1
|
Sheridan J, Grata A, Dorr J, Suva EE, Bresteau E, Mitchell LR, Hassan O, Mitchell B. Centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium. Dev Biol 2025; 524:152-161. [PMID: 40381709 DOI: 10.1016/j.ydbio.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/01/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The skin of Xenopus embryos contains numerous multiciliated cells (MCCs), which collectively generate a directed fluid flow across the epithelial surface essential for distributing the overlaying mucous. MCCs develop into highly specialized cells to generate this flow, containing approximately 150 evenly spaced centrioles that give rise to motile cilia. MCC-driven fluid flow can be impaired when ciliary dysfunction occurs, resulting in primary ciliary dyskinesia (PCD) in humans. Mutations in a large number of genes (∼50) have been found to be causative to PCD. Recently, studies have linked low levels of Adenylate Kinase 7 (AK7) gene expression to patients with PCD; however, the mechanism for this link remains unclear. Additionally, AK7 mutations have been linked to multiple PCD patients. Adenylate kinases modulate ATP production and consumption, with AK7 explicitly associated with motile cilia. Here we reproduce an AK7 PCD-like phenotype in Xenopus and describe the cellular consequences that occur with manipulation of AK7 levels. We show that AK7 localizes throughout the cilia in a DPY30 domain-dependent manner, suggesting a ciliary function. Additionally, we find that AK7 overexpression increases centriole number, suggesting a role in regulating centriole biogenesis. We find that in AK7-depleted embryos, cilia number, length, and beat frequency are all reduced, which in turn significantly decreases the tissue-wide mucociliary flow. Additionally, we find a decrease in centriole number and an increase in sub-apical centrioles, implying that AK7 influences both centriole biogenesis and docking, which we propose underlie its defect in ciliogenesis. We find that both the AK domain and the DPY30 domain are required for proper centriole regulation. We propose that AK7 plays a role in PCD by impacting centriole biogenesis and apical docking, ultimately leading to ciliogenesis defects that impair mucociliary clearance.
Collapse
Affiliation(s)
- Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Julia Dorr
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Eve E Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Linus R Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA; Northwestern University, Lurie Cancer Center, USA.
| |
Collapse
|
2
|
Wiegel J, Helmstädter M, Walz G, Bergen MD. Spontaneous Calcium Bursts Organize the Apical Actin Cytoskeleton of Multiciliated Cells. Int J Mol Sci 2025; 26:2507. [PMID: 40141151 PMCID: PMC11942550 DOI: 10.3390/ijms26062507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Motile cilia perform crucial functions during embryonic development and in adult tissues. They are anchored by an apical actin network that forms microridge-like structures on the surface of multiciliated cells. Using Xenopus as a model system to investigate the mechanisms underlying the formation of these specialized actin structures, we observed stochastic bursts of intracellular calcium concentration in developing multiciliated cells. Through optogenetic manipulation of calcium signaling, we found that individual calcium bursts triggered the fusion and extension of actin structures by activating non-muscle myosin. Repeated cycles of calcium activation promoted assembly and coherence of the maturing apical actin network. Inhibition of the endogenous inositol triphosphate-calcium pathway disrupted the formation of apical actin/microridge-like structures by reducing local centriolar RhoA signaling. This disruption was rescued by transient expression of constitutively active RhoA in multiciliated cells. Our findings identify repetitive calcium bursts as a driving force that promotes the self-organization of the highly specialized actin cytoskeleton of multiciliated cells.
Collapse
Affiliation(s)
- Johannes Wiegel
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (J.W.); (M.H.); (G.W.)
| | - Martin Helmstädter
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (J.W.); (M.H.); (G.W.)
- EMcore, Renal Division, Department of Medicine, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (J.W.); (M.H.); (G.W.)
- BIOSS and CIBSS Centre for Integrative Biological Signalling, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Max D. Bergen
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (J.W.); (M.H.); (G.W.)
| |
Collapse
|
3
|
Hong J, Lee C, Papoulas O, Pan J, Takagishi M, Manzi N, Dickinson DJ, Horani A, Brody SL, Marcotte E, Park TJ, Wallingford JB. Molecular organization of the distal tip of vertebrate motile cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639145. [PMID: 40027778 PMCID: PMC11870508 DOI: 10.1101/2025.02.19.639145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The beating of cilia on multi-ciliated cells (MCCs) is essential for normal development and homeostasis in animals. Unlike basal bodies or axonemes, the distal tips of MCC cilia remain poorly defined. Here, we characterize the molecular organization of the distal tip of vertebrate MCC cilia, revealing two distinct domains occupied by distinct protein constituents. Using frog, mouse, and human MCCs, we find that two largely uncharacterized proteins, Ccdc78 and Ccdc33 occupy a specialized region at the extreme distal tip, and these are required for the normal organization of other tip proteins, including Spef1, Cep104, and Eb3. Ccdc78 and Cccdc33 are also independently required for normal length regulation of MCC cilia. Mechanistically, Ccdc78 and Ccdc33 display robust microtubule-bundling activity both in vivo and in vitro . Thus, we reveal that two previously undefined proteins form a key module for organizing and stabilizing the distal tip of motile cilia in vertebrate MCC. We propose that these proteins represent potential disease loci for motile ciliopathies.
Collapse
|
4
|
Yang S, Wang X, Gao H, Yuan S. Motile cilia: Key developmental and functional roles in reproductive systems. Andrology 2025. [PMID: 39895399 DOI: 10.1111/andr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Cilia are specialized microtubule-based organelles that extend from the cell surface and are classified into non-motile and motile types. The assembly and function of cilia are regulated by a complex molecular network that enables motile cilia to generate fluid flow across epithelial surfaces through coordinated beating. These motile cilia are found in the respiratory, nervous, and reproductive systems. In males, motile cilia are found in the efferent ducts and facilitate the transport of sperm from the testis to the epididymis. In females, they are mainly found in the oviducts, where they help to transport, nourish and fertilize eggs, and are also present in the endometrial epithelium. MATERIAL-METHODS This review compares the common factors that affect motile cilia in both male and female reproductive tracts, discusses the origin and development of multiciliated cell and cilia within the efferent ducts and oviducts, and enumerates the infertility or related reproductive diseases that may arise due to motile cilia defects. RESULTS-DISCUSSION In males, motile cilia in the efferent ducts create turbulence through their beating, which keeps semen suspended and prevents ductal obstruction. In females, motile cilia are distributed on the epithelia of the oviducts and the endometrium. Specifically, motile cilia in the infundibulum of the oviduct aid in capturing oocytes, while cilia in the isthmus region have been found to bind to sperm heads, facilitating the formation of the sperm reservoir. Several common factors, such as miR-34b/c and miR-449, TAp73, Gemc1, and estrogen, etc., have been shown to play crucial regulatory roles in motile cilia within the efferent ducts and oviducts, thereby further influencing fertility outcomes. CONCLUSIONS Pathogenic mutations that disrupt ciliary function can impair ciliogenesis or alter the structure of sperm flagella, potentially resulting in infertility. Consequently, motile cilia in both the male and female reproductive tracts are crucial for fertility. There are still numerous unresolved mysteries surrounding these cilia that merit further investigation by researchers, as they hold great significance for the clinical diagnosis and treatment of infertility and related reproductive disorders.
Collapse
Affiliation(s)
- Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Gao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
5
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
6
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
7
|
Lopergolo D, Gallus GN, Pieraccini G, Boscaro F, Berti G, Serni G, Volpi N, Formichi P, Bianchi S, Cassandrini D, Sorrentino V, Rossi D, Santorelli FM, De Stefano N, Malandrini A. CCDC78: Unveiling the Function of a Novel Gene Associated with Hereditary Myopathy. Cells 2024; 13:1504. [PMID: 39273074 PMCID: PMC11394131 DOI: 10.3390/cells13171504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a CCDC78 nonsense mutation to better understand the role of CCDC78 in muscle. METHODS We conducted a comprehensive histopathological analysis on muscle biopsies, including immunofluorescent assays to detect multiple sarcoplasmic proteins. We examined CCDC78 transcripts and protein using WB in CCDC78-mutated muscle tissue; these analyses were also performed on muscle, lymphocytes, and fibroblasts from healthy subjects. Subsequently, we conducted RT-qPCR and transcriptome profiling through RNA-seq to evaluate changes in gene expression associated with CCDC78 dysfunction in muscle. Lastly, coimmunoprecipitation (Co-Ip) assays and mass spectrometry (LC-MS/MS) studies were carried out on extracted muscle proteins from both healthy and mutated subjects. RESULTS The histopathological features in muscle showed novel histological hallmarks, which included areas of dilated and swollen sarcoplasmic reticulum (SR). We provided evidence of nonsense-mediated mRNA decay (NMD), identified the presence of novel CCDC78 transcripts in muscle and lymphocytes, and identified 1035 muscular differentially expressed genes, including several involved in the SR. Through the Co-Ip assays and LC-MS/MS studies, we demonstrated that CCDC78 interacts with two key SR proteins: SERCA1 and CASQ1. We also observed interactions with MYH1, ACTN2, and ACTA1. CONCLUSIONS Our findings provide insight, for the first time, into the interactors and possible role of CCDC78 in skeletal muscle, locating the protein in the SR. Furthermore, our data expand on the phenotype previously associated with CCDC78 mutations, indicating potential histopathological hallmarks of the disease in human muscle. Based on our data, we can consider CCDC78 as the causative gene for CNM4.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giuseppe Pieraccini
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Francesca Boscaro
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Gianna Berti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giovanni Serni
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Nila Volpi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Denise Cassandrini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
8
|
Choksi SP, Byrnes LE, Konjikusic MJ, Tsai BWH, Deleon R, Lu Q, Westlake CJ, Reiter JF. An alternative cell cycle coordinates multiciliated cell differentiation. Nature 2024; 630:214-221. [PMID: 38811726 PMCID: PMC11996048 DOI: 10.1038/s41586-024-07476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
The canonical mitotic cell cycle coordinates DNA replication, centriole duplication and cytokinesis to generate two cells from one1. Some cells, such as mammalian trophoblast giant cells, use cell cycle variants like the endocycle to bypass mitosis2. Differentiating multiciliated cells, found in the mammalian airway, brain ventricles and reproductive tract, are post-mitotic but generate hundreds of centrioles, each of which matures into a basal body and nucleates a motile cilium3,4. Several cell cycle regulators have previously been implicated in specific steps of multiciliated cell differentiation5,6. Here we show that differentiating multiciliated cells integrate cell cycle regulators into a new alternative cell cycle, which we refer to as the multiciliation cycle. The multiciliation cycle redeploys many canonical cell cycle regulators, including cyclin-dependent kinases (CDKs) and their cognate cyclins. For example, cyclin D1, CDK4 and CDK6, which are regulators of mitotic G1-to-S progression, are required to initiate multiciliated cell differentiation. The multiciliation cycle amplifies some aspects of the canonical cell cycle, such as centriole synthesis, and blocks others, such as DNA replication. E2F7, a transcriptional regulator of canonical S-to-G2 progression, is expressed at high levels during the multiciliation cycle. In the multiciliation cycle, E2F7 directly dampens the expression of genes encoding DNA replication machinery and terminates the S phase-like gene expression program. Loss of E2F7 causes aberrant acquisition of DNA synthesis in multiciliated cells and dysregulation of multiciliation cycle progression, which disrupts centriole maturation and ciliogenesis. We conclude that multiciliated cells use an alternative cell cycle that orchestrates differentiation instead of controlling proliferation.
Collapse
Affiliation(s)
- Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Lauren E Byrnes
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Mia J Konjikusic
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict W H Tsai
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Deleon
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Mohar NP, Cox EM, Adelizzi E, Moore SA, Mathews KD, Darbro BW, Wallrath LL. The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease. Int J Mol Sci 2024; 25:4930. [PMID: 38732148 PMCID: PMC11084688 DOI: 10.3390/ijms25094930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Efrem M. Cox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
- Department of Neurosurgery, UNLV School of Medicine, Las Vegas, NV 89106, USA
| | - Emily Adelizzi
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
| | - Katherine D. Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
11
|
Shin M, Lee J, Lee H, Kumar V, Kim J, Park S. Deup1 Expression Interferes with Multiciliated Differentiation. Mol Cells 2023; 46:746-756. [PMID: 38052490 PMCID: PMC10701303 DOI: 10.14348/molcells.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
A recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome per se is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells. Our time-lapse study reveals that deuterosomes with an average diameter of 300 nm have two different fates during ependymal differentiation. In the first instance, deuterosomes are scattered and gradually disappear as cells become multiciliated. In the second instance, deuterosomes self-organize into a larger aggregate, called a deuterosome cluster (DC). Unlike scattered deuterosomes, DCs possess centriole components primarily within their large structure. A characteristic of DC-containing cells is that they tend to become primary ciliated rather than multiciliated. Our in utero electroporation study shows that DCs in ependymal tissue are mostly observed at early postnatal stages, but are scarce at late postnatal stages, suggesting the presence of DC antagonists within the differentiating cells. Importantly, from our bead flow assay, ectopic expression of Deup1 significantly impairs cerebrospinal fluid flow. Furthermore, we show that expression of mouse Deup1 in Xenopus embryos has an inhibitory effect on differentiation of multiciliated cells in the epidermis. Taken together, we conclude that the DC formation of Deup1 in multiciliated cells inhibits production of multiple centrioles.
Collapse
Affiliation(s)
- Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
12
|
Ho KH, Candat A, Scarpetta V, Faucourt M, Weill S, Salio C, D'Este E, Meschkat M, Wurm CA, Kneussel M, Janke C, Magiera MM, Genovesio A, Meunier A, Sassoè-Pognetto M, Brill MS, Spassky N, Patrizi A. Choroid plexuses carry nodal-like cilia that undergo axoneme regression from early adult stage. Dev Cell 2023; 58:2641-2651.e6. [PMID: 37890489 DOI: 10.1016/j.devcel.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Adrien Candat
- Electron Microscopy Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Valentina Scarpetta
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neurosciences "Rita Levi Montalcini," University of Turin, Turin 10126, Italy
| | - Marion Faucourt
- Cilia biology and Neurogenesis Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Solene Weill
- Computational Bioimaging and Bioinformatics Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | | | | | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay 91401, France; Université Paris-Saclay, CNRS UMR 3348, Orsay 91401, France
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay 91401, France; Université Paris-Saclay, CNRS UMR 3348, Orsay 91401, France
| | - Auguste Genovesio
- Computational Bioimaging and Bioinformatics Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Alice Meunier
- Cilia biology and Neurogenesis Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Marco Sassoè-Pognetto
- Department of Neurosciences "Rita Levi Montalcini," University of Turin, Turin 10126, Italy
| | - Monika S Brill
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich 80802, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich 81377, Germany
| | - Nathalie Spassky
- Cilia biology and Neurogenesis Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg 69120, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany.
| |
Collapse
|
13
|
Legal T, Parra M, Tong M, Black CS, Joachimiak E, Valente-Paterno M, Lechtreck K, Gaertig J, Bui KH. CEP104/FAP256 and associated cap complex maintain stability of the ciliary tip. J Cell Biol 2023; 222:e202301129. [PMID: 37756660 PMCID: PMC10522465 DOI: 10.1083/jcb.202301129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show that the microtubules at the tip are highly crosslinked with each other and stabilized by luminal proteins, plugs, and cap proteins at the plus ends. In the tip region, the central pair lacks typical projections and twists significantly. By analyzing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explained the potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and the mechanisms of ciliary assembly and length regulation.
Collapse
Affiliation(s)
- Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Mireya Parra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Maxwell Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Corbin S. Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
14
|
Sheridan J, Grata A, Suva EE, Bresteau E, Mitchell LR, Hassan O, Mitchell B. Novel centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550535. [PMID: 37546962 PMCID: PMC10402086 DOI: 10.1101/2023.07.25.550535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The skin of Xenopus embryos contains numerous multiciliated cells (MCCs), which collectively generate a directed fluid flow across the epithelial surface essential for distributing the overlaying mucous. MCCs develop into highly specialized cells to generate this flow, containing approximately 150 evenly spaced centrioles that give rise to motile cilia. MCC-driven fluid flow can be impaired when ciliary dysfunction occurs, resulting in primary ciliary dyskinesia (PCD) in humans. Mutations in a large number of genes (~50) have been found to be causative to PCD. Recently, studies have linked low levels of Adenylate Kinase 7 (AK7) gene expression to patients with PCD; however, the mechanism for this link remains unclear. Additionally, AK7 mutations have been linked to multiple PCD patients. Adenylate kinases modulate ATP production and consumption, with AK7 explicitly associated with motile cilia. Here we reproduce an AK7 PCD-like phenotype in Xenopus and describe the cellular consequences that occur with manipulation of AK7 levels. We show that AK7 localizes throughout the cilia in a DPY30 domain-dependent manner, suggesting a ciliary function. Additionally, we find that AK7 overexpression increases centriole number, suggesting a role in regulating centriole biogenesis. We find that in AK7-depleted embryos, cilia number, length, and beat frequency are all reduced, which in turn, significantly decreases the tissue-wide mucociliary flow. Additionally, we find a decrease in centriole number and an increase in sub-apical centrioles, implying that AK7 influences both centriole biogenesis and docking, which we propose underlie its defect in ciliogenesis. We propose that AK7 plays a role in PCD by impacting centriole biogenesis and apical docking, ultimately leading to ciliogenesis defects that impair mucociliary clearance.
Collapse
Affiliation(s)
- Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Linus R. Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
- Northwestern University, Lurie Cancer Center
| |
Collapse
|
15
|
Cho HJ, Chung YW, Moon S, Seo JH, Kang M, Nam JS, Lee SN, Kim CH, Choi AMK, Yoon JH. IL-4 drastically decreases deuterosomal and multiciliated cells via alteration in progenitor cell differentiation. Allergy 2023. [PMID: 36883528 DOI: 10.1111/all.15705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Allergic inflammation affects the epithelial cell populations resulting in goblet cell hyperplasia and decreased ciliated cells. Recent advances in single-cell RNA sequencing (scRNAseq) have enabled the identification of new cell subtypes and genomic features of single cells. In this study, we aimed to investigate the effect of allergic inflammation in nasal epithelial cell transcriptomes at the single-cell level. METHODS We performed scRNAseq in cultured primary human nasal epithelial (HNE) cells and in vivo nasal epithelium. The transcriptomic features and epithelial cell subtypes were determined under IL-4 stimulation, and cell-specific marker genes and proteins were identified. RESULTS We confirmed that cultured HNE cells were similar to in vivo epithelial cells through scRNAseq. Cell-specific marker genes were utilized to cluster the cell subtypes, and FOXJ1+ -ciliated cells were sub-classified into multiciliated and deuterosomal cells. PLK4 and CDC20B were specific for deuterosomal cells, and SNTN, CPASL, and GSTA2 were specific for multiciliated cells. IL-4 altered the proportions of cell subtypes, resulting in a decrease in multiciliated cells and loss of deuterosomal cells. The trajectory analysis revealed deuterosomal cells as precursor cells of multiciliated cells and deuterosomal cells function as a bridge between club and multiciliated cells. A decrease in deuterosomal cell marker genes was observed in nasal tissue samples with type 2 inflammation. CONCLUSION The effects of IL-4 appear to be mediated through the loss of the deuterosomal population, resulting in the reduction in multiciliated cells. This study also newly suggests cell-specific markers that might be pivotal for investigating respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Wook Chung
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungmin Moon
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Miran Kang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Sung Nam
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nam Lee
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Ringers C, Bialonski S, Ege M, Solovev A, Hansen JN, Jeong I, Friedrich BM, Jurisch-Yaksi N. Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife 2023; 12:77701. [PMID: 36700548 PMCID: PMC9940908 DOI: 10.7554/elife.77701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.
Collapse
Affiliation(s)
- Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Stephan Bialonski
- Institute for Data-Driven Technologies, Aachen University of Applied SciencesJülichGermany
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anton Solovev
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Jan Niklas Hansen
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Benjamin M Friedrich
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
17
|
Buss G, Stratton MB, Milenkovic L, Stearns T. Postmitotic centriole disengagement and maturation leads to centrosome amplification in polyploid trophoblast giant cells. Mol Biol Cell 2022; 33:ar118. [PMID: 36001376 PMCID: PMC9634975 DOI: 10.1091/mbc.e22-05-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA replication is normally coupled with centriole duplication in the cell cycle. Trophoblast giant cells (TGCs) of the placenta undergo endocycles resulting in polyploidy but their centriole state is not known. We used a cell culture model for TGC differentiation to examine centriole and centrosome number and properties. Before differentiation, trophoblast stem cells (TSCs) have either two centrioles before duplication or four centrioles after. We find that the average nuclear area increases approximately eight-fold over differentiation, but most TGCs do not have more than four centrioles. However, these centrioles become disengaged, acquire centrosome proteins, and can nucleate microtubules. In addition, some TGCs undergo further duplication and disengagement of centrioles, resulting in substantially higher numbers. Live imaging revealed that disengagement and separation are centriole autonomous and can occur asynchronously. Centriole amplification, when present, occurs by the standard mechanism of one centriole generating one procentriole. PLK4 inhibition blocks centriole formation in differentiating TGCs but does not affect endocycle progression. In summary, centrioles in TGC endocycles undergo disengagement and conversion to centrosomes. This increases centrosome number but to a limited extent compared with DNA reduplication.
Collapse
Affiliation(s)
- Garrison Buss
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | - Tim Stearns
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305,*Address correspondence to: Tim Stearns ()
| |
Collapse
|
18
|
LoMastro GM, Drown CG, Maryniak AL, Jewett CE, Strong MA, Holland AJ. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells. eLife 2022; 11:80643. [PMID: 35969030 PMCID: PMC9507127 DOI: 10.7554/elife.80643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events. Every day, we inhale thousands of viruses, bacteria and pollution particles. To protect against these threats, cells in our airways produce mucus that traps inhaled particles before they reach the lungs. This mucus then needs to be removed to prevent it from becoming a breeding ground for microbes that may cause a respiratory infection. This is the responsibility of cells covered in tiny hair-like structures called cilia that move together to propel the mucus-trapped particles out of the airways. These specialized cells can have up to 300 motile cilia on their surface, which grow from structures called centrioles that then anchor the cilia in place. Multiciliated cells are generated from precursor cells that only have two centrioles. Therefore, as these precursors develop, they must produce large numbers of centrioles, considerably more than other cells that only need a couple of extra centrioles during cell division. However, recent studies have questioned whether the precursors of multiciliated cells rely on the same regulatory proteins to produce centrioles as dividing cells. To help answer this question, LoMastro et al. created genetically engineered mice that lacked or had an inactive form of PLK4, a protein which controls centriole formation in all cell types lacking multiple cilia. This showed that multiciliated cells also need this protein to produce centrioles. LoMastro et al. also found that multiciliated cells became larger while building centrioles, suggesting that this amplification process helps control the cell’s final size. Defects in motile cilia activity can lead to fluid build-up in the brain, respiratory infections and infertility. Unfortunately, these disorders are difficult to diagnose currently and there is no cure. The findings of LoMastro et al. further our understanding of how motile cilia are built and maintained, and may help future scientists to develop better diagnostic tools and treatments for patients.
Collapse
Affiliation(s)
- Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Aubrey L Maryniak
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
19
|
Mahjoub MR, Nanjundappa R, Harvey MN. Development of a multiciliated cell. Curr Opin Cell Biol 2022; 77:102105. [PMID: 35716530 DOI: 10.1016/j.ceb.2022.102105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Multiciliated cells (MCC) are evolutionary conserved, highly specialized cell types that contain dozens to hundreds of motile cilia that they use to propel fluid directionally. To template these cilia, each MCC produces between 30 and 500 basal bodies via a process termed centriole amplification. Much progress has been made in recent years in understanding the pathways involved in MCC fate determination, differentiation, and ciliogenesis. Recent studies using mammalian cell culture systems, mice, Xenopus, and other model organisms have started to uncover the mechanisms involved in centriole and cilia biogenesis. Yet, how MCC progenitor cells regulate the precise number of centrioles and cilia during their differentiation remains largely unknown. In this review, we will examine recent findings that address this fundamental question.
Collapse
Affiliation(s)
- Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA; Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA.
| | - Rashmi Nanjundappa
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Megan N Harvey
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| |
Collapse
|
20
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Yasunaga T, Wiegel J, Bergen MD, Helmstädter M, Epting D, Paolini A, Çiçek Ö, Radziwill G, Engel C, Brox T, Ronneberger O, Walentek P, Ulbrich MH, Walz G. Microridge-like structures anchor motile cilia. Nat Commun 2022; 13:2056. [PMID: 35440631 PMCID: PMC9018822 DOI: 10.1038/s41467-022-29741-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/30/2022] [Indexed: 01/11/2023] Open
Abstract
Several tissues contain cells with multiple motile cilia that generate a fluid or particle flow to support development and organ functions; defective motility causes human disease. Developmental cues orient motile cilia, but how cilia are locked into their final position to maintain a directional flow is not understood. Here we find that the actin cytoskeleton is highly dynamic during early development of multiciliated cells (MCCs). While apical actin bundles become increasingly more static, subapical actin filaments are nucleated from the distal tip of ciliary rootlets. Anchorage of these subapical actin filaments requires the presence of microridge-like structures formed during MCC development, and the activity of Nonmuscle Myosin II. Optogenetic manipulation of Ezrin, a core component of the microridge actin-anchoring complex, or inhibition of Myosin Light Chain Kinase interfere with rootlet anchorage and orientation. These observations identify microridge-like structures as an essential component of basal body rootlet anchoring in MCCs.
Collapse
Affiliation(s)
- Takayuki Yasunaga
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Johannes Wiegel
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Max D Bergen
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Daniel Epting
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Andrea Paolini
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Özgün Çiçek
- Pattern Recognition and Image Processing, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 52, 79110, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Gerald Radziwill
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Christina Engel
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Thomas Brox
- Pattern Recognition and Image Processing, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 52, 79110, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Olaf Ronneberger
- Pattern Recognition and Image Processing, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 52, 79110, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Peter Walentek
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
22
|
Zhao H, Sun J, Insinna C, Lu Q, Wang Z, Nagashima K, Stauffer J, Andresson T, Specht S, Perera S, Daar IO, Westlake CJ. Male infertility-associated Ccdc108 regulates multiciliogenesis via the intraflagellar transport machinery. EMBO Rep 2022; 23:e52775. [PMID: 35201641 PMCID: PMC8982597 DOI: 10.15252/embr.202152775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT‐B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT‐B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT‐B complex components cooperate in multiciliogenesis.
Collapse
Affiliation(s)
- Huijie Zhao
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ziqiu Wang
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Kunio Nagashima
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jimmy Stauffer
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory (PCL) Mass Spectrometry Center, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Specht
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sumeth Perera
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
23
|
Kim S, Chien YH, Ryan A, Kintner C. Emi2 enables centriole amplification during multiciliated cell differentiation. SCIENCE ADVANCES 2022; 8:eabm7538. [PMID: 35363516 PMCID: PMC10938574 DOI: 10.1126/sciadv.abm7538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Massive centriole amplification during multiciliated cell (MCC) differentiation is a notable example of organelle biogenesis. This process is thought to be enabled by a derived cell cycle state, but the key cell cycle components required for centriole amplification in MCC progenitors remain poorly defined. Here, we show that emi2 (fbxo43) expression is up-regulated and acts in MCC progenitors after cell cycle exit to transiently inhibit anaphase-promoting complex/cyclosome (APC/C)cdh1 activity. We find that this inhibition is required for the phosphorylation and activation of a key cell cycle kinase, plk1, which acts, in turn, to promote different steps required for centriole amplification and basal body formation, including centriole disengagement, apical migration, and maturation into basal bodies. This emi2-APC/C-plk1 axis is also required to down-regulate gene expression essential for centriole amplification after differentiation is complete. These results identify an emi2-APC/C-plk1 axis that promotes and then terminates centriole assembly and basal body formation during MCC differentiation.
Collapse
Affiliation(s)
- Seongjae Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yuan-Hung Chien
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amy Ryan
- Hastings Center for Pulmonary Research, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Kintner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
24
|
Nommick A, Boutin C, Rosnet O, Schirmer C, Bazellières E, Thomé V, Loiseau E, Viallat A, Kodjabachian L. Lrrcc1 and Ccdc61 are conserved effectors of multiciliated cell function. J Cell Sci 2022; 135:274401. [DOI: 10.1242/jcs.258960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliated epithelia perform essential functions across animal evolution, ranging from locomotion of marine organisms to mucociliary clearance of airways in mammals. These epithelia are composed of multiciliated cells (MCCs) harbouring myriads of motile cilia, which rest on modified centrioles called basal bodies (BBs), and beat coordinately to generate directed fluid flows. Thus, BB biogenesis and organization is central to MCC function. In basal eukaryotes, the coiled-coil domain proteins Lrrcc1 and Ccdc61 were shown to be required for proper BB construction and function. Here, we used the Xenopus embryonic ciliated epidermis to characterize Lrrcc1 and Ccdc61 in vertebrate MCCs. We found that they both encode BB components, localized proximally at the junction with striated rootlets. Knocking down either gene caused defects in BB docking, spacing, and polarization. Moreover, their depletion impaired the apical cytoskeleton, and altered ciliary beating. Consequently, cilia-powered fluid flow was greatly reduced in morphant tadpoles, which displayed enhanced mortality when exposed to pathogenic bacteria. This work illustrates how integration across organizational scales make elementary BB components essential for the emergence of the physiological function of ciliated epithelia.
Collapse
Affiliation(s)
- Aude Nommick
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Camille Boutin
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Olivier Rosnet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Claire Schirmer
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Elsa Bazellières
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Virginie Thomé
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Etienne Loiseau
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Annie Viallat
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
25
|
Hoque M, Kim EN, Chen D, Li FQ, Takemaru KI. Essential Roles of Efferent Duct Multicilia in Male Fertility. Cells 2022; 11:cells11030341. [PMID: 35159149 PMCID: PMC8834061 DOI: 10.3390/cells11030341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cilia are microtubule-based hair-like organelles on the cell surface. Cilia have been implicated in various biological processes ranging from mechanosensation to fluid movement. Ciliary dysfunction leads to a plethora of human diseases, known as ciliopathies. Although non-motile primary cilia are ubiquitous, motile multicilia are found in restricted locations of the body, such as the respiratory tract, the oviduct, the efferent duct, and the brain ventricles. Multicilia beat in a whip-like motion to generate fluid flow over the apical surface of an epithelium. The concerted ciliary motion provides the driving force critical for clearing airway mucus and debris, transporting ova from the ovary to the uterus, maintaining sperm in suspension, and circulating cerebrospinal fluid in the brain. In the male reproductive tract, multiciliated cells (MCCs) were first described in the mid-1800s, but their importance in male fertility remained elusive until recently. MCCs exist in the efferent ducts, which are small, highly convoluted tubules that connect the testis to the epididymis and play an essential role in male fertility. In this review, we will introduce multiciliogenesis, discuss mouse models of male infertility with defective multicilia, and summarize our current knowledge on the biological function of multicilia in the male reproductive tract.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Danny Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
- Correspondence:
| |
Collapse
|
26
|
Lee M, Nagashima K, Yoon J, Sun J, Wang Z, Carpenter C, Lee HK, Hwang YS, Westlake CJ, Daar IO. CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. J Cell Biol 2022; 221:e202102110. [PMID: 34787650 PMCID: PMC8719716 DOI: 10.1083/jcb.202102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.
Collapse
Affiliation(s)
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Ziqiu Wang
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Christopher J. Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | | |
Collapse
|
27
|
Nahalka J. Theoretical Analysis of S, M and N Structural Proteins by the Protein-RNA Recognition Code Leads to Genes/proteins that Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Front Genet 2021; 12:763995. [PMID: 34659373 PMCID: PMC8511677 DOI: 10.3389/fgene.2021.763995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
In this conceptual review, based on the protein-RNA recognition code, some theoretical sequences were detected in the spike (S), membrane (M) and capsid (N) proteins that may post-transcriptionally regulate the host genes/proteins in immune homeostasis, pulmonary epithelial tissue homeostasis, and lipid homeostasis. According to the review of literature, the spectrum of identified genes/proteins shows that the virus promotes IL1α/β-IL1R1 signaling (type 1 immunity) and immunity defense against helminths and venoms (type 2 immunity). In the alteration of homeostasis in the pulmonary epithelial tissue, the virus blocks the function of cilia and the molecular programs that are involved in wound healing (EMT and MET). Additionally, the protein-RNA recognition method described here identifies compatible sequences in the S1A-domain for the post-transcriptional promotion of PIKFYVE, which is one of the critical factors for SARS-CoV-2 entry to the host cell, and for the post-transcriptional repression of xylulokinase XYLB. A decrease in XYLB product (Xu5P) in plasma was proposed as one of the potential metabolomics biomarkers of COVID-19. In summary, the protein-RNA recognition code leads to protein genes relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
28
|
Novel Approach Combining Transcriptional and Evolutionary Signatures to Identify New Multiciliation Genes. Genes (Basel) 2021; 12:genes12091452. [PMID: 34573434 PMCID: PMC8470418 DOI: 10.3390/genes12091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
Multiciliogenesis is a complex process that allows the generation of hundreds of motile cilia on the surface of specialized cells, to create fluid flow across epithelial surfaces. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite recent efforts to characterize the transcriptional events responsible for the differentiation of multiciliated cells, a lot of actors remain to be identified. In this work, we capitalize on the ever-growing quantity of high-throughput data to search for new candidate genes involved in multiciliation. After performing a large-scale screening using 10 transcriptomics datasets dedicated to multiciliation, we established a specific evolutionary signature involving Otomorpha fish to use as a criterion to select the most likely targets. Combining both approaches highlighted a list of 114 potential multiciliated candidates. We characterized these genes first by generating protein interaction networks, which showed various clusters of ciliated and multiciliated genes, and then by computing phylogenetic profiles. In the end, we selected 11 poorly characterized genes that seem like particularly promising multiciliated candidates. By combining functional and comparative genomics methods, we developed a novel type of approach to study biological processes and identify new promising candidates linked to that process.
Collapse
|
29
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
30
|
Kulkarni S, Marquez J, Date P, Ventrella R, Mitchell BJ, Khokha MK. Mechanical stretch scales centriole number to apical area via Piezo1 in multiciliated cells. eLife 2021; 10:66076. [PMID: 34184636 PMCID: PMC8270640 DOI: 10.7554/elife.66076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
How cells count and regulate organelle number is a fundamental question in cell biology. For example, most cells restrict centrioles to two in number and assemble one cilium; however, multiciliated cells (MCCs) synthesize hundreds of centrioles to assemble multiple cilia. Aberration in centriole/cilia number impairs MCC function and can lead to pathological outcomes. Yet how MCCs control centriole number remains unknown. Using Xenopus, we demonstrate that centriole number scales with apical area over a remarkable 40-fold change in size. We find that tensile forces that shape the apical area also trigger centriole amplification based on both cell stretching experiments and disruption of embryonic elongation. Unexpectedly, Piezo1, a mechanosensitive ion channel, localizes near each centriole suggesting a potential role in centriole amplification. Indeed, depletion of Piezo1 affects centriole amplification and disrupts its correlation with the apical area in a tension-dependent manner. Thus, mechanical forces calibrate cilia/centriole number to the MCC apical area via Piezo1. Our results provide new perspectives to study organelle number control essential for optimal cell function.
Collapse
Affiliation(s)
- Saurabh Kulkarni
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, United States
| | - Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, United States
| | - Priya Date
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, United States
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Brian J Mitchell
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
31
|
Loukas I, Skamnelou M, Tsaridou S, Bournaka S, Grigoriadis S, Taraviras S, Lygerou Z, Arbi M. Fine-tuning multiciliated cell differentiation at the post-transcriptional level: contribution of miR-34/449 family members. Biol Rev Camb Philos Soc 2021; 96:2321-2332. [PMID: 34132477 DOI: 10.1111/brv.12755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Cell differentiation is a process that must be precisely regulated for the maintenance of tissue homeostasis. Differentiation towards a multiciliated cell fate is characterized by well-defined stages, where a transcriptional cascade is activated leading to the formation of multiple centrioles and cilia. Centrioles migrate and dock to the apical cell surface and, acting as basal bodies, give rise to multiple motile cilia. The concerted movement of cilia ensures directional fluid flow across epithelia and defects either in their number or structure can lead to disease phenotypes. Micro-RNAs (miRNAs; miRs) are small, non-coding RNA molecules that play an important role in post-transcriptional regulation of gene expression. miR-34b/c and miR-449a/b/c specifically function throughout the differentiation of multiciliated cells, fine-tuning the expression of many different centriole- and cilia-related genes. They strictly regulate the expression levels of genes that are required both for commitment towards the multiciliated cell fate (e.g. Notch) and for the establishment and maintenance of this fate by regulating the expression of transcription factors and structural components of the pathway. Herein we review miR-34 and miR-449 spatiotemporal regulation along with their roles during the different stages of multiciliogenesis.
Collapse
Affiliation(s)
- Ioannis Loukas
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Margarita Skamnelou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Stavroula Tsaridou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Spyridoula Bournaka
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Sokratis Grigoriadis
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| |
Collapse
|
32
|
Yamamoto S, Yabuki R, Kitagawa D. Biophysical and biochemical properties of Deup1 self-assemblies: a potential driver for deuterosome formation during multiciliogenesis. Biol Open 2021; 10:10/3/bio056432. [PMID: 33658185 PMCID: PMC7938805 DOI: 10.1242/bio.056432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The deuterosome is a non-membranous organelle involved in large-scale centriole amplification during multiciliogenesis. Deuterosomes are specifically assembled during the process of multiciliogenesis. However, the molecular mechanisms underlying deuterosome formation are poorly understood. In this study, we investigated the molecular properties of deuterosome protein 1 (Deup1), an essential protein involved in deuterosome assembly. We found that Deup1 has the ability to self-assemble into macromolecular condensates both in vitro and in cells. The Deup1-containing structures formed in multiciliogenesis and the Deup1 condensates self-assembled in vitro showed low turnover of Deup1, suggesting that Deup1 forms highly stable structures. Our biochemical analyses revealed that an increase of the concentration of Deup1 and a crowded molecular environment both facilitate Deup1 self-assembly. The self-assembly of Deup1 relies on its N-terminal region, which contains multiple coiled coil domains. Using an optogenetic approach, we demonstrated that self-assembly and the C-terminal half of Deup1 were sufficient to spatially compartmentalize centrosomal protein 152 (Cep152) and polo like kinase 4 (Plk4), master components for centriole biogenesis, in the cytoplasm. Collectively, the present data suggest that Deup1 forms the structural core of the deuterosome through self-assembly into stable macromolecular condensates.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Ryoichi Yabuki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Tasca A, Helmstädter M, Brislinger MM, Haas M, Mitchell B, Walentek P. Notch signaling induces either apoptosis or cell fate change in multiciliated cells during mucociliary tissue remodeling. Dev Cell 2021; 56:525-539.e6. [PMID: 33400913 PMCID: PMC7904641 DOI: 10.1016/j.devcel.2020.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Multiciliated cells (MCCs) are extremely highly differentiated, presenting >100 cilia and basal bodies. Therefore, MCC fate is thought to be terminal and irreversible. We analyzed how MCCs are removed from the airway-like mucociliary Xenopus epidermis during developmental tissue remodeling. We found that a subset of MCCs undergoes lateral line-induced apoptosis, but that the majority coordinately trans-differentiate into goblet secretory cells. Both processes are dependent on Notch signaling, while the cellular response to Notch is modulated by Jak/STAT, thyroid hormone, and mTOR signaling. At the cellular level, trans-differentiation is executed through the loss of ciliary gene expression, including foxj1 and pcm1, altered proteostasis, cilia retraction, basal body elimination, as well as the initiation of mucus production and secretion. Our work describes two modes for MCC loss during vertebrate development, the signaling regulation of these processes, and demonstrates that even cells with extreme differentiation features can undergo direct fate conversion.
Collapse
Affiliation(s)
- Alexia Tasca
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany
| | - Magdalena Maria Brislinger
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Haas
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Brian Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
34
|
Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021; 59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next-generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high-throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
35
|
Lewis M, Stracker TH. Transcriptional regulation of multiciliated cell differentiation. Semin Cell Dev Biol 2021; 110:51-60. [DOI: 10.1016/j.semcdb.2020.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023]
|
36
|
Walentek P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis 2021; 59:e23406. [PMID: 33400364 DOI: 10.1002/dvg.23406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The Xenopus embryonic epidermis is a powerful model to study mucociliary biology, development, and disease. Particularly, the Xenopus system is being used to elucidate signaling pathways, transcription factor functions, and morphogenetic mechanisms regulating cell fate specification, differentiation and cell function. Thereby, Xenopus research has provided significant insights into potential underlying molecular mechanisms for ciliopathies and chronic airway diseases. Recent studies have also established the embryonic epidermis as a model for mucociliary epithelial remodeling, multiciliated cell trans-differentiation, cilia loss, and mucus secretion. Additionally, the tadpole foregut epithelium is lined by a mucociliary epithelium, which shows remarkable features resembling mammalian airway epithelia, including its endodermal origin and a variable cell type composition along the proximal-distal axis. This review aims to summarize the advantages of the Xenopus epidermis for mucociliary epithelial biology and disease modeling. Furthermore, the potential of the foregut epithelium as novel mucociliary model system is being highlighted. Additional perspectives are presented on how to expand the range of diseases that can be modeled in the frog system, including proton pump inhibitor-associated pneumonia as well as metaplasia in epithelial cells of the airway and the gastroesophageal region.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Kim SK, Brotslaw E, Thome V, Mitchell J, Ventrella R, Collins C, Mitchell B. A role for Cep70 in centriole amplification in multiciliated cells. Dev Biol 2020; 471:10-17. [PMID: 33285087 DOI: 10.1016/j.ydbio.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/16/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
Centriole amplification in multiciliated cells occurs in a pseudo-cell cycle regulated process that typically utilizes a poorly characterized molecularly dense structure called the deuterosome. We identified the centrosomal protein Cep70 as a novel deuterosome-associated protein that forms a complex with other deuterosome proteins, CCDC78 and Deup1. Cep70 dynamically associates with deuterosomes during centriole amplification in the ciliated epithelia of Xenopus embryos. Cep70 is not found in nascent deuterosomes prior to amplification. However, it becomes localized at deuterosomes at the onset of centriole biogenesis and remains there after the completion of centriole amplification. Deuterosome localization requires a conserved C-terminal "Cep70" motif. Depletion of Cep70 using morpholino oligos or CRISPR/Cas9 editing in F0 embryos leads to a severe decrease in centriole formation in both endogenous MCCs, as well as ectopically induced MCCs. Consistent with a decrease in centrioles, endogenous MCCs have defects in the process of radial intercalation. We propose that Cep70 represents a novel regulator of centriole biogenesis in MCCs.
Collapse
Affiliation(s)
- Sun K Kim
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, France
| | - Eva Brotslaw
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, France
| | | | - Jen Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, France
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, France
| | - Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, France
| | - Brian Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, France.
| |
Collapse
|
38
|
Na K, Kim M, Kim CY, Lim JS, Cho JY, Shin H, Lee HJ, Kang BJ, Han DH, Kim H, Baik JH, Swiatek-de Lange M, Karl J, Paik YK. Potential Regulatory Role of Human-Carboxylesterase-1 Glycosylation in Liver Cancer Cell Growth. J Proteome Res 2020; 19:4867-4883. [PMID: 33206527 DOI: 10.1021/acs.jproteome.0c00787] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously reported that human carboxylesterase 1 (CES1), a serine esterase containing a unique N-linked glycosyl group at Asn79 (N79 CES1), is a candidate serological marker of hepatocellular carcinoma (HCC). CES1 is normally present at low-to-undetectable levels in normal human plasma, HCC tumors, and major liver cancer cell lines. To investigate the potential mechanism underlying the suppression of CES1 expression in liver cancer cells, we took advantage of the low detectability of this marker in tumors by overexpressing CES1 in multiple HCC cell lines, including stable Hep3B cells. We found that the population of CES1-overexpressing (OE) cells decreased and that their doubling time was longer compared with mock control liver cancer cells. Using interactive transcriptome, proteome, and subsequent Gene Ontology enrichment analysis of CES1-OE cells, we found substantial decreases in the expression levels of genes involved in cell cycle regulation and proliferation. This antiproliferative function of the N79 glycan of CES1 was further supported by quantitative real-time polymerase chain reaction, flow cytometry, and an apoptosis protein array assay. An analysis of the levels of key signaling target proteins via Western blotting suggested that CES1 overexpression exerted an antiproliferative effect via the PKD1/PKCμ signaling pathway. Similar results were also seen in another HCC cell line (PLC/RFP/5) after transient transfection with CES1 but not in similarly treated non-HCC cell lines (e.g., HeLa and Tera-1 cells), suggesting that CES1 likely exerts a liver cell-type-specific suppressive effect. Given that the N-linked glycosyl group at Asn79 (N79 glycan) of CES1 is known to influence CES1 enzyme activity, we hypothesized that the post-translational modification of CES1 at N79 may be linked to its antiproliferative activity. To investigate the regulatory effect of the N79 glycan on cellular growth, we mutated the single N-glycosylation site in CES1 from Asn to Gln (CES1-N79Q) via site-directed mutagenesis. Fluorescence 2-D difference gel electrophoresis protein expression analysis of cell lysates revealed an increase in cell growth and a decrease in doubling time in cells carrying the N79Q mutation. Thus our results suggest that CES1 exerts an antiproliferative effect in liver cancer cells and that the single N-linked glycosylation at Asn79 plays a potential regulatory role. These functions may underlie the undetectability of CES1 in human HCC tumors and liver cancer cell lines. Mass spectrometry data are available via ProteomeXchange under the identifier PXD021573.
Collapse
Affiliation(s)
- Keun Na
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Minjoo Kim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Jong-Sun Lim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Heon Shin
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Hyo Jin Lee
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | - Byeong Jun Kang
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | | | | | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | | | - Johann Karl
- Roche Diagnostics, GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| |
Collapse
|
39
|
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2020; 110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023]
Abstract
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
40
|
Collins C, Ventrella R, Mitchell BJ. Building a ciliated epithelium: Transcriptional regulation and radial intercalation of multiciliated cells. Curr Top Dev Biol 2020; 145:3-39. [PMID: 34074533 DOI: 10.1016/bs.ctdb.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The epidermis of the Xenopus embryo has emerged as a powerful tool for studying the development of a ciliated epithelium. Interspersed throughout the epithelium are multiciliated cells (MCCs) with 100+ motile cilia that beat in a coordinated manner to generate fluid flow over the surface of the cell. MCCs are essential for various developmental processes and, furthermore, ciliary dysfunction is associated with numerous pathologies. Therefore, understanding the cellular mechanisms involved in establishing a ciliated epithelium are of particular interest. MCCs originate in the inner epithelial layer of Xenopus skin, where Notch signaling plays a critical role in determining which progenitors will adopt a ciliated cell fate. Then, activation of various transcriptional regulators, such as GemC1 and MCIDAS, initiate the MCC transcriptional program, resulting in centriole amplification and the formation of motile cilia. Following specification and differentiation, MCCs undergo the process of radial intercalation, where cells apically migrate from the inner layer to the outer epithelial layer. This process involves the cooperation of various cytoskeletal networks, activation of various signaling molecules, and changes in cell-ECM and cell-cell adhesion. Coordination of these cellular processes is required for complete incorporation into the outer epithelial layer and generation of a functional ciliated epithelium. Here, we highlight recent advances made in understanding the transcriptional cascades required for MCC specification and differentiation and the coordination of cellular processes that facilitate radial intercalation. Proper regulation of these signaling pathways and processes are the foundation for developing a ciliated epithelium.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Brian J Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
41
|
Li Y, Guo F, Jing Q, Zhu X, Yan X. Characterisation of centriole biogenesis during multiciliation in planarians. Biol Cell 2020; 112:398-408. [PMID: 32776587 DOI: 10.1111/boc.202000045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION Dense multicilia in protozoa and metazoa generate a strong force important for locomotion and extracellular fluid flow. During ciliogenesis, multiciliated cells produce hundreds of centrioles to serve as basal bodies through various pathways including deuterosome-dependent (DD), hyper-activated mother centriole-dependent (MCD) and basal bodydependent (BBD) pathways. The centrosome-free planarian Schmidtea mediterranea is widely used for regeneration studies because its neoblasts are capable of regenerating any body part after injury. However, it is currently unclear how the flatworms generate massive centrioles for multiciliated cells in the pharynx and body epidermis when their cells are initially centriole-free. RESULTS In this study, we investigate the progress of centriole amplification during the pharynx regeneration. We observe that the planarian pharyngeal epithelial cells generate their centrioles asynchronously through a de novo pathway. Most of the de novo centrioles are formed individually, whereas the remaining ones are assembled in pairs, possibly by sharing a cartwheel, or in small clusters lacking a nucleation center. Further RNAi experiments show that the known key factors of centriole duplication, including Cep152, Plk4 and Sas6, are crucial for the centriole amplification. CONCLUSIONS AND SIGNIFICANCE Our study demonstrates the distinct process of massive centriole biogenesis in S. mediterranea and helps to understand the diversity of centriole biogenesis during evolution.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fanghao Guo
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qing Jing
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Development of Ependymal and Postnatal Neural Stem Cells and Their Origin from a Common Embryonic Progenitor. Cell Rep 2020; 27:429-441.e3. [PMID: 30970247 DOI: 10.1016/j.celrep.2019.01.088] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/05/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
The adult mouse brain contains an extensive neurogenic niche in the lateral walls of the lateral ventricles. This epithelium, which has a unique pinwheel organization, contains multiciliated ependymal (E1) cells and neural stem cells (B1). This postnatal germinal epithelium develops from the embryonic ventricular zone, but the lineage relationship between E1 and B1 cells remains unknown. Distinct subpopulations of radial glia (RG) cells in late embryonic and early postnatal development either expand their apical domain >11-fold to form E1 cells or retain small apical domains that coalesce into the centers of pinwheels to form B1 cells. Using independent methods of lineage tracing, we show that individual RG cells can give rise to clones containing E1 and B1 cells. This study reveals key developmental steps in the formation of the postnatal germinal niche and the shared cellular origin of E1 and B1 cells.
Collapse
|
43
|
Collins C, Majekodunmi A, Mitchell B. Centriole Number and the Accumulation of Microtubules Modulate the Timing of Apical Insertion during Radial Intercalation. Curr Biol 2020; 30:1958-1964.e3. [PMID: 32243862 PMCID: PMC7239760 DOI: 10.1016/j.cub.2020.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are microtubule (MT)-based structures that provide important functions during cell migration, cell division, and cell signaling [1]. Modulating centriole number in 3D cell cultures has been shown to influence protrusive behavior [2-5]. Here, we address in vivo the role of centrioles and the accumulation of MTs on the protrusive behavior required during the initiation of radial intercalation. Radial intercalation is an important developmental process whereby cells undergo polarized movements and interdigitate into a more superficial layer [6, 7]. It is commonly employed during metamorphic events, such as the tissue thinning coupled with expansion or during the introduction of different cell types into an epithelium. During radial intercalation, cells emerge from a basal layer by undergoing a process of apical migration, apical insertion, and expansion [8]. In Xenopus skin, multiciliated cells (MCCs), which contain ∼150 centrioles, and ionocytes (ICs), which contain two centrioles, differentiate during the same developmental window, but MCCs complete intercalation prior to ICs. Here, we utilize this difference in timing to create a quantifiable assay for insertion and find that the timing of insertion is modulated by changes in centriole number and the accumulation of acetylated MTs. Additionally, centrioles align between the nucleus and the leading edge creating an axis of migration with apically oriented (+) ends. Using the MT (-) end protein CAMSAP1 fused to the apically positioned Par6 protein, we have artificially reversed the orientation of MTs and find that the accumulation of MTs in either orientation is sufficient to promote apical insertion.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Ahmed Majekodunmi
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Brian Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
45
|
Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M, Shi T, Zhong Z, Santana Gonzalez L, El-Sahhar S, Carrami EM, Mallett G, Feng Y, Masuda K, Zheng Y, Chong K, Damato S, Dhar S, Campo L, Garruto Campanile R, Soleymani Majd H, Rai V, Maldonado-Perez D, Jones S, Cerundolo V, Sauka-Spengler T, Yau C, Ahmed AA. The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell 2020; 37:226-242.e7. [PMID: 32049047 DOI: 10.1016/j.ccell.2020.01.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
The inter-differentiation between cell states promotes cancer cell survival under stress and fosters non-genetic heterogeneity (NGH). NGH is, therefore, a surrogate of tumor resilience but its quantification is confounded by genetic heterogeneity. Here we show that NGH in serous ovarian cancer (SOC) can be accurately measured when informed by the molecular signatures of the normal fallopian tube epithelium (FTE) cells, the cells of origin of SOC. Surveying the transcriptomes of ∼6,000 FTE cells, predominantly from non-ovarian cancer patients, identified 6 FTE subtypes. We used subtype signatures to deconvolute SOC expression data and found substantial intra-tumor NGH. Importantly, NGH-based stratification of ∼1,700 tumors robustly correlated with survival. Our findings lay the foundation for accurate prognostic and therapeutic stratification of SOC.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Tingyan Shi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Zhe Zhong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Salma El-Sahhar
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Eli M Carrami
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Garry Mallett
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yun Feng
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Kenta Masuda
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yiyan Zheng
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Kay Chong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Stephen Damato
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Riccardo Garruto Campanile
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Hooman Soleymani Majd
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Vikram Rai
- Department of Gynaecology, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK
| | - David Maldonado-Perez
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Second Floor, Unipart House Business Centre, Oxford OX4 2PG, UK
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Vincenzo Cerundolo
- Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Christopher Yau
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Alan Turing Institute, London NW1 2DB, UK.
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK.
| |
Collapse
|
46
|
Marinković M, Berger J, Jékely G. Neuronal coordination of motile cilia in locomotion and feeding. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190165. [PMID: 31884921 PMCID: PMC7017327 DOI: 10.1098/rstb.2019.0165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efficient ciliary locomotion and transport require the coordination of motile cilia. Short-range coordination of ciliary beats can occur by biophysical mechanisms. Long-range coordination across large or disjointed ciliated fields often requires nervous system control and innervation of ciliated cells by ciliomotor neurons. The neuronal control of cilia is best understood in invertebrate ciliated microswimmers, but similar mechanisms may operate in the vertebrate body. Here, we review how the study of aquatic invertebrates contributed to our understanding of the neuronal control of cilia. We summarize the anatomy of ciliomotor systems and the physiological mechanisms that can alter ciliary activity. We also discuss the most well-characterized ciliomotor system, that of the larval annelid Platynereis. Here, pacemaker neurons drive the rhythmic activation of cholinergic and serotonergic ciliomotor neurons to induce ciliary arrests and beating. The Platynereis ciliomotor neurons form a distinct part of the larval nervous system. Similar ciliomotor systems likely operate in other ciliated larvae, such as mollusc veligers. We discuss the possible ancestry and conservation of ciliomotor circuits and highlight how comparative experimental approaches could contribute to a better understanding of the evolution and function of ciliary systems. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.
Collapse
Affiliation(s)
- Milena Marinković
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
47
|
Massive centriole production can occur in the absence of deuterosomes in multiciliated cells. Nat Cell Biol 2019; 21:1544-1552. [PMID: 31792378 PMCID: PMC6913274 DOI: 10.1038/s41556-019-0427-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
Multiciliated cells (MCCs) amplify large numbers of centrioles, which convert into basal bodies that are required for producing multiple motile cilia. Most centrioles amplified by MCCs grow on the surface of organelles called deuterosomes, while a smaller number grow through the centriolar pathway in association with the two parent centrioles. Here we show that MCCs lacking deuterosomes amplify the correct number of centrioles with normal step-wise kinetics. This is achieved through a massive production of centrioles on the surface and in the vicinity of parent centrioles. Therefore, deuterosomes may have evolved to relieve, rather than supplement, the centriolar pathway during multiciliogenesis. Remarkably, MCCs lacking parent centrioles and deuterosomes also amplify the appropriate number of centrioles inside a cloud of pericentriolar and fibrogranular material. These data show that centriole number is set independently of their nucleation platforms and that massive centriole production in MCCs is a robust process that can self-organize.
Collapse
|
48
|
Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors. Sci Rep 2019; 9:13060. [PMID: 31506528 PMCID: PMC6736942 DOI: 10.1038/s41598-019-49416-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Reproductive and respiratory organs, along with brain ventricles, are lined by multiciliated epithelial cells (MCC) that generate cilia-powered fluid flows. MCC hijack the centrosome duplication pathway to form hundreds of centrioles and nucleate motile cilia. In these cells, the large majority of procentrioles are formed associated with partially characterized organelles called deuterosomes. We recently challenged the paradigm that deuterosomes and procentrioles are formed de novo by providing data, in brain MCC, suggesting that they are nucleated from the pre-existing centrosomal younger centriole. However, the origin of deuterosomes and procentrioles is still under debate. Here, we further question centrosome importance for deuterosome and centriole amplification. First, we provide additional data confirming that centriole amplification occurs sequentially from the centrosomal region, and that the first procentriole-loaded deuterosomes are associated with the daughter centriole or in the centrosomal centriole vicinity. Then, to further test the requirement of the centrosome in deuterosome and centriole formation, we depleted centrosomal centrioles using a Plk4 inhibitor. We reveal unexpected limited consequences in deuterosome/centriole number in absence of centrosomal centrioles. Notably, in absence of the daughter centriole only, deuterosomes are not seen associated with the mother centriole. In absence of both centrosomal centrioles, procentrioles are still amplified sequentially and with no apparent structural defects. They seem to arise from a focal region, characterized by microtubule convergence and pericentriolar material (PCM) assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.
Collapse
|
49
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
50
|
Kimata Y. APC/C Ubiquitin Ligase: Coupling Cellular Differentiation to G1/G0 Phase in Multicellular Systems. Trends Cell Biol 2019; 29:591-603. [DOI: 10.1016/j.tcb.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
|