge, Cambridge CB2 OQH, UK
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| | - Buzz Baum
- Medical Research Council - Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Guirao B, Bellaïche Y. Biomechanics of cell rearrangements in Drosophila. Curr Opin Cell Biol 2017; 48:113-124. [DOI: 10.1016/j.ceb.2017.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
|
35
|
Shindo A. Models of convergent extension during morphogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28906063 PMCID: PMC5763355 DOI: 10.1002/wdev.293] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/23/2017] [Accepted: 08/06/2017] [Indexed: 11/29/2022]
Abstract
Convergent extension (CE) is a fundamental and conserved collective cell movement that forms elongated tissues during embryonic development. Thus far, studies have demonstrated two different mechanistic models of collective cell movements during CE. The first, termed the crawling mode, was discovered in the process of notochord formation in Xenopus laevis embryos, and has been the established model of CE for decades. The second model, known as the contraction mode, was originally reported in studies of germband extension in Drosophila melanogaster embryos and was recently demonstrated to be a conserved mechanism of CE among tissues and stages of development across species. This review summarizes the two modes of CE by focusing on the differences in cytoskeletal behaviors and relative expression of cell adhesion molecules. The upstream molecules regulating these machineries are also discussed. There are abundant studies of notochord formation in X. laevis embryos, as this was one of the pioneering model systems in this field. Therefore, the present review discusses these findings as an approach to the fundamental biological question of collective cell regulation. WIREs Dev Biol 2018, 7:e293. doi: 10.1002/wdev.293 This article is categorized under:
Early Embryonic Development > Gastrulation and Neurulation Comparative Development and Evolution > Model Systems
Collapse
Affiliation(s)
- Asako Shindo
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Japan
| |
Collapse
|
36
|
Planar polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila epithelium. Nat Commun 2017; 8:476. [PMID: 28883443 PMCID: PMC5589913 DOI: 10.1038/s41467-017-00553-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 07/07/2017] [Indexed: 11/17/2022] Open
Abstract
The coordination between membrane trafficking and actomyosin networks is essential to the regulation of cell and tissue shape. Here, we examine Rab protein distributions during Drosophila epithelial tissue remodeling and show that Rab35 is dynamically planar polarized. Rab35 compartments are enriched at contractile interfaces of intercalating cells and provide the first evidence of interfacial monopolarity. When Rab35 function is disrupted, apical area oscillations still occur and contractile steps are observed. However, contractions are followed by reversals and interfaces fail to shorten, demonstrating that Rab35 functions as a ratchet ensuring unidirectional movement. Although actomyosin forces have been thought to drive interface contraction, initiation of Rab35 compartments does not require Myosin II function. However, Rab35 compartments do not terminate and continue to grow into large elongated structures following actomyosin disruption. Finally, Rab35 represents a common contractile cell-shaping mechanism, as mesoderm invagination fails in Rab35 compromised embryos and Rab35 localizes to constricting surfaces. Various stages of tissue morphogenesis involve the contraction of epithelial surfaces. Here, the authors identify the Rab GTPase Rab35 as an essential component of this contractile process, which functions as a membrane ratchet to ensure unidirectional movement of intercalating cells.
Collapse
|
37
|
Shao X, Kang H, Loveless T, Lee GR, Seok C, Weis WI, Choi HJ, Hardin J. Cell-cell adhesion in metazoans relies on evolutionarily conserved features of the α-catenin·β-catenin-binding interface. J Biol Chem 2017; 292:16477-16490. [PMID: 28842483 DOI: 10.1074/jbc.m117.795567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Stable tissue integrity during embryonic development relies on the function of the cadherin·catenin complex (CCC). The Caenorhabditis elegans CCC is a useful paradigm for analyzing in vivo requirements for specific interactions among the core components of the CCC, and it provides a unique opportunity to examine evolutionarily conserved mechanisms that govern the interaction between α- and β-catenin. HMP-1, unlike its mammalian homolog α-catenin, is constitutively monomeric, and its binding affinity for HMP-2/β-catenin is higher than that of α-catenin for β-catenin. A crystal structure shows that the HMP-1·HMP-2 complex forms a five-helical bundle structure distinct from the structure of the mammalian α-catenin·β-catenin complex. Deletion analysis based on the crystal structure shows that the first helix of HMP-1 is necessary for binding HMP-2 avidly in vitro and for efficient recruitment of HMP-1 to adherens junctions in embryos. HMP-2 Ser-47 and Tyr-69 flank its binding interface with HMP-1, and we show that phosphomimetic mutations at these two sites decrease binding affinity of HMP-1 to HMP-2 by 40-100-fold in vitro. In vivo experiments using HMP-2 S47E and Y69E mutants showed that they are unable to rescue hmp-2(zu364) mutants, suggesting that phosphorylation of HMP-2 on Ser-47 and Tyr-69 could be important for regulating CCC formation in C. elegans Our data provide novel insights into how cadherin-dependent cell-cell adhesion is modulated in metazoans by conserved elements as well as features unique to specific organisms.
Collapse
Affiliation(s)
| | | | - Timothy Loveless
- Department of Zoology, and.,Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Gyu Rie Lee
- Chemistry, Seoul National University, Seoul 08826, South Korea, and
| | - Chaok Seok
- Chemistry, Seoul National University, Seoul 08826, South Korea, and
| | - William I Weis
- the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | | | - Jeff Hardin
- From the Program in Genetics, .,Department of Zoology, and.,Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
38
|
E-Cadherin–Mediated Cell Contact Controls the Epidermal Damage Response in Radiation Dermatitis. J Invest Dermatol 2017; 137:1731-1739. [DOI: 10.1016/j.jid.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 11/23/2022]
|
39
|
Lee SW, Morishita Y. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis. PLoS Comput Biol 2017; 13:e1005651. [PMID: 28704373 PMCID: PMC5547694 DOI: 10.1371/journal.pcbi.1005651] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/27/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue "evolution". Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model.
Collapse
Affiliation(s)
- Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, Japan
- * E-mail:
| |
Collapse
|
40
|
Merkel M, Manning ML. Using cell deformation and motion to predict forces and collective behavior in morphogenesis. Semin Cell Dev Biol 2017; 67:161-169. [PMID: 27496334 PMCID: PMC5290285 DOI: 10.1016/j.semcdb.2016.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/05/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022]
Abstract
In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology.
Collapse
Affiliation(s)
- Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
41
|
Jülicher F, Eaton S. Emergence of tissue shape changes from collective cell behaviours. Semin Cell Dev Biol 2017; 67:103-112. [DOI: 10.1016/j.semcdb.2017.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
42
|
Farrell DL, Weitz O, Magnasco MO, Zallen JA. SEGGA: a toolset for rapid automated analysis of epithelial cell polarity and dynamics. Development 2017; 144:1725-1734. [PMID: 28465336 PMCID: PMC5450846 DOI: 10.1242/dev.146837] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Abstract
Epithelial remodeling determines the structure of many organs in the body through changes in cell shape, polarity and behavior and is a major area of study in developmental biology. Accurate and high-throughput methods are necessary to systematically analyze epithelial organization and dynamics at single-cell resolution. We developed SEGGA, an easy-to-use software for automated image segmentation, cell tracking and quantitative analysis of cell shape, polarity and behavior in epithelial tissues. SEGGA is free, open source, and provides a full suite of tools that allow users with no prior computational expertise to independently perform all steps of automated image segmentation, semi-automated user-guided error correction, and data analysis. Here we use SEGGA to analyze changes in cell shape, cell interactions and planar polarity during convergent extension in the Drosophila embryo. These studies demonstrate that planar polarity is rapidly established in a spatiotemporally regulated pattern that is dynamically remodeled in response to changes in cell orientation. These findings reveal an unexpected plasticity that maintains coordinated planar polarity in actively moving populations through the continual realignment of cell polarity with the tissue axes.
Collapse
Affiliation(s)
- Dene L Farrell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Ori Weitz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Marcelo O Magnasco
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
43
|
McFaul CMJ, Fernandez-Gonzalez R. Shape of my heart: Cell-cell adhesion and cytoskeletal dynamics during Drosophila cardiac morphogenesis. Exp Cell Res 2017; 358:65-70. [PMID: 28389210 DOI: 10.1016/j.yexcr.2017.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022]
Abstract
The fruit fly Drosophila melanogaster has recently emerged as an excellent system to investigate the genetics of cardiovascular development and disease. Drosophila provides an inexpensive and genetically-tractable in vivo system with a large number of conserved features. In addition, the Drosophila embryo is transparent, and thus amenable to time-lapse fluorescence microscopy, as well as biophysical and pharmacological manipulations. One of the conserved aspects of heart development from Drosophila to humans is the initial assembly of a tube. Here, we review the cellular behaviours and molecular dynamics important for the initial steps of heart morphogenesis in Drosophila, with particular emphasis on the cell-cell adhesion and cytoskeletal networks that cardiac precursors use to move, coordinate their migration, interact with other tissues and eventually sculpt a beating heart.
Collapse
Affiliation(s)
- Christopher M J McFaul
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
44
|
Basolateral protrusion and apical contraction cooperatively drive Drosophila germ-band extension. Nat Cell Biol 2017; 19:375-383. [DOI: 10.1038/ncb3497] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022]
|
45
|
From morphogen to morphogenesis and back. Nature 2017; 541:311-320. [DOI: 10.1038/nature21348] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|
46
|
|
47
|
Kong D, Wolf F, Großhans J. Forces directing germ-band extension in Drosophila embryos. Mech Dev 2016; 144:11-22. [PMID: 28013027 DOI: 10.1016/j.mod.2016.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/06/2023]
Abstract
Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension.
Collapse
Affiliation(s)
- Deqing Kong
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Fred Wolf
- Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organisation, Faculty of Physics, Bernstein Center for Computational Neuroscience, University of Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
48
|
Zulueta-Coarasa T, Fernandez-Gonzalez R. Tension (re)builds: Biophysical mechanisms of embryonic wound repair. Mech Dev 2016; 144:43-52. [PMID: 27989746 DOI: 10.1016/j.mod.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022]
Abstract
Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions.
Collapse
Affiliation(s)
- Teresa Zulueta-Coarasa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
49
|
Walck-Shannon E, Lucas B, Chin-Sang I, Reiner D, Kumfer K, Cochran H, Bothfeld W, Hardin J. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis. PLoS Genet 2016; 12:e1006415. [PMID: 27861585 PMCID: PMC5127194 DOI: 10.1371/journal.pgen.1006415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation. As embryos develop, tissues must change shape to establish an animal’s form. One key form-shaping movement, cell intercalation, often occurs when a tissue elongates in a preferred direction. How cells in epithelial sheets can intercalate while maintaining tissue integrity is not well understood. Here we use the dorsal epidermis in embryos of the nematode worm, C. elegans, to study cell intercalation. As cells begin to intercalate, they form highly polarized tips that lead their migration. While some mechanisms that polarize intercalating cells have been established in other systems, our work identifies a new role for CDC-42—a highly conserved, highly regulated protein that controls the actin cytoskeleton. We previously established that a related protein, Rac, is involved in tip extension during dorsal intercalation. CDC-42 also contributes to this process in addition to helping orient the extending tip. CDC-42 appears to work in conjunction with two other known cell polarity proteins, PAR-3 and PAR-6, and the cell surface receptor, VAB-1. Our work identifies a novel pathway involving proteins conserved from worms to humans that regulates a ubiquitous process during animal development.
Collapse
Affiliation(s)
- Elise Walck-Shannon
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - David Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology and Department of Medical Physiology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Kraig Kumfer
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hunter Cochran
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William Bothfeld
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeff Hardin
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
50
|
Benham-Pyle BW, Sim JY, Hart KC, Pruitt BL, Nelson WJ. Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis. eLife 2016; 5. [PMID: 27782880 PMCID: PMC5104517 DOI: 10.7554/elife.19799] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis. DOI:http://dx.doi.org/10.7554/eLife.19799.001 Tissues and organs can both produce and respond to physical forces. For example, the lungs expand and contract; the heart pumps blood; and bones and muscles grow or shrink depending on how much they are used. These responses are possible because cells contain proteins that can respond to physical forces. One of the best studied of these is a protein called β-catenin, which increases the activity of genes that trigger cells to divide to promote the expansion of tissues. β-catenin is over-active in many types of cancer cells where it contributes to tumor growth. In addition to being switched on by mechanical force, β-catenin is also activated when cells detect a signal molecule called Wnt. Cells cycle through a series of stages known as the cell cycle to ensure that they only divide when they are fully prepared to do so. Benham-Pyle et al. investigated if physical force and Wnt activate β-catenin in the same way or if they have different effects on cell division. The experiments were conducted on dog kidney cells that had left the cell cycle and had therefore temporarily stopped dividing. Physical forces, such as stretching, resulted in β-catenin being modified by an enzyme called SRC kinase, which allowed the cells to re-enter the cell cycle. On the other hand, Wnt stabilized β-catenin and temporarily increased the number of cell divisions. When mechanical stretch and Wnt signaling were combined, the cells were more likely to re-enter the cell cycle and divide compared to either stimulus alone. These data suggest that physical force and Wnt signaling affect β-catenin differently and that they can therefore have a greater effect on cell or tissue growth when they act together than on their own. The findings of Benham-Pyle et al. show that β-catenin is not simply switched on or off, but can have different levels of activity depending on the input the cells are receiving. Future experiments will test whether these mechanisms also exist in three-dimensional tissues, which will help us understand how organs develop. DOI:http://dx.doi.org/10.7554/eLife.19799.002
Collapse
Affiliation(s)
| | - Joo Yong Sim
- Department of Mechanical Engineering, Stanford University, Stanford, United States
| | - Kevin C Hart
- Department of Biology, Stanford University, Stanford, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - William James Nelson
- Program in Cancer Biology, Stanford University, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|