1
|
Ito HC, Uchiumi Y. Growth regulation bringing modularity to morphogenesis of complex three-dimensional exoskeletons. Proc Biol Sci 2024; 291:20241943. [PMID: 39689885 DOI: 10.1098/rspb.2024.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Diverse three-dimensional morphologies of arthropods' outgrowths, including beetle horns, are formed through the non-uniform growth of epidermis. Prior to moulting, epidermal tissue peels off from the old cuticle and grows non-uniformly to shape protruding structures, which are often branching, curving or twisting, from the planar epidermis. This non-uniform growth is possibly regulated by the distribution of morphogens on the epidermal cell sheet. Previous studies have identified molecules and signalling pathways related to such morphogenesis; however, how local regulation of cell sheet growth can transform planar epidermis globally into complex three-dimensional structures, such as beetle horns, remains unclear. To reveal the relationship between epidermal growth regulation and generated structures, this study theoretically examined how various shapes can be generated from planar epidermis under a deductive growth model that corresponds morphogen distributions to non-uniform growth on tissue. The results show that the heterochronic expression of multiple morphogens can flexibly fuse multiple simple shapes to generate various structures emulating complex outgrowths of beetles. These findings indicate that morphogenesis through such a mechanism may have developmental stability and modularity, providing insights into the evolution of the diverse morphology of arthropods.
Collapse
Affiliation(s)
- Hiroshi C Ito
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Yu Uchiumi
- Department of Liberal Arts, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
2
|
Turley J, Robertson F, Chenchiah IV, Liverpool TB, Weavers H, Martin P. Deep learning reveals a damage signalling hierarchy that coordinates different cell behaviours driving wound re-epithelialisation. Development 2024; 151:dev202943. [PMID: 39177163 PMCID: PMC11449448 DOI: 10.1242/dev.202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
One of the key tissue movements driving closure of a wound is re-epithelialisation. Earlier wound healing studies describe the dynamic cell behaviours that contribute to wound re-epithelialisation, including cell division, cell shape changes and cell migration, as well as the signals that might regulate these cell behaviours. Here, we have used a series of deep learning tools to quantify the contributions of each of these cell behaviours from movies of repairing wounds in the Drosophila pupal wing epithelium. We test how each is altered after knockdown of the conserved wound repair signals Ca2+ and JNK, as well as after ablation of macrophages that supply growth factor signals believed to orchestrate aspects of the repair process. Our genetic perturbation experiments provide quantifiable insights regarding how these wound signals impact cell behaviours. We find that Ca2+ signalling is a master regulator required for all contributing cell behaviours; JNK signalling primarily drives cell shape changes and divisions, whereas signals from macrophages largely regulate cell migration and proliferation. Our studies show deep learning to be a valuable tool for unravelling complex signalling hierarchies underlying tissue repair.
Collapse
Affiliation(s)
- Jake Turley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | | | | | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK
- Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Rd, Cambridge CB3 0EH, UK
| | - Helen Weavers
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Fuhrmann JF, Krishna A, Paijmans J, Duclut C, Cwikla G, Eaton S, Popović M, Jülicher F, Modes CD, Dye NA. Active shape programming drives Drosophila wing disc eversion. SCIENCE ADVANCES 2024; 10:eadp0860. [PMID: 39121221 PMCID: PMC11637009 DOI: 10.1126/sciadv.adp0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
How complex 3D tissue shape emerges during animal development remains an important open question in biology and biophysics. Here, we discover a mechanism for 3D epithelial shape change based on active, in-plane cellular events that is analogous to inanimate "shape programmable" materials, which undergo blueprinted 3D shape transformations from in-plane gradients of spontaneous strains. We study eversion of the Drosophila wing disc pouch, when the epithelium transforms from a dome into a curved fold, quantifying 3D tissue shape changes and mapping spatial patterns of cellular behaviors on the evolving geometry using cellular topology. Using a physical model inspired by shape programming, we find that active cell rearrangements are the major contributor to pouch eversion and validate this conclusion using a knockdown of MyoVI, which reduces rearrangements and disrupts morphogenesis. This work shows that shape programming is a mechanism for animal tissue morphogenesis and suggests that patterns in nature could present design strategies for shape-programmable materials.
Collapse
Affiliation(s)
- Jana F. Fuhrmann
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Abhijeet Krishna
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Joris Paijmans
- Max-Planck Institute for Physics of Complex Systems, MPI-PKS, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Charlie Duclut
- Max-Planck Institute for Physics of Complex Systems, MPI-PKS, Nöthnitzer Str. 38, 01187 Dresden, Germany
- Laboratoire Physico-Chimie Curie, CNRS UMR 168, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France
| | - Greta Cwikla
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Suzanne Eaton
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Marko Popović
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Max-Planck Institute for Physics of Complex Systems, MPI-PKS, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Frank Jülicher
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Max-Planck Institute for Physics of Complex Systems, MPI-PKS, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Carl D. Modes
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Natalie A. Dye
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Mildred Scheel Nachwuchszentrum P2, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Chikami Y, Yahata K. The structural and functional modularity of ovarian follicle epithelium in the pill-millipede Hyleoglomeris japonica Verhoeff, 1936 (Diplopoda: Glomerida: Glomeridae). Tissue Cell 2024; 88:102372. [PMID: 38598872 DOI: 10.1016/j.tice.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Ovarian somatic tissues typically surround developing oocytes and play a crucial role in oogenesis across various metazoans, often displaying structural properties specific to their functions. However, there is an absence of evident structural modularity in the follicle epithelium of Myriapoda. We report here two structurally and developmentally distinct domains within the follicle epithelium of the Japanese pill millipede, Hyleoglomeris japonica. The follicle epithelium of H. japonica exhibits a thick cell mass at the apex of the follicle. These cells harbor abundant rough endoplasmic reticulum, mitochondria, Golgi complexes, and numerous microvilli, indicative of synthetic/secretory activities. Moreover, their height increases as oogenesis progresses. In contrast, another region of the epithelium lacks these features. Our findings highlight the presence of structural and functional modularity in the follicle epithelium of H. japonica. We suggest classifying the follicle epithelium of Myriapoda into three types: homogenous epithelia with enhanced synthetic activities, homogenous epithelia with diminished such activities, and heterogeneous epithelia with varying synthetic activities. These findings prompt a reevaluation of the nature of ovarian somatic tissues in Myriapoda as well as in Arthropoda.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Kensuke Yahata
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
5
|
Kumar N, Rangel Ambriz J, Tsai K, Mim MS, Flores-Flores M, Chen W, Zartman JJ, Alber M. Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development. Nat Commun 2024; 15:2477. [PMID: 38509115 PMCID: PMC10954670 DOI: 10.1038/s41467-024-46698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Jennifer Rangel Ambriz
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Marycruz Flores-Flores
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, USA.
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Khan AK, Muñoz-Castro G, Muñoz JJ. Single and two-cells shape analysis from energy functionals for three-dimensional vertex models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3766. [PMID: 37551449 DOI: 10.1002/cnm.3766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
Vertex models have been extensively used for simulating the evolution of multicellular systems, and have given rise to important global properties concerning their macroscopic rheology or jamming transitions. These models are based on the definition of an energy functional, which fully determines the cellular response and conclusions. While two-dimensional vertex models have been widely employed, three-dimensional models are far more scarce, mainly due to the large amount of configurations that they may adopt and the complex geometrical transitions they undergo. We here investigate the shape of single and two-cells configurations as a function of the energy terms, and we study the dependence of the final shape on the model parameters: namely the exponent of the term penalising cell-cell adhesion and surface contractility. In single cell analysis, we deduce analytically the radius and limit values of the contractility for linear and quadratic surface energy terms, in 2D and 3D. In two-cells systems, symmetrical and asymmetrical, we deduce the evolution of the aspect ratio and the relative radius. While in functionals with linear surface terms yield the same aspect ratio in 2D and 3D, the configurations when using quadratic surface terms are distinct. We relate our results with well-known solutions from capillarity theory, and verify our analytical findings with a three-dimensional vertex model.
Collapse
Affiliation(s)
- Ahmad K Khan
- Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Guillem Muñoz-Castro
- Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Jose J Muñoz
- Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| |
Collapse
|
8
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
9
|
Salazar-Ciudad I, Cano-Fernández H. Evo-devo beyond development: Generalizing evo-devo to all levels of the phenotypic evolution. Bioessays 2023; 45:e2200205. [PMID: 36739577 DOI: 10.1002/bies.202200205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 02/06/2023]
Abstract
A foundational idea of evo-devo is that morphological variation is not isotropic, that is, it does not occur in all directions. Instead, some directions of morphological variation are more likely than others from DNA-level variation and these largely depend on development. We argue that this evo-devo perspective should apply not only to morphology but to evolution at all phenotypic levels. At other phenotypic levels there is no development, but there are processes that can be seen, in analogy to development, as constructing the phenotype (e.g., protein folding, learning for behavior, etc.). We argue that to explain the direction of evolution two types of arguments need to be combined: generative arguments about which phenotypic variation arises in each generation and selective arguments about which of it passes to the next generation. We explain how a full consideration of the two types of arguments improves the explanatory power of evolutionary theory. Also see the video abstract here: https://youtu.be/Egbvma_uaKc.
Collapse
Affiliation(s)
- Isaac Salazar-Ciudad
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain.,Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Sustar AE, Strand LG, Zimmerman SG, Berg CA. Imaginal disk growth factors are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genetics 2023; 223:iyac185. [PMID: 36576887 PMCID: PMC9910413 DOI: 10.1093/genetics/iyac185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022] Open
Abstract
Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.
Collapse
Affiliation(s)
- Anne E Sustar
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Liesl G Strand
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Sandra G Zimmerman
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Celeste A Berg
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| |
Collapse
|
11
|
Jackson JA, Imran Alsous J, Martin AC. Live Imaging of Nurse Cell Behavior in Late Stages of Drosophila Oogenesis. Methods Mol Biol 2023; 2626:219-232. [PMID: 36715907 PMCID: PMC11555122 DOI: 10.1007/978-1-0716-2970-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Drosophila oogenesis is a powerful and tractable model for studies of cell and developmental biology due to the multitude of well-characterized events in both germline and somatic cells, the ease of genetic manipulation in fruit flies, and the large number of egg chambers produced by each fly. Recent improvements in live imaging and ex vivo culturing protocols have enabled researchers to conduct more detailed, longer-term studies of egg chamber development, enabling insights into fundamental biological processes. Here, we present a protocol for dissection, culturing, and imaging of late-stage egg chambers to study intercellular and directional cytoplasmic flow during "nurse cell dumping." This critical developmental process towards the latter stages of oogenesis (stages 10b/11) results in rapid growth of the oocyte and shrinkage of the nurse cells and is accompanied by dynamic changes in cell shape. We also describe a procedure to record high-time-resolution movies of the flow of unlabeled cytoplasmic contents within nurse cells and through cytoplasmic bridges in the nurse cell cluster using reflection microscopy, and we describe two ways to analyze data from nurse cell dumping.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | | | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Ptp61F integrates Hippo, TOR, and actomyosin pathways to control three-dimensional organ size. Cell Rep 2022; 41:111640. [DOI: 10.1016/j.celrep.2022.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
13
|
Khataee H, Fraser M, Neufeld Z. Modelling the Collective Mechanical Regulation of the Structure and Morphology of Epithelial Cell Layers. Front Cell Dev Biol 2022; 10:767688. [PMID: 35399530 PMCID: PMC8987200 DOI: 10.3389/fcell.2022.767688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The morphology and function of epithelial sheets play an important role in healthy tissue development and cancer progression. The maintenance of structure of closely packed epithelial layers requires the coordination of various mechanical forces due to intracellular activities and interactions with other cells and tissues. However, a general model for the combination of mechanical properties which determine the cell shape and the overall structure of epithelial layers remains elusive. Here, we propose a computational model, based on the Cellular Potts Model, to analyse the interplay between mechanical properties of cells and dynamical transitions in epithelial cell shapes and structures. We map out phase diagrams as functions of cellular properties and the orientation of cell division. Results show that monolayers of squamous, cuboidal, and columnar cells are formed when the axis of cell proliferation is perpendicular to the substrate or along the major axis of the cells. Monolayer-to-multilayer transition is promoted via cell extrusion, depending on the mechanical properties of cells and the orientation of cell division. The results and model predictions are discussed in the context of experimental observations.
Collapse
|
14
|
Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis. Cell 2021; 184:6313-6325.e18. [PMID: 34942099 PMCID: PMC8722442 DOI: 10.1016/j.cell.2021.11.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.
Collapse
|
15
|
Paci G, Mao Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin Cell Dev Biol 2021; 120:160-170. [PMID: 34092509 PMCID: PMC8681862 DOI: 10.1016/j.semcdb.2021.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
Mechanical forces play a central role in shaping tissues during development and maintaining epithelial integrity in homeostasis. In this review, we discuss the roles of mechanical forces in Drosophila development and homeostasis, starting from the interplay of mechanics with cell growth and division. We then discuss several examples of morphogenetic processes where complex 3D structures are shaped by mechanical forces, followed by a closer look at patterning processes. We also review the role of forces in homeostatic processes, including cell elimination and wound healing. Finally, we look at the interplay of mechanics and developmental robustness and discuss open questions in the field, as well as novel approaches that will help tackle them in the future.
Collapse
Affiliation(s)
- Giulia Paci
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
DiNapoli KT, Robinson DN, Iglesias PA. A mesoscale mechanical model of cellular interactions. Biophys J 2021; 120:4905-4917. [PMID: 34687718 PMCID: PMC8633826 DOI: 10.1016/j.bpj.2021.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 01/16/2023] Open
Abstract
Computational models of cell mechanics allow the precise interrogation of cell shape change. These morphological changes are required for cells to survive in diverse tissue environments. Here, we present a mesoscale mechanical model of cell-substrate interactions using the level set method based on experimentally measured parameters. By implementing a viscoelastic mechanical equivalent circuit, we accurately model whole-cell deformations that are important for a variety of cellular processes. To effectively model shape changes as a cell interacts with a substrate, we have included receptor-mediated adhesion, which is governed by catch-slip bond behavior. The effect of adhesion was explored by subjecting cells to a variety of different substrates including flat, curved, and deformable surfaces. Finally, we increased the accuracy of our simulations by including a deformable nucleus in our cells. This model sets the foundation for further exploration into computational analyses of multicellular interactions.
Collapse
Affiliation(s)
- Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Electrical & Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.
| |
Collapse
|
17
|
Gómez-Gálvez P, Anbari S, Escudero LM, Buceta J. Mechanics and self-organization in tissue development. Semin Cell Dev Biol 2021; 120:147-159. [PMID: 34417092 DOI: 10.1016/j.semcdb.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023]
Abstract
Self-organization is an all-important feature of living systems that provides the means to achieve specialization and functionality at distinct spatio-temporal scales. Herein, we review this concept by addressing the packing organization of cells, the sorting/compartmentalization phenomenon of cell populations, and the propagation of organizing cues at the tissue level through traveling waves. We elaborate on how different theoretical models and tools from Topology, Physics, and Dynamical Systems have improved the understanding of self-organization by shedding light on the role played by mechanics as a driver of morphogenesis. Altogether, by providing a historical perspective, we show how ideas and hypotheses in the field have been revisited, developed, and/or rejected and what are the open questions that need to be tackled by future research.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
18
|
Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation. Adv Biol (Weinh) 2021; 5:e2000024. [PMID: 33856745 PMCID: PMC8243895 DOI: 10.1002/adbi.202000024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2021] [Indexed: 12/11/2022]
Abstract
The last few decades have witnessed diversified in vitro models to recapitulate the architecture and function of living organs or tissues and contribute immensely to advances in life science. Two novel 3D cell culture models: 1) Organoid, promoted mainly by the developments of stem cell biology and 2) Organ-on-a-chip, enhanced primarily due to microfluidic technology, have emerged as two promising approaches to advance the understanding of basic biological principles and clinical treatments. This review describes the comparable distinct differences between these two models and provides more insights into their complementarity and integration to recognize their merits and limitations for applicable fields. The convergence of the two approaches to produce multi-organoid-on-a-chip or human organoid-on-a-chip is emerging as a new approach for building 3D models with higher physiological relevance. Furthermore, rapid advancements in 3D printing and numerical simulations, which facilitate the design, manufacture, and results-translation of 3D cell culture models, can also serve as novel tools to promote the development and propagation of organoid and organ-on-a-chip systems. Current technological challenges and limitations, as well as expert recommendations and future solutions to address the promising combinations by incorporating organoids, organ-on-a-chip, 3D printing, and numerical simulation, are also summarized.
Collapse
Affiliation(s)
- Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuminghao Xiao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Durney CH, Feng JJ. A three-dimensional vertex model for Drosophilasalivary gland invagination. Phys Biol 2021; 18. [PMID: 33882465 DOI: 10.1088/1478-3975/abfa69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/21/2021] [Indexed: 11/12/2022]
Abstract
During epithelial morphogenesis, force generation at the cellular level not only causes cell deformation, but may also produce coordinated cell movement and rearrangement on the tissue level. In this paper, we use a novel three-dimensional vertex model to explore the roles of cellular forces during the formation of the salivary gland in theDrosophilaembryo. Representing the placode as an epithelial sheet of initially columnar cells, we focus on the spatial and temporal patterning of contractile forces due to three actomyosin pools: the apicomedial actomyosin in the pit of the placode, junctional actomyosin arcs outside the pit, and a supracellular actomyosin cable along the circumference of the placode. In anin silico'wild type' model, these pools are activated at different times according to experimental data. To identify the role of each myosin pool, we have also simulated variousin silico'mutants' in which only one or two of the myosin pools are activated. We find that the apicomedial myosin initiates a small dimple in the pit, but this is not essential for the overall invagination of the placode. The myosin arcs are the main driver of invagination and are responsible for the internalization of the apical surface. The circumferential actomyosin cable acts to constrict the opening of the developing tube, and is responsible for forming a properly shaped lumen. Cell intercalation tends to facilitate the invagination, but the geometric constraints of our model only allow a small number of intercalations, and their effect is minor. The placode invagination predicted by the model is in general agreement with experimental observations. It confirms some features of the current 'belt-and-braces' model for the process, and provides new insights on the separate roles of the various myosin pools and their spatio-temporal coordination.
Collapse
Affiliation(s)
- Clinton H Durney
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - James J Feng
- Department of Mathematics, University of British Columbia, Vancouver, Canada.,Department of Chemical and Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Daquila BV, Dossi FC, Moi DA, Moreira DR, Caleffe RR, Pamphile JA, Conte H. Bioactivity of Bacillus thuringiensis (Bacillales: Bacillaceae) on Diatraea saccharalis (Lepidoptera: Crambidae) eggs. PEST MANAGEMENT SCIENCE 2021; 77:2019-2028. [PMID: 33342024 DOI: 10.1002/ps.6230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) is a Gram-positive bacterium that synthesizes specific protein toxins, which can be exploited for control of various insect pests, including Diatraea saccharalis, a lepidopteran that severely damages sugarcane crops. Although studies have described the effects of Bt in the larval phases of D. saccharalis, few have examined its effect on insect eggs. Herein, we studied the entomopathogenic potential of Bacillus thuringiensis serovar Aizawai GC-91 (Bta) during D. saccharalis embryo development with the aim of understanding the entomopathogenic mechanism and developing new biological control techniques for target insects. RESULTS Bta concentrations of 5, 10 and 20 g L-1 demonstrated the strongest bioactivity, reducing D. saccharalis egg viability by 28.69%, 33.91% and 34.98%, respectively. The lethal concentrations (LCs) were estimated as: LC50 = 28.07 g L-1 (CI 95% = 1.89-2.38) and LC90 = 65.36 g L-1 (CI 95% = 4.19-5.26). Alterations in egg coloration, melanization and granule accumulation were observed at 24 h, persisting until 144 h. The embryo digestive systems were severely damaged, including narrowing of the intestinal lumen, vesiculations and degenerated cells, causing embryonic death. CONCLUSION The toxicity caused by Bta in D. saccharalis embryos demonstrated its potential as a biological control agent and as a sustainable alternative for integrated management of D. saccharalis infestation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bruno V Daquila
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil
| | - Fábio Ca Dossi
- Institute of Technology and Research - ITP, Aracaju, Brazil
| | - Dieison A Moi
- Department of Biological Sciences, State University of Maringá - UEM, Maringá, Brazil
| | - Daiani R Moreira
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil
| | - Ronaldo Rt Caleffe
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil
| | - João A Pamphile
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil
| | - Helio Conte
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil
| |
Collapse
|
21
|
Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Buceta J, Escudero LM. The complex three-dimensional organization of epithelial tissues. Development 2021; 148:148/1/dev195669. [PMID: 33408064 DOI: 10.1242/dev.195669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA 18018, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, 46980 Paterna (Valencia), Spain
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain .,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
22
|
Buttenschön A, Edelstein-Keshet L. Bridging from single to collective cell migration: A review of models and links to experiments. PLoS Comput Biol 2020; 16:e1008411. [PMID: 33301528 PMCID: PMC7728230 DOI: 10.1371/journal.pcbi.1008411] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mathematical and computational models can assist in gaining an understanding of cell behavior at many levels of organization. Here, we review models in the literature that focus on eukaryotic cell motility at 3 size scales: intracellular signaling that regulates cell shape and movement, single cell motility, and collective cell behavior from a few cells to tissues. We survey recent literature to summarize distinct computational methods (phase-field, polygonal, Cellular Potts, and spherical cells). We discuss models that bridge between levels of organization, and describe levels of detail, both biochemical and geometric, included in the models. We also highlight links between models and experiments. We find that models that span the 3 levels are still in the minority.
Collapse
Affiliation(s)
- Andreas Buttenschön
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
23
|
Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3585-3599. [PMID: 32855169 PMCID: PMC7534437 DOI: 10.1534/g3.120.401476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previously we found that precise levels of Drosophila Chitinase-Like Proteins (CLPs), encoded by the Imaginal disc growth factor (Idgf) gene family, are needed to regulate dorsal-appendage tube closure and tube migration. To identify factors that act in the Idgf pathway, we developed a genetic modifier screen based on the finding that overexpressing Idgf3 causes dorsal appendage defects with ∼50% frequency. Using a library of partially overlapping heterozygous deficiencies, we scanned chromosome 3L and found regions that enhanced or suppressed the Idgf3-overexpression phenotype. Using smaller deletions, RNAi, and mutant alleles, we further mapped five regions and refined the interactions to 58 candidate genes. Importantly, mutant alleles identified combover (cmb), a substrate of Rho-kinase (Rok) and a component of the Planar Cell Polarity (PCP) pathway, as an Idgf3-interacting gene: loss of function enhanced while gain of function suppressed the dorsal appendage defects. Since PCP drives cell intercalation in other systems, we asked if cmb/+ affected cell intercalation in our model, but we found no evidence of its involvement in this step. Instead, we found that loss of cmb dominantly enhanced tube defects associated with Idgf3 overexpression by expanding the apical area of dorsal appendage cells. Apical surface area determines tube volume and shape; in this way, Idgf3 and cmb regulate tube morphology.
Collapse
|
24
|
Sharrock TE, Sanson B. Cell sorting and morphogenesis in early Drosophila embryos. Semin Cell Dev Biol 2020; 107:147-160. [PMID: 32807642 DOI: 10.1016/j.semcdb.2020.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The regionalisation of growing tissues into compartments that do not mix is thought to be a common motif of animal development. Compartments and compartmental boundaries were discovered by lineage studies in the model organism Drosophila. Since then, many compartment boundaries have been identified in developing tissues, from insects to vertebrates. These are important for animal development, because boundaries localize signalling centres that control tissue morphogenesis. Compartment boundaries are boundaries of lineage restriction, where specific mechanisms keep boundaries straight and cells segregated. Here, we review the mechanisms of cell sorting at boundaries found in early Drosophila embryos. The parasegmental boundaries, separating anterior from posterior compartments in the embryo, keep cells segregated by increasing actomyosin contractility at boundary cell-cell interfaces. Differential actomyosin contractility in turn promotes fold formation and orients cell division. Earlier in development, actomyosin differentials are also important for cell sorting during axis extension. Specific cell surface asymmetries and signalling pathways are required to initiate and maintain these actomyosin differentials.
Collapse
Affiliation(s)
- Thomas E Sharrock
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Nielsen BF, Nissen SB, Sneppen K, Mathiesen J, Trusina A. Model to Link Cell Shape and Polarity with Organogenesis. iScience 2020; 23:100830. [PMID: 31986479 PMCID: PMC6994644 DOI: 10.1016/j.isci.2020.100830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
How do flat sheets of cells form gut and neural tubes? Across systems, several mechanisms are at play: cells wedge, form actomyosin cables, or intercalate. As a result, the cell sheet bends, and the tube elongates. It is unclear to what extent each mechanism can drive tube formation on its own. To address this question, we computationally probe if one mechanism, either cell wedging or intercalation, may suffice for the entire sheet-to-tube transition. Using a physical model with epithelial cells represented by polarized point particles, we show that either cell intercalation or wedging alone can be sufficient and that each can both bend the sheet and extend the tube. When working in parallel, the two mechanisms increase the robustness of the tube formation. The successful simulations of the key features in Drosophila salivary gland budding, sea urchin gastrulation, and mammalian neurulation support the generality of our results. Cell wedging and intercalation are modeled using a polarized point-particle approach Cell intercalation is sufficient for tube budding Tube budding is more robust when intercalation is complemented by wedging Wedging and differential proliferation are sufficient for mammalian neurulation
Collapse
Affiliation(s)
- Bjarke Frost Nielsen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Silas Boye Nissen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Joachim Mathiesen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Hirashima T, Adachi T. Polarized cellular mechano-response system for maintaining radial size in developing epithelial tubes. Development 2019; 146:dev.181206. [PMID: 31619390 PMCID: PMC6918744 DOI: 10.1242/dev.181206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Size control in biological tissues involves multicellular communication via mechanical forces during development. Although fundamental cellular behaviours in response to mechanical stimuli underlie size maintenance during morphogenetic processes, the mechanisms underpinning the cellular mechano-response system that maintains size along an axis of a polarized tissue remain elusive. Here, we show how the diameter of an epithelial tube is maintained during murine epididymal development by combining quantitative imaging, mechanical perturbation and mathematical modelling. We found that epithelial cells counteract compressive forces caused by cell division exclusively along the circumferential axis of the tube to produce polarized contractile forces, eventually leading to an oriented cell rearrangement. Moreover, a mathematical model that includes the polarized mechano-responsive regime explains how the diameter of proliferating tubes is maintained. Our findings pave the way for an improved understanding of the cellular response to mechanical forces that involves collective multicellular behaviours for organizing diverse tissue morphologies. Summary: Polarized cellular constriction responding to mechanical stress controls the diameter of a developing epithelial tube during murine epididymal development.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, 6068501, Kyoto, Japan .,Institute for Frontier Life and Medical Sciences, Kyoto University, 6068501, Kyoto, Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, 6068501, Kyoto, Japan
| |
Collapse
|
27
|
Loerke D, Blankenship JT. Viscoelastic voyages - Biophysical perspectives on cell intercalation during Drosophila gastrulation. Semin Cell Dev Biol 2019; 100:212-222. [PMID: 31784092 DOI: 10.1016/j.semcdb.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Developmental processes are driven by a combination of cytoplasmic, cortical, and surface-associated forces. However, teasing apart the contributions of these forces and how a viscoelastic cell responds has long been a key question in developmental biology. Recent advances in applying biophysical approaches to these questions is leading to a fundamentally new understanding of morphogenesis. In this review, we discuss how computational analysis of experimental findings and in silico modeling of Drosophila gastrulation processes has led to a deeper comprehension of the physical principles at work in the early embryo. We also summarize many of the emerging methodologies that permit biophysical analysis as well as those that provide direct and indirect measurements of force directions and magnitudes. Finally, we examine the multiple frameworks that have been used to model tissue and cellular behaviors.
Collapse
Affiliation(s)
- Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA.
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
28
|
Khadka J, Julien JD, Alim K. Feedback from Tissue Mechanics Self-Organizes Efficient Outgrowth of Plant Organ. Biophys J 2019; 117:1995-2004. [PMID: 31727319 DOI: 10.1016/j.bpj.2019.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Plant organ outgrowth superficially appears like the continuous mechanical deformation of a sheet of cells. Yet, how precisely cells as individual mechanical entities can act to morph a tissue reliably and efficiently into three dimensions during outgrowth is still puzzling, especially when cells are tightly connected as in plant tissue. In plants, the mechanics of cells within a tissue is particularly well-defined because individual cell growth is essentially the mechanical yielding of the cell wall in response to internal turgor pressure. Cell-wall stiffness is controlled by biological signaling, which is impacted by stresses, and hence, cell growth is observed to respond to mechanical stresses building up within a tissue. What is the role of the mechanical feedback during morphing of tissue in three dimensions? Here, we develop a three-dimensional vertex model to investigate tissue mechanics at the onset of organ outgrowth at the tip of a plant shoot. We find that organ height is primarily governed by the ratio of growth rates of faster-growing cells initiating the organ versus slower-growing cells surrounding them. Remarkably, the outgrowth rate is higher when cell growth responds to the tissue-wide mechanical stresses. Our quantitative analysis of simulation data shows that tissue mechanical feedback on cell growth can act via a twofold mechanism. First, the feedback guides patterns of cellular growth. Second, the feedback modifies the stress patterns on the cells, consequently amplifying and propagating growth anisotropies. This mechanism may allow plants to grow organs efficiently out of the meristem by reorganizing the cellular growth rather than inflating growth rates.
Collapse
Affiliation(s)
- Jason Khadka
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Jean-Daniel Julien
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Physik Department, Technical University of Munich, Munich, Germany.
| |
Collapse
|
29
|
Oshri O, Biswas S, Balazs AC. Modeling the formation of double rolls from heterogeneously patterned gels. Phys Rev E 2019; 99:033003. [PMID: 30999426 DOI: 10.1103/physreve.99.033003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/07/2022]
Abstract
Both stimuli-responsive gels and growing biological tissue can undergo pronounced morphological transitions from two-dimensional (2D) layers into 3D geometries. We derive an analytical model that allows us to quantitatively predict the features of 2D-to-3D shape changes in polymer gels that encompasses different degrees of swelling within the sample. We analyze a particular configuration that emerges from a flat rectangular gel that is divided into two strips (bistrips), where each strip is swollen to a different extent in solution. The final configuration yields double rolls that display a narrow transition layer between two cylinders of constant radii. To characterize the rolls' shapes, we modify the theory of thin incompatible elastic sheets to account for the Flory-Huggins interaction between the gel and the solvent. This modification allows us to derive analytical expressions for the radii, the amplitudes, and the length of the transition layer within a given roll. Our predictions agree quantitatively with available experimental data. In addition, we carry out numerical simulations that account for the complete nonlinear behavior of the gel and show good agreement between the analytical predictions and the numerical results. Our solution sheds light on a stress focusing pattern that forms at the border between two dissimilar soft materials. Moreover, models that provide quantitative predictions on the final morphology in such heterogeneously swelling hydrogels are useful for understanding growth patterns in biology as well as accurately tailoring the structure of gels for various technological applications.
Collapse
Affiliation(s)
- Oz Oshri
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Santidan Biswas
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
30
|
Mathematical Modeling of Tissue Folding and Asymmetric Tissue Flow during Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have revealed that intrinsic, individual cell behavior can provide the driving force for deforming a two-dimensional cell sheet to a three-dimensional tissue without the need for external regulatory elements. However, whether intrinsic, individual cell behavior could actually generate the force to induce tissue deformation was unclear, because there was no experimental method with which to verify it in vivo. In such cases, mathematical modeling can be effective for verifying whether a locally generated force can propagate through an entire tissue and induce deformation. Moreover, the mathematical model sometimes provides potential mechanistic insight beyond the information obtained from biological experimental results. Here, we present two examples of modeling tissue morphogenesis driven by cell deformation or cell interaction. In the first example, a mathematical study on tissue-autonomous folding based on a two-dimensional vertex model revealed that active modulations of cell mechanics along the basal–lateral surface, in addition to the apical side, can induce tissue-fold formation. In the second example, by applying a two-dimensional vertex model in an apical plane, a novel mechanism of tissue flow caused by asymmetric cell interactions was discovered, which explained the mechanics behind the collective cellular movement observed during epithelial morphogenesis.
Collapse
|
31
|
A Gene Expression Screen in Drosophila melanogaster Identifies Novel JAK/STAT and EGFR Targets During Oogenesis. G3-GENES GENOMES GENETICS 2019; 9:47-60. [PMID: 30385460 PMCID: PMC6325903 DOI: 10.1534/g3.118.200786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) and epidermal growth factor receptor (EGFR) signaling pathways are conserved regulators of tissue patterning, morphogenesis, and other cell biological processes. During Drosophila oogenesis, these pathways determine the fates of epithelial follicle cells (FCs). JAK/STAT and EGFR together specify a population of cells called the posterior follicle cells (PFCs), which signal to the oocyte to establish the embryonic axes. In this study, whole genome expression analysis was performed to identify genes activated by JAK/STAT and/or EGFR. We observed that 317 genes were transcriptionally upregulated in egg chambers with ectopic JAK/STAT and EGFR activity in the FCs. The list was enriched for genes encoding extracellular matrix (ECM) components and ECM-associated proteins. We tested 69 candidates for a role in axis establishment using RNAi knockdown in the FCs. We report that the signaling protein Semaphorin 1b becomes enriched in the PFCs in response to JAK/STAT and EGFR. We also identified ADAM metallopeptidase with thrombospondin type 1 motif A (AdamTS-A) as a novel target of JAK/STAT in the FCs that regulates egg chamber shape. AdamTS-A mRNA becomes enriched at the anterior and posterior poles of the egg chamber at stages 6 to 7 and is regulated by JAK/STAT. Altering AdamTS-A expression in the poles or middle of the egg chamber produces rounder egg chambers. We propose that AdamTS-A regulates egg shape by remodeling the basement membrane.
Collapse
|
32
|
Vorontsova JE, Zavoloka EL, Cherezov RO, Simonova OB. Three Important Discoveries in the Field of the Cytoskeleton’s Proteins Functioning on the Drosophila melanogaster Model. Mol Biol 2019. [DOI: 10.1134/s0026893319010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Celli P, McMahan C, Ramirez B, Bauhofer A, Naify C, Hofmann D, Audoly B, Daraio C. Shape-morphing architected sheets with non-periodic cut patterns. SOFT MATTER 2018; 14:9744-9749. [PMID: 30511736 DOI: 10.1039/c8sm02082e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate the out-of-plane shape morphing capability of single-material elastic sheets with architected cut patterns that result in arrays of tiles connected by flexible hinges. We demonstrate that a non-periodic cut pattern can cause a sheet to buckle into three-dimensional shapes, such as domes or patterns of wrinkles, when pulled at specific boundary points. These global buckling modes are observed in experiments and rationalized by an in-plane kinematic analysis that highlights the role of the geometric frustration arising from non-periodicity. The study focuses on elastic sheets, and is later extended to elastic-plastic materials to achieve shape retention. Our work illustrates a scalable route towards the fabrication of three-dimensional objects with nonzero Gaussian curvature from initially-flat sheets.
Collapse
Affiliation(s)
- Paolo Celli
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sánchez-Corrales YE, Röper K. Alignment of cytoskeletal structures across cell boundaries generates tissue cohesion during organ formation. Curr Opin Cell Biol 2018; 55:104-110. [DOI: 10.1016/j.ceb.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
35
|
Nissen SB, Rønhild S, Trusina A, Sneppen K. Theoretical tool bridging cell polarities with development of robust morphologies. eLife 2018; 7:38407. [PMID: 30477635 PMCID: PMC6286147 DOI: 10.7554/elife.38407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Despite continual renewal and damages, a multicellular organism is able to maintain its complex morphology. How is this stability compatible with the complexity and diversity of living forms? Looking for answers at protein level may be limiting as diverging protein sequences can result in similar morphologies. Inspired by the progressive role of apical-basal and planar cell polarity in development, we propose that stability, complexity, and diversity are emergent properties in populations of proliferating polarized cells. We support our hypothesis by a theoretical approach, developed to effectively capture both types of polar cell adhesions. When applied to specific cases of development – gastrulation and the origins of folds and tubes – our theoretical tool suggests experimentally testable predictions pointing to the strength of polar adhesion, restricted directions of cell polarities, and the rate of cell proliferation to be major determinants of morphological diversity and stability. Cells have the power to organise themselves to form complex and stable structures, whether it is to create a fully shaped baby from a single egg, or to allow adult salamanders to grow a new limb after losing a leg. This ability has been scrutinised at many different levels. For example, researchers have looked at the chemical messages exchanged by cells, or they have recorded the different shapes an embryo goes through during development. However, it is still difficult to reconcile the information from these approaches into a description that makes sense at multiple scales. When an embryo develops, sheets of cells fold and unfold to create complex 3D shapes, like the tubes that make our lungs. Moulding sheets into tubes relies on interactions between cells that are not the same in all directions. In fact, two types of asymmetry (or polarity) guide these interactions. Apical-basal polarity runs across a sheet of cells, which means that the top surface of the sheet differs from the bottom. Planar cell polarity runs along the sheet and distinguishes one end from the other. For instance, apical-basal polarity marks the inner and outer surfaces of our skin, while planar cell polarity controls the direction in which our hair grows. Nissen et al. set out to investigate how these polarities help cells in an embryo organise themselves to form complicated folds and tubes. To do this, simple mathematical representations of both apical-basal and planar cell polarities were designed. The representations were then combined to create computer simulations of groups of cells as these divide and interact with each other. Simulations of ‘cells’ with only apical-basal polarity were able to generate different shapes in the ‘tissues’ produced, including many found in living organisms. External conditions, such as how cells were arranged to start with, determined the resulting shape. With both apical-basal and planar cell polarities, the simulations reproduced an important change that occurs during early development. They also replicated how the tubes that transport nutrients and oxygen form. These results show that simple properties of individual cells, such as polarities, can produce different shapes in developing tissues and organs, without the need for a complicated overarching program. Abnormal changes in cell polarity are also associated with diseases such as cancer. The mathematical model developed by Nissen et al. could therefore be a useful tool to study these events.
Collapse
Affiliation(s)
- Silas Boye Nissen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Steven Rønhild
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ala Trusina
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Okuda S, Takata N, Hasegawa Y, Kawada M, Inoue Y, Adachi T, Sasai Y, Eiraku M. Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis. SCIENCE ADVANCES 2018; 4:eaau1354. [PMID: 30474058 PMCID: PMC6248953 DOI: 10.1126/sciadv.aau1354] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 05/27/2023]
Abstract
Organogenesis is a self-organizing process of multiple cells in three-dimensional (3D) space, where macroscopic tissue deformations are robustly regulated by multicellular autonomy. It is clear that this robust regulation requires cells to sense and modulate 3D tissue formation across different scales, but its underlying mechanisms are still unclear. To address this question, we developed a versatile computational model of 3D multicellular dynamics at single-cell resolution and combined it with the 3D culture system of pluripotent stem cell-derived optic-cup organoid. The complementary approach enabled quantitative prediction of morphogenesis and its corresponding verification and elucidated that the macroscopic 3D tissue deformation is fed back to individual cellular force generations via mechanosensing. We hereby conclude that mechanical force plays a key role as a feedback regulator to establish the robustness of organogenesis.
Collapse
Affiliation(s)
- S. Okuda
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - N. Takata
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Y. Hasegawa
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - M. Kawada
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Y. Inoue
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - T. Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Y. Sasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - M. Eiraku
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
37
|
Koyama H, Fujimori T. Biomechanics of epithelial fold pattern formation in the mouse female reproductive tract. Curr Opin Genet Dev 2018; 51:59-66. [DOI: 10.1016/j.gde.2018.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
|
38
|
Krajnc M, Dasgupta S, Ziherl P, Prost J. Fluidization of epithelial sheets by active cell rearrangements. Phys Rev E 2018; 98:022409. [PMID: 30253464 DOI: 10.1103/physreve.98.022409] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 06/08/2023]
Abstract
We theoretically explore fluidization of epithelial tissues by active T1 neighbor exchanges. We show that the geometry of cell-cell junctions encodes important information about the local features of the energy landscape, which we support by an elastic theory of T1 transformations. Using a 3D vertex model, we show that the degree of active noise driving forced cell rearrangements governs the stress-relaxation timescale of the tissue. We study tissue response to in-plane shear at different timescales. At short time, the tissue behaves as a solid, whereas its long-time fluid behavior can be associated with an effective viscosity which scales with the rate of active T1 transformations. Furthermore, we develop a coarse-grained theory, where we treat the tissue as an active fluid and confirm the results of the vertex model. The impact of cell rearrangements on tissue shape is illustrated by studying axial compression of an epithelial tube.
Collapse
Affiliation(s)
- Matej Krajnc
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, New Jersey USA, 08544
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Sabyasachi Dasgupta
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Primož Ziherl
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Jacques Prost
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| |
Collapse
|
39
|
Gómez-Gálvez P, Vicente-Munuera P, Tagua A, Forja C, Castro AM, Letrán M, Valencia-Expósito A, Grima C, Bermúdez-Gallardo M, Serrano-Pérez-Higueras Ó, Cavodeassi F, Sotillos S, Martín-Bermudo MD, Márquez A, Buceta J, Escudero LM. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat Commun 2018; 9:2960. [PMID: 30054479 PMCID: PMC6063940 DOI: 10.1038/s41467-018-05376-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 02/08/2023] Open
Abstract
As animals develop, tissue bending contributes to shape the organs into complex three-dimensional structures. However, the architecture and packing of curved epithelia remains largely unknown. Here we show by means of mathematical modelling that cells in bent epithelia can undergo intercalations along the apico-basal axis. This phenomenon forces cells to have different neighbours in their basal and apical surfaces. As a consequence, epithelial cells adopt a novel shape that we term "scutoid". The detailed analysis of diverse tissues confirms that generation of apico-basal intercalations between cells is a common feature during morphogenesis. Using biophysical arguments, we propose that scutoids make possible the minimization of the tissue energy and stabilize three-dimensional packing. Hence, we conclude that scutoids are one of nature's solutions to achieve epithelial bending. Our findings pave the way to understand the three-dimensional organization of epithelial organs.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Pablo Vicente-Munuera
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Antonio Tagua
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Cristina Forja
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Ana M Castro
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Marta Letrán
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | | | - Clara Grima
- Departamento de Matemática Aplicada I, Universidad de Sevilla, 41012, Seville, Spain
| | - Marina Bermúdez-Gallardo
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Óscar Serrano-Pérez-Higueras
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa and CIBER de Enfermedades Raras. C/ Nicolás Cabrera 1, 28049, Madrid, Spain
- St. George's, University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Sol Sotillos
- CABD, CSIC/JA/UPO, Campus Universidad Pablo de Olavide, 41013, Seville, Spain
| | | | - Alberto Márquez
- Departamento de Matemática Aplicada I, Universidad de Sevilla, 41012, Seville, Spain
| | - Javier Buceta
- Bioengineering Department, Lehigh University, Bethlehem, PA, 18018, USA.
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA, 18018, USA.
| | - Luis M Escudero
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.
| |
Collapse
|
40
|
Ogura Y, Wen FL, Sami MM, Shibata T, Hayashi S. A Switch-like Activation Relay of EGFR-ERK Signaling Regulates a Wave of Cellular Contractility for Epithelial Invagination. Dev Cell 2018; 46:162-172.e5. [PMID: 29983336 DOI: 10.1016/j.devcel.2018.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/27/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
The dynamics of extracellular signal-regulated kinase (ERK) signaling underlies its versatile functions in cell differentiation, cell proliferation, and cell motility. Classical studies in Drosophila established that a gradient of epidermal growth factor receptor (EGFR)-ERK signaling is essential for these cellular responses. However, we challenge this view by the real-time monitoring of ERK activation; we show that a switch-like ERK activation is essential for the invagination movement of the Drosophila tracheal placode. This switch-like ERK activation stems from the positive feedback regulation of the EGFR-ERK signaling and a resultant relay of EGFR-ERK signaling among tracheal cells. A key transcription factor Trachealess (Trh) permissively regulates the iteration of the relay, and the ERK activation becomes graded in trh mutant. A mathematical model based on these observations and a molecular link between ERK activation dynamics and myosin shows that the relay mechanism efficiently promotes epithelial invagination while the gradient mechanism does not.
Collapse
Affiliation(s)
- Yosuke Ogura
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mustafa M Sami
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
41
|
Abstract
A common path to the formation of complex 3D structures starts with an epithelial sheet that is patterned by inductive cues that control the spatiotemporal activities of transcription factors. These activities are then interpreted by the cis-regulatory regions of the genes involved in cell differentiation and tissue morphogenesis. Although this general strategy has been documented in multiple developmental contexts, the range of experimental models in which each of the steps can be examined in detail and evaluated in its effect on the final structure remains very limited. Studies of the Drosophila eggshell patterning provide unique insights into the multiscale mechanisms that connect gene regulation and 3D epithelial morphogenesis. Here we review the current understanding of this system, emphasizing how the recent identification of cis-regulatory regions of genes within the eggshell patterning network enables mechanistic analysis of its spatiotemporal dynamics and evolutionary diversification. It appears that cis-regulatory changes can account for only some aspects of the morphological diversity of Drosophila eggshells, such as the prominent differences in the number of the respiratory dorsal appendages. Other changes, such as the appearance of the respiratory eggshell ridges, are caused by changes in the spatial distribution of inductive signals. Both types of mechanisms are at play in this rapidly evolving system, which provides an excellent model of developmental patterning and morphogenesis.
Collapse
|
42
|
Urbano JM, Naylor HW, Scarpa E, Muresan L, Sanson B. Suppression of epithelial folding at actomyosin-enriched compartment boundaries downstream of Wingless signalling in Drosophila. Development 2018; 145:dev155325. [PMID: 29691225 PMCID: PMC5964650 DOI: 10.1242/dev.155325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Epithelial folding shapes embryos and tissues during development. Here, we investigate the coupling between epithelial folding and actomyosin-enriched compartmental boundaries. The mechanistic relationship between the two is unclear, because actomyosin-enriched boundaries are not necessarily associated with folds. Also, some cases of epithelial folding occur independently of actomyosin contractility. We investigated the shallow folds called parasegment grooves that form at boundaries between anterior and posterior compartments in the early Drosophila embryo. We demonstrate that formation of these folds requires the presence of an actomyosin enrichment along the boundary cell-cell contacts. These enrichments, which require Wingless signalling, increase interfacial tension not only at the level of the adherens junctions but also along the lateral surfaces. We find that epithelial folding is normally under inhibitory control because different genetic manipulations, including depletion of the Myosin II phosphatase Flapwing, increase the depth of folds at boundaries. Fold depth correlates with the levels of Bazooka (Baz), the Par-3 homologue, along the boundary cell-cell contacts. Moreover, Wingless and Hedgehog signalling have opposite effects on fold depth at the boundary that correlate with changes in Baz planar polarity.
Collapse
Affiliation(s)
- Jose M Urbano
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Huw W Naylor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
43
|
Rupprecht JF, Ong KH, Yin J, Huang A, Dinh HHQ, Singh AP, Zhang S, Yu W, Saunders TE. Geometric constraints alter cell arrangements within curved epithelial tissues. Mol Biol Cell 2017; 28:3582-3594. [PMID: 28978739 PMCID: PMC5706987 DOI: 10.1091/mbc.e17-01-0060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 01/13/2023] Open
Abstract
Organ and tissue formation are complex three-dimensional processes involving cell division, growth, migration, and rearrangement, all of which occur within physically constrained regions. However, analyzing such processes in three dimensions in vivo is challenging. Here, we focus on the process of cellularization in the anterior pole of the early Drosophila embryo to explore how cells compete for space under geometric constraints. Using microfluidics combined with fluorescence microscopy, we extract quantitative information on the three-dimensional epithelial cell morphology. We observed a cellular membrane rearrangement in which cells exchange neighbors along the apical-basal axis. Such apical-to-basal neighbor exchanges were observed more frequently in the anterior pole than in the embryo trunk. Furthermore, cells within the anterior pole skewed toward the trunk along their long axis relative to the embryo surface, with maximum skew on the ventral side. We constructed a vertex model for cells in a curved environment. We could reproduce the observed cellular skew in both wild-type embryos and embryos with distorted morphology. Further, such modeling showed that cell rearrangements were more likely in ellipsoidal, compared with cylindrical, geometry. Overall, we demonstrate that geometric constraints can influence three-dimensional cell morphology and packing within epithelial tissues.
Collapse
Affiliation(s)
| | - Kok Haur Ong
- IInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*Star), Biopolis 138673, Singapore
| | - Jianmin Yin
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anqi Huang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Huy-Hong-Quan Dinh
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anand P Singh
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shaobo Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Weimiao Yu
- IInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*Star), Biopolis 138673, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- IInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*Star), Biopolis 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117411
| |
Collapse
|
44
|
Misra M, Audoly B, Shvartsman SY. Complex structures from patterned cell sheets. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0515. [PMID: 28348251 DOI: 10.1098/rstb.2015.0515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 12/30/2022] Open
Abstract
The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- M Misra
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - B Audoly
- LMS, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
| | - S Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
45
|
Fletcher AG, Cooper F, Baker RE. Mechanocellular models of epithelial morphogenesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0519. [PMID: 28348253 DOI: 10.1098/rstb.2015.0519] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 01/13/2023] Open
Abstract
Embryonic epithelia achieve complex morphogenetic movements, including in-plane reshaping, bending and folding, through the coordinated action and rearrangement of individual cells. Technical advances in molecular and live-imaging studies of epithelial dynamics provide a very real opportunity to understand how cell-level processes facilitate these large-scale tissue rearrangements. However, the large datasets that we are now able to generate require careful interpretation. In combination with experimental approaches, computational modelling allows us to challenge and refine our current understanding of epithelial morphogenesis and to explore experimentally intractable questions. To this end, a variety of cell-based modelling approaches have been developed to describe cell-cell mechanical interactions, ranging from vertex and 'finite-element' models that approximate each cell geometrically by a polygon representing the cell's membrane, to immersed boundary and subcellular element models that allow for more arbitrary cell shapes. Here, we review how these models have been used to provide insights into epithelial morphogenesis and describe how such models could help future efforts to decipher the forces and mechanical and biochemical feedbacks that guide cell and tissue-level behaviour. In addition, we discuss current challenges associated with using computational models of morphogenetic processes in a quantitative and predictive way.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK .,Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Fergus Cooper
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
46
|
Osterfield M, Berg CA, Shvartsman SY. Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model. Dev Cell 2017; 41:337-348. [PMID: 28535370 DOI: 10.1016/j.devcel.2017.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms.
Collapse
Affiliation(s)
- Miriam Osterfield
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Celeste A Berg
- Molecular and Cellular Biology Program and Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
47
|
Merkel M, Manning ML. Using cell deformation and motion to predict forces and collective behavior in morphogenesis. Semin Cell Dev Biol 2017; 67:161-169. [PMID: 27496334 PMCID: PMC5290285 DOI: 10.1016/j.semcdb.2016.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/05/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022]
Abstract
In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology.
Collapse
Affiliation(s)
- Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
48
|
Quantitative modelling of epithelial morphogenesis: integrating cell mechanics and molecular dynamics. Semin Cell Dev Biol 2017; 67:153-160. [DOI: 10.1016/j.semcdb.2016.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/28/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
|
49
|
Koyama H, Shi D, Suzuki M, Ueno N, Uemura T, Fujimori T. Mechanical Regulation of Three-Dimensional Epithelial Fold Pattern Formation in the Mouse Oviduct. Biophys J 2017; 111:650-665. [PMID: 27508448 DOI: 10.1016/j.bpj.2016.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 11/29/2022] Open
Abstract
Epithelia exhibit various three-dimensional morphologies linked to organ function in animals. However, the mechanisms of three-dimensional morphogenesis remain elusive. The luminal epithelium of the mouse oviduct forms well-aligned straight folds along the longitudinal direction of the tubes. Disruption of the Celsr1 gene, a planar cell polarity-related gene, causes ectopically branched folds. Here, we evaluated the mechanical contributions of the epithelium to the fold pattern formation. In the mutant oviduct, the epithelium was more intricate along the longitudinal direction than in the wild-type, suggesting a higher ratio of the longitudinal length of the epithelial layer to that of the surrounding smooth muscle (SM) layer (L-Epi/SM ratio). Our mathematical modeling and computational simulations suggested that the L-Epi/SM ratio could explain the differences in fold branching between the two genotypes. Longitudinal epithelial tensions were increased in well-aligned folds compared with those in disorganized folds both in the simulations and in experimental estimations. Artificially increasing the epithelial tensions suppressed the branching in simulations, suggesting that the epithelial tensions can regulate fold patterning. The epithelial tensions could be explained by the combination of line tensions along the epithelial cell-cell boundaries with the polarized cell arrays observed in vivo. These results suggest that the fold pattern is associated with the polarized cell array through the longitudinal epithelial tension. Further simulations indicated that the L-Epi/SM ratio could contribute to fold pattern diversity, suggesting that the L-Epi/SM ratio is a critical parameter in the fold patterning in tubular organs.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan.
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Makoto Suzuki
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Naoto Ueno
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
50
|
Barton DL, Henkes S, Weijer CJ, Sknepnek R. Active Vertex Model for cell-resolution description of epithelial tissue mechanics. PLoS Comput Biol 2017; 13:e1005569. [PMID: 28665934 PMCID: PMC5493290 DOI: 10.1371/journal.pcbi.1005569] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.
Collapse
Affiliation(s)
- Daniel L. Barton
- Division of Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Silke Henkes
- Institute of Complex Systems and Mathematical Biology, Department of Physics, University of Aberdeen, Aberdeen, United Kingdom
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rastko Sknepnek
- Division of Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|