1
|
Li Y, Yi Z, Li X, Wang R, Zhao M, Mi L, Zhang W, Guo R, Yan S, Song J. Research Progress of GPR137 in Malignant Tumors: A Review. Onco Targets Ther 2025; 18:545-558. [PMID: 40255680 PMCID: PMC12009054 DOI: 10.2147/ott.s511943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Receptors coupled with G proteins (GPCRs) are expressed in large numbers in multiple systems, such as endocrine, cardiovascular, digestive, immune, and reproductive systems. As an important signal transduction mediator, in recent years, the research on GPCRs has become more and more in-depth. Many articles have verified that in the gastrointestinal, reproductive, and urinary systems, GPCRs are contributed to the development and occurrence of cancerous tumors and have been associated with the infiltration of malignant tumors and metastasis. Currently, in clinical practice, GPCRs become the target of action for about 30% of drugs. However, it should be noted that there are still over 100 GPCRs collectively referred to as orphan GPCRs (OGPCRs) due to the lack of corresponding ligands. Despite the lack of known ligands, research in animals and experiments has proved that numerous OGPCRs regulate crucial physiological functions and are intriguing and undeveloped targets for therapeutics. GPR137 is a member of OGPCRS, which promotes carcinogenesis and progression of cancers, and its expression is elevated in various malignant tumor tissues. Additionally, GPR137 has been shown to play a role in promoting tumorigenesis and metastasis in colorectal, gastric, hepatocellular, ovarian and prostate cancers. Knockdown of the GPR137 leads to cell cycle arrest within cancer cells, effectively inhibiting their proliferation and colony-forming ability while promoting apoptosis. This highlights its potential therapeutic significance as a target for numerous cancers.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - ZhongQuan Yi
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rui Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Mengjie Zhao
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Lida Mi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Weisong Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rongqi Guo
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Song Yan
- Department of Thoracic Surgery, Sheyang County People’s Hospital, Yancheng, Jiangsu, People’s Republic of China
| | - JianXiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| |
Collapse
|
2
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev 2025; 39:325-347. [PMID: 39794125 PMCID: PMC11874994 DOI: 10.1101/gad.352129.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA (miR-122) to facilitate polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq data sets, we delineated an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mouse models with miR-122 rescue experiments, we demonstrated that timed activation of ESRP2 augments the miR-122-driven program of cytokinesis failure, ensuring the proper onset and extent of hepatocyte polyploidization.
Collapse
Affiliation(s)
- Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jackie Chen
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nicholas Baker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frances Alencastro
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Andrew W Duncan
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| |
Collapse
|
3
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Qiu Y, Chen W, Ching WK, Cai H, Jiang H, Zou Q. AGML: Adaptive Graph-Based Multi-Label Learning for Prediction of RBP and as Event Associations During EMT. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2113-2122. [PMID: 39133592 DOI: 10.1109/tcbb.2024.3440913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Increasing evidence has indicated that RNA-binding proteins (RBPs) play an essential role in mediating alternative splicing (AS) events during epithelial-mesenchymal transition (EMT). However, due to the substantial cost and complexity of biological experiments, how AS events are regulated and influenced remains largely unknown. Thus, it is important to construct effective models for inferring hidden RBP-AS event associations during EMT process. In this paper, a novel and efficient model was developed to identify AS event-related candidate RBPs based on Adaptive Graph-based Multi-Label learning (AGML). In particular, we propose to adaptively learn a new affinity graph to capture the intrinsic structure of data for both RBPs and AS events. Multi-view similarity matrices are employed for maintaining the intrinsic structure and guiding the adaptive graph learning. We then simultaneously update the RBP and AS event associations that are predicted from both spaces by applying multi-label learning. The experimental results have shown that our AGML achieved AUC values of 0.9521 and 0.9873 by 5-fold and leave-one-out cross-validations, respectively, indicating the superiority and effectiveness of our proposed model. Furthermore, AGML can serve as an efficient and reliable tool for uncovering novel AS events-associated RBPs and is applicable for predicting the associations between other biological entities.
Collapse
|
5
|
Hou J, Mei K, Wang D, Ke S, Chen X, Shang J, Li G, Gao Y, Xiong H, Zhang H, Chen L, Zhang W, Deng Y, Hong X, Liu DA, Hu T, Guo W, Zhan YY. TGM1/3-mediated transamidation of Exo70 promotes tumor metastasis upon LKB1 inactivation. Cell Rep 2024; 43:114604. [PMID: 39146185 DOI: 10.1016/j.celrep.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.
Collapse
Affiliation(s)
- Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Daxuan Wang
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guixia Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yabin Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoting Hong
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Di-Ao Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
7
|
Kang B, Zhang J, Schwoerer MP, Nelson AN, Schoeman E, Guo A, Ploss A, Myhrvold C. Highly multiplexed mRNA quantitation with CRISPR-Cas13. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553527. [PMID: 37645785 PMCID: PMC10461975 DOI: 10.1101/2023.08.16.553527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
RNA quantitation tools are often either high-throughput or cost-effective, but rarely are they both. Existing methods can profile the transcriptome at great expense or are limited to quantifying a handful of genes by labor constraints. A technique that permits more throughput at a reduced cost could enable multi-gene kinetic studies, gene regulatory network analysis, and combinatorial genetic screens. Here, we introduce quantitative Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (qCARMEN): an RNA quantitation technique which leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 to address this challenge by quantifying over 4,500 gene-sample pairs in a single experiment. Using qCARMEN, we studied the response profiles of interferon-stimulated genes (ISGs) during interferon (IFN) stimulation and flavivirus infection. Additionally, we observed isoform switching kinetics during epithelial-mesenchymal transition. qCARMEN is a simple and inexpensive technique that greatly enhances the scalability of RNA quantitation for novel applications with performance similar to gold-standard methods.
Collapse
Affiliation(s)
- Brian Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Jiayu Zhang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Amy N. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Emily Schoeman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Andrew Guo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
8
|
Derham JM, Kalsotra A. The discovery, function, and regulation of epithelial splicing regulatory proteins (ESRP) 1 and 2. Biochem Soc Trans 2023; 51:1097-1109. [PMID: 37314029 PMCID: PMC11298080 DOI: 10.1042/bst20221124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a broad and evolutionarily conserved mechanism to diversify gene expression and functionality. The process relies on RNA binding proteins (RBPs) to recognize and bind target sequences in pre-mRNAs, which allows for the inclusion or skipping of various alternative exons. One recently discovered family of RBPs is the epithelial splicing regulatory proteins (ESRP) 1 and 2. Here, we discuss the structure and physiological function of the ESRPs in a variety of contexts. We emphasize the current understanding of their splicing activities, using the classic example of fibroblast growth factor receptor 2 mutually exclusive splicing. We also describe the mechanistic roles of ESRPs in coordinating the splicing and functional output of key signaling pathways that support the maintenance of, or shift between, epithelial and mesenchymal cell states. In particular, we highlight their functions in the development of mammalian limbs, the inner ear, and craniofacial structure while discussing the genetic and biochemical evidence that showcases their conserved roles in tissue regeneration, disease, and cancer pathogenesis.
Collapse
Affiliation(s)
- Jessica M. Derham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Sun L, Qiu Y, Ching WK, Zhao P, Zou Q. PCB: A pseudotemporal causality-based Bayesian approach to identify EMT-associated regulatory relationships of AS events and RBPs during breast cancer progression. PLoS Comput Biol 2023; 19:e1010939. [PMID: 36930678 PMCID: PMC10057809 DOI: 10.1371/journal.pcbi.1010939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
During breast cancer metastasis, the developmental process epithelial-mesenchymal (EM) transition is abnormally activated. Transcriptional regulatory networks controlling EM transition are well-studied; however, alternative RNA splicing also plays a critical regulatory role during this process. Alternative splicing was proved to control the EM transition process, and RNA-binding proteins were determined to regulate alternative splicing. A comprehensive understanding of alternative splicing and the RNA-binding proteins that regulate it during EM transition and their dynamic impact on breast cancer remains largely unknown. To accurately study the dynamic regulatory relationships, time-series data of the EM transition process are essential. However, only cross-sectional data of epithelial and mesenchymal specimens are available. Therefore, we developed a pseudotemporal causality-based Bayesian (PCB) approach to infer the dynamic regulatory relationships between alternative splicing events and RNA-binding proteins. Our study sheds light on facilitating the regulatory network-based approach to identify key RNA-binding proteins or target alternative splicing events for the diagnosis or treatment of cancers. The data and code for PCB are available at: http://hkumath.hku.hk/~wkc/PCB(data+code).zip.
Collapse
Affiliation(s)
- Liangjie Sun
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Yushan Qiu
- College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
- * E-mail:
| | - Wai-Ki Ching
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Achour C, Bhattarai DP, Groza P, Román ÁC, Aguilo F. METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene 2023; 42:911-925. [PMID: 36725888 PMCID: PMC10020087 DOI: 10.1038/s41388-023-02602-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) enables differential inclusion of exons from a given transcript, thereby contributing to the transcriptome and proteome diversity. Aberrant AS patterns play major roles in the development of different pathologies, including breast cancer. N6-methyladenosine (m6A), the most abundant internal modification of eukaryotic mRNA, influences tumor progression and metastasis of breast cancer, and it has been recently linked to AS regulation. Here, we identify a specific AS signature associated with breast tumorigenesis in vitro. We characterize for the first time the role of METTL3 in modulating breast cancer-associated AS programs, expanding the role of the m6A-methyltransferase in tumorigenesis. Specifically, we find that both m6A deposition in splice site boundaries and in splicing and transcription factor transcripts, such as MYC, direct AS switches of specific breast cancer-associated transcripts. Finally, we show that five of the AS events validated in vitro are associated with a poor overall survival rate for patients with breast cancer, suggesting the use of these AS events as a novel potential prognostic biomarker.
Collapse
Affiliation(s)
- Cyrinne Achour
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Ángel-Carlos Román
- Department of Molecular Biology and Genetics, University of Extremadura, 06071, Badajoz, Spain.
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
11
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
12
|
Lyu J, Cheng C. Regulation of Alternative Splicing during Epithelial-Mesenchymal Transition. Cells Tissues Organs 2022; 211:238-251. [PMID: 34348273 PMCID: PMC8741878 DOI: 10.1159/000518249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
Alternative splicing is an essential mechanism of gene regulation, giving rise to remarkable protein diversity in higher eukaryotes. Epithelial-mesenchymal transition (EMT) is a developmental process that plays an essential role in metazoan embryogenesis. Recent studies have revealed that alternative splicing serves as a fundamental layer of regulation that governs cells to undergo EMT. In this review, we summarize recent findings on the functional impact of alternative splicing in EMT and EMT-associated activities. We then discuss the regulatory mechanisms that control alternative splicing changes during EMT.
Collapse
Affiliation(s)
- Jingyi Lyu
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA.,To whom correspondence should be addressed:
| |
Collapse
|
13
|
Zhao Y, Hong X, Chen X, Hu C, Lu W, Xie B, Zhong L, Zhang W, Cao H, Chen B, Liu Q, Zhan Y, Xiao L, Hu T. Deregulation of Exo70 Facilitates Innate and Acquired Cisplatin Resistance in Epithelial Ovarian Cancer by Promoting Cisplatin Efflux. Cancers (Basel) 2021; 13:cancers13143467. [PMID: 34298686 PMCID: PMC8304026 DOI: 10.3390/cancers13143467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Innate and acquired platinum resistance are the leading causes of epithelial ovarian cancer (EOC) mortality. However, the mechanisms remain elusive. Here we found that Exo70, a key subunit of the exocyst, is upregulated in EOC and promotes cisplatin efflux to facilitate innate resistance. More interestingly, cisplatin could downregulate Exo70 to sustain cell sensitivity. However, this function was hampered during prolonged cisplatin treatment, which in turn stabilized Exo70 to facilitate the acquired cisplatin resistance of EOC cells. Our study potentiates Exo70 as a promising target to overcome cisplatin resistance in EOC. Abstract Whilst researches elucidating a diversity of intracellular mechanisms, platinum-resistant epithelial ovarian cancer (EOC) remains a major challenge in the treatment of ovarian cancer. Here we report that Exo70, a key subunit of the exocyst complex, contributes to both innate and acquired cisplatin resistance of EOC. Upregulation of Exo70 is observed in EOC tissues and is related to platinum resistance and progression-free survival of EOC patients. Exo70 suppressed the cisplatin sensitivity of EOC cells through promoting exocytosis-mediated efflux of cisplatin. Moreover, cisplatin-induced autophagy-lysosomal degradation of Exo70 protein by modulating phosphorylation of AMPK and mTOR, thereby reducing the cellular resistance. However, the function was hampered during prolonged cisplatin treatment, which in turn stabilized Exo70 to facilitate the acquired cisplatin resistance of EOC cells. Knockdown of Exo70, or inhibiting exocytosis by Exo70 inhibitor Endosidin2, reversed the cisplatin resistance of EOC cells both in vitro and in vivo. Our results suggest that Exo70 overexpression and excessive stability contribute to innate and acquired cisplatin resistance through the increase in cisplatin efflux, and targeting Exo70 might be an approach to overcome cisplatin resistance in EOC treatment.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China;
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Xiaoting Hong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Chun Hu
- Department of Oncology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen 361009, China;
| | - Weihong Lu
- Department of Obstetrics and Gynecology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China;
| | - Baoying Xie
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Linhai Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Hanwei Cao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Binbin Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Qian Liu
- Key Laboratory of the Education Ministry for the Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ganan Medical University, Ganzhou 341000, China;
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
| | - Li Xiao
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China;
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
- Correspondence: (L.X.); (T.H.)
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (X.H.); (X.C.); (B.X.); (L.Z.); (W.Z.); (H.C.); (B.C.); (Y.Z.)
- Key Laboratory of the Education Ministry for the Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ganan Medical University, Ganzhou 341000, China;
- Correspondence: (L.X.); (T.H.)
| |
Collapse
|
14
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
15
|
Qiu Y, Lyu J, Dunlap M, Harvey SE, Cheng C. A combinatorially regulated RNA splicing signature predicts breast cancer EMT states and patient survival. RNA (NEW YORK, N.Y.) 2020; 26:1257-1267. [PMID: 32467311 PMCID: PMC7430667 DOI: 10.1261/rna.074187.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/19/2020] [Indexed: 05/08/2023]
Abstract
During breast cancer metastasis, the developmental process epithelial-mesenchymal transition (EMT) is abnormally activated. Transcriptional regulatory networks controlling EMT are well-studied; however, alternative RNA splicing also plays a critical regulatory role during this process. A comprehensive understanding of alternative splicing (AS) and the RNA binding proteins (RBPs) that regulate it during EMT and their impact on breast cancer remains largely unknown. In this study, we annotated AS in the breast cancer TCGA data set and identified an AS signature that is capable of distinguishing epithelial and mesenchymal states of the tumors. This AS signature contains 25 AS events, among which nine showed increased exon inclusion and 16 showed exon skipping during EMT. This AS signature accurately assigns the EMT status of cells in the CCLE data set and robustly predicts patient survival. We further developed an effective computational method using bipartite networks to identify RBP-AS networks during EMT. This network analysis revealed the complexity of RBP regulation and nominated previously unknown RBPs that regulate EMT-associated AS events. This study highlights the importance of global AS regulation during EMT in cancer progression and paves the way for further investigation into RNA regulation in EMT and metastasis.
Collapse
Affiliation(s)
- Yushan Qiu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P.R. China
| | - Jingyi Lyu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mikayla Dunlap
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Samuel E Harvey
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Rohena C, Rajapakse N, Lo IC, Novick P, Sahoo D, Ghosh P. GIV/Girdin and Exo70 Collaboratively Regulate the Mammalian Polarized Exocytic Machinery. iScience 2020; 23:101246. [PMID: 32590327 PMCID: PMC7322189 DOI: 10.1016/j.isci.2020.101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
Polarized exocytosis is a fundamental process by which membranes and cargo proteins are delivered to the cell surface with precise spatial control. Although the need for the octameric exocyst complex is conserved from yeast to humans, what imparts spatial control is known only in yeast, i.e., a polarity scaffold called Bem1p. We demonstrate here that the mammalian scaffold protein, GIV/Girdin, fulfills the key criteria and functions of its yeast counterpart Bem1p; both bind Exo70 proteins via similar short-linear interaction motifs, and each prefers its evolutionary counterpart. Selective disruption of the GIV⋅Exo-70 interaction derails the delivery of the metalloprotease MT1-MMP to invadosomes and impairs collagen degradation and haptotaxis through basement membrane matrix. GIV's interacting partners reveal other components of polarized exocytosis in mammals. Findings expose how the exocytic functions aid GIV's pro-metastatic functions and how signal integration via GIV may represent an evolutionary advancement of the exocytic process in mammals.
Collapse
Affiliation(s)
- Cristina Rohena
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, 239, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, 239, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA 92093, USA; Veterans Affairs Medical Center, 3350 La Jolla Village Dr, San Diego, CA 92161, USA.
| |
Collapse
|
17
|
Coulter ME, Musaev D, DeGennaro EM, Zhang X, Henke K, James KN, Smith RS, Hill RS, Partlow JN, Muna Al-Saffar, Kamumbu AS, Hatem N, Barkovich AJ, Aziza J, Chassaing N, Zaki MS, Sultan T, Burglen L, Rajab A, Al-Gazali L, Mochida GH, Harris MP, Gleeson JG, Walsh CA. Regulation of human cerebral cortical development by EXOC7 and EXOC8, components of the exocyst complex, and roles in neural progenitor cell proliferation and survival. Genet Med 2020; 22:1040-1050. [PMID: 32103185 PMCID: PMC7272323 DOI: 10.1038/s41436-020-0758-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
PURPOSE The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. METHODS We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. RESULTS We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. CONCLUSION Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.
Collapse
Affiliation(s)
- Michael E Coulter
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA, USA
| | - Damir Musaev
- Department of Neurosciences and Howard Hughes Medical Institute, University of San Diego, La Jolla, CA, USA
| | - Ellen M DeGennaro
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaochang Zhang
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Katrin Henke
- Division of Orthopedic Research, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kiely N James
- Department of Neurosciences and Howard Hughes Medical Institute, University of San Diego, La Jolla, CA, USA
| | - Richard S Smith
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - R Sean Hill
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Muna Al-Saffar
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - A Stacy Kamumbu
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Nicole Hatem
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - A James Barkovich
- Benioff Children's Hospital, Departments of Radiology, Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline Aziza
- Département de Pathologie, Institut Universitaire du Cancer de Toulouse-Oncopole-CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, CHU Toulouse, Toulouse, France
- UDEAR; UMR 1056 Inserm-Université de Toulouse, Toulouse, France
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health & The Children's Hospital, Lahore, Pakistan
| | - Lydie Burglen
- Centre de référence des malformations et maladies congénitales du cervelet, Département de génétique, AP-HP.Sorbonne Université, Paris, France
- Hôpital Trousseau and Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Anna Rajab
- National Genetics Center, Directorate General of Health Affairs, Ministry of Health, Muscat, Oman
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Harris
- Division of Orthopedic Research, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joseph G Gleeson
- Department of Neurosciences and Howard Hughes Medical Institute, University of San Diego, La Jolla, CA, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Hu X, Harvey SE, Zheng R, Lyu J, Grzeskowiak CL, Powell E, Piwnica-Worms H, Scott KL, Cheng C. The RNA-binding protein AKAP8 suppresses tumor metastasis by antagonizing EMT-associated alternative splicing. Nat Commun 2020; 11:486. [PMID: 31980632 PMCID: PMC6981122 DOI: 10.1038/s41467-020-14304-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing has been shown to causally contribute to the epithelial–mesenchymal transition (EMT) and tumor metastasis. However, the scope of splicing factors that govern alternative splicing in these processes remains largely unexplored. Here we report the identification of A-Kinase Anchor Protein (AKAP8) as a splicing regulatory factor that impedes EMT and breast cancer metastasis. AKAP8 not only is capable of inhibiting splicing activity of the EMT-promoting splicing regulator hnRNPM through protein–protein interaction, it also directly binds to RNA and alters splicing outcomes. Genome-wide analysis shows that AKAP8 promotes an epithelial cell state splicing program. Experimental manipulation of an AKAP8 splicing target CLSTN1 revealed that splice isoform switching of CLSTN1 is crucial for EMT. Moreover, AKAP8 expression and the alternative splicing of CLSTN1 predict breast cancer patient survival. Together, our work demonstrates the essentiality of RNA metabolism that impinges on metastatic breast cancer. Splice isoform switching regulated by the heterogeneous nuclear ribonucleoprotein M (hnRNPM) induces EMT and metastasis. Here, the authors report that AKAP8 is a metastasis suppressor that inhibits the splicing activity of hnRNPM and antagonizes genome-wide EMT-associated alternative splicing to maintain epithelial cell state.
Collapse
Affiliation(s)
- Xiaohui Hu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samuel E Harvey
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rong Zheng
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jingyi Lyu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily Powell
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chonghui Cheng
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F. Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:49-62. [PMID: 31647563 DOI: 10.1093/jxb/erz423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 05/27/2023]
Abstract
Localized delivery of plasma membrane and cell wall components is an essential process in all plant cells. The vesicle-tethering complex, the exocyst, an ancient eukaryotic hetero-octameric protein cellular module, assists in targeted delivery of exocytosis vesicles to specific plasma membrane domains. Analyses of Arabidopsis and later other land plant genomes led to the surprising prediction of multiple putative EXO70 exocyst subunit paralogues. All land plant EXO70 exocyst subunits (including those of Bryophytes) form three distinct subfamilies-EXO70.1, EXO70.2, and EXO70.3. Interestingly, while the basal well-conserved EXO70.1 subfamily consists of multiexon genes, the remaining two subfamilies contain mostly single exon genes. Published analyses as well as public transcriptomic and proteomic data clearly indicate that most cell types in plants express and also use several different EXO70 isoforms. Here we sum up recent advances in the characterization of the members of the family of plant EXO70 exocyst subunits and present evidence that members of the EXO70.2 subfamily are often recruited to non-canonical functions in plant membrane trafficking pathways. Engagement of the most evolutionarily dynamic EXO70.2 subfamily of EXO70s in biotic interactions and defence correlates well with massive proliferation and conservation of new protein variants in this subfamily.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Juraj Sekereš
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Tamara Pečenková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| |
Collapse
|
20
|
Huang J, Chang S, Lu Y, Wang J, Si Y, Zhang L, Cheng S, Jiang WG. Enhanced osteopontin splicing regulated by RUNX2 is HDAC-dependent and induces invasive phenotypes in NSCLC cells. Cancer Cell Int 2019; 19:306. [PMID: 31832019 PMCID: PMC6873507 DOI: 10.1186/s12935-019-1033-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background Increased cell mobility is a signature when tumor cells undergo epithelial-to-mesenchymal transition. TGF-β is a key stimulating factor to promote the transcription of a variety of downstream genes to accelerate cancer progression and metastasis, including osteopontin (OPN) which exists in several functional forms as different splicing variants. In non-small cell lung cancer cells, although increased total OPN expression was observed under various EMT conditions, the exact constitution and the underlining mechanism towards the generation of such OPN splicing isoforms was poorly understood. Methods We investigated the possible mechanisms of osteopontin splicing variant and its role in EMT and cancer metastasis using NSCLC cell line and cell and molecular biology techniques. Results In this study, we determined that OPNc, an exon 4 excluded shorter form of Opn gene products, appeared to be more potent to promote cell invasion. The expression of OPNc was selectively increased to higher abundance during EMT following TGF-β induction. The switching from OPNa to OPNc could be enhanced by RUNX2 (a transcription factor that recognizes the Opn gene promoter) overexpression, but appeared to be strictly in a HDAC dependent manner in A549 cells. The results suggested the increase of minor splicing variant of OPNc required both (1) the enhanced transcription from its coding gene driven by specific transcription factors; and (2) the simultaneous modulation or fluctuation of the coupled splicing process that depends to selective classed of epigenetic regulators, predominately HDAC family members. Conclusion Our study not only emphasized the importance of splicing variant for its role in EMT and cancer metastasis, but also helped to understand the possible mechanisms of the epigenetic controls for defining the levels and kinetic of gene splicing isoforms and their generations.
Collapse
Affiliation(s)
- Jing Huang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Siyuan Chang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Yabin Lu
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing Wang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yang Si
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Lijian Zhang
- 3Department of Thoracic Surgery, Key Laboratory for Carcinogenesis and Translational Research Ministry of Education, Peking University Hospital, Beijing, 100142 China
| | - Shan Cheng
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Wen G Jiang
- 4Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN UK
| |
Collapse
|
21
|
Qian X, Zhou X, Shentu P, Yao Y, Jiao D, Chen Q, Zhou J, Xu Y. Sec3 knockdown inhibits TGF-β induced epithelial-mesenchymal transition through the down-regulation of Akt phosphorylation in A549 cells. Biochem Biophys Res Commun 2019; 519:253-260. [PMID: 31495494 DOI: 10.1016/j.bbrc.2019.08.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 11/17/2022]
Abstract
The exocyst, an evolutionarily conserved octomeric protein complex, has been demonstrated as an essential component for vesicle tethering during cell exocytosis, and participates in various physiological processes in the cell. Although subunits of the exocyst complex have been reported to be involved in the regulation of TGF-β induced cancer cell migration and epithelial-mesenchymal transition (EMT), the potential function of Sec3 in these regulated processes remains unclear. Here, we show that Sec3 knockdown abolishes TGF-β stimulated A549 lung cancer cell migration in vitro and causes defects in the regulated EMT process. In addition, we find that depletion of Sec3 significantly inhibits TGF-β stimulated Akt phosphorylation in A549 cells, whereas the increase of Smad2 phosphorylation is unaffected. Furthermore, replenishment of an RNAi-resistant form of Sec3 is shown to restore the defects of TGF-β induced cell migration, EMT and Akt signaling activation. In summary, our study provides evidence that Sec3 is involved in TGF-β induced cell migration and EMT processes, presumably through the regulation of PI3K/Akt signaling activation in A549 cancer cells.
Collapse
Affiliation(s)
- Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxu Zhou
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Ping Shentu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Demin Jiao
- Department of Respiratory Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, China
| | - Qingyong Chen
- Department of Respiratory Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
22
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
23
|
Rock S, Li X, Song J, Townsend CM, Weiss HL, Rychahou P, Gao T, Li J, Evers BM. Kinase suppressor of Ras 1 and Exo70 promote fatty acid-stimulated neurotensin secretion through ERK1/2 signaling. PLoS One 2019; 14:e0211134. [PMID: 30917119 PMCID: PMC6436710 DOI: 10.1371/journal.pone.0211134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Neurotensin is a peptide hormone released from enteroendocrine cells in the small intestine in response to fat ingestion. Although the mechanisms regulating neurotensin secretion are still incompletely understood, our recent findings implicate a role for extracellular signal-regulated kinase 1 and 2 as positive regulators of free fatty acid-stimulated neurotensin secretion. Previous studies have shown that kinase suppressor of Ras 1 acts as a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase 1 and 2 kinase cascade and regulates intensity and duration of extracellular signal-regulated kinase 1 and 2 signaling. Here, we demonstrate that inhibition of kinase suppressor of Ras 1 attenuates neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling in human endocrine cells. Conversely, we show that overexpression of kinase suppressor of Ras 1 enhances neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling. We also show that inhibition of extracellular signal-regulated kinase 2 and exocyst complex component 70, a substrate of extracellular signal-regulated kinase 2 and mediator of secretory vesicle exocytosis, potently inhibits basal and docosahexaenoic acid-stimulated neurotensin secretion, whereas overexpression of exocyst complex component 70 enhances basal and docosahexaenoic acid-stimulated neurotensin secretion. Together, our findings demonstrate a role for kinase suppressor of Ras 1 as a positive regulator of neurotensin secretion from human endocrine cells and indicate that this effect is mediated by the extracellular signal-regulated kinase 1 and 2 signaling pathway. Moreover, we reveal a novel role for exocyst complex component 70 in regulation of neurotensin vesicle exocytosis through its interaction with the extracellular signal-regulated kinase 1 and 2 signaling pathway.
Collapse
Affiliation(s)
- Stephanie Rock
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xian Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun Song
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Courtney M. Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi L. Weiss
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Piotr Rychahou
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tianyan Gao
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jing Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - B. Mark Evers
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
24
|
Harvey SE, Xu Y, Lin X, Gao XD, Qiu Y, Ahn J, Xiao X, Cheng C. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA (NEW YORK, N.Y.) 2018; 24:1326-1338. [PMID: 30042172 PMCID: PMC6140460 DOI: 10.1261/rna.066712.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a fundamental developmental process that is abnormally activated in cancer metastasis. Dynamic changes in alternative splicing occur during EMT. ESRP1 and hnRNPM are splicing regulators that promote an epithelial splicing program and a mesenchymal splicing program, respectively. The functional relationships between these splicing factors in the genome scale remain elusive. Comparing alternative splicing targets of hnRNPM and ESRP1 revealed that they coregulate a set of cassette exon events, with the majority showing discordant splicing regulation. Discordant splicing events regulated by hnRNPM show a positive correlation with splicing during EMT; however, concordant events do not, indicating the role of hnRNPM in regulating alternative splicing during EMT is more complex than previously understood. Motif enrichment analysis near hnRNPM-ESRP1 coregulated exons identifies guanine-uridine rich motifs downstream from hnRNPM-repressed and ESRP1-enhanced exons, supporting a general model of competitive binding to these cis-elements to antagonize alternative splicing. The set of coregulated exons are enriched in genes associated with cell migration and cytoskeletal reorganization, which are pathways associated with EMT. Splicing levels of coregulated exons are associated with breast cancer patient survival and correlate with gene sets involved in EMT and breast cancer subtyping. This study identifies complex modes of interaction between hnRNPM and ESRP1 in regulation of splicing in disease-relevant contexts.
Collapse
Affiliation(s)
- Samuel E Harvey
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yilin Xu
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xiaodan Lin
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xin D Gao
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yushan Qiu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jaegyoon Ahn
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
25
|
Li HM. Liver regeneration microenvironment in liver cancer: Research progress and prospect. Shijie Huaren Xiaohua Zazhi 2018; 26:1529-1536. [DOI: 10.11569/wcjd.v26.i26.1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The proposal of the new concept of liver regeneration microenvironment in liver cancer (LC) contributes to the overall understanding of how LC microenvironment influences the occurrence and development of LC through liver regeneration microenvironment, inflammatory microenvironment, immune microenvironment, and angiogenesis microenvironment, and helps explore more comprehensive and effective preventive and therapeutic measures for LC to improve the capability of LC prevention and cure. On the basis of eliminating hepatocellular carcinoma cells or tissues, the maintenance of normal liver regeneration and improvement of liver regeneration microenvironment in LC is an important strategy for LC prevention and treatment. Improving liver regeneration microenvironment to prevent or reverse the occurrence, development, and metastasis of LC should be an important research direction of LC prevention and treatment research. In recent years, traditional Chinese medicine research and application have made some progress in improving liver regeneration microenvironment to prevent or reverse the occurrence, development, recurrence, and metastasis of LC. However, it remains to be solved on how to accurately reveal the comprehensive network mechanism and how to provide advanced evidence-based medical evidence, which needs further extensive research.
Collapse
Affiliation(s)
- Han-Min Li
- Institute of Liver Diseases and Institute of Traditional Chinese Medicine Basic Theory, Hubei Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine), Wuhan 430061, Hubei Province, China
| |
Collapse
|
26
|
O’Callaghan P, Zarb Y, Noborn F, Kreuger J. Modeling the structural implications of an alternatively spliced Exoc3l2, a paralog of the tunneling nanotube-forming M-Sec. PLoS One 2018; 13:e0201557. [PMID: 30086153 PMCID: PMC6080751 DOI: 10.1371/journal.pone.0201557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/17/2018] [Indexed: 01/23/2023] Open
Abstract
The exocyst is a molecular tether that retains secretory vesicles at the plasma membrane prior to SNARE-mediated docking and fusion. However, individual exocyst complex components (EXOCs) may also function independently of exocyst assembly. Alternative splice variants of EXOC mRNA and paralogs of EXOC genes have been described and several have been attributed functions that may be independent of the exocyst complex. Here we describe a novel splice variant of murine Exoc3l2, which we term Exoc3l2a. We discuss possible functional implications of the resulting domain excision from this isoform of EXOC3L2 based on structural similarities with its paralog M-Sec (EXOC3L3), which is implicated in tunneling nanotube formation. The identification of this Exoc3l2 splice variant expands the potential for subunit diversity within the exocyst and for alternative functionality of this component independently of the exocyst.
Collapse
Affiliation(s)
- Paul O’Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (PO); (JK)
| | - Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zürich University, Zürich, Switzerland
| | - Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (PO); (JK)
| |
Collapse
|
27
|
Li J, Choi PS, Chaffer CL, Labella K, Hwang JH, Giacomelli AO, Kim JW, Ilic N, Doench JG, Ly SH, Dai C, Hagel K, Hong AL, Gjoerup O, Goel S, Ge JY, Root DE, Zhao JJ, Brooks AN, Weinberg RA, Hahn WC. An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. eLife 2018; 7:37184. [PMID: 30059005 PMCID: PMC6103745 DOI: 10.7554/elife.37184] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer. As the human body develops, countless cells change from one state into another. Two important cell states are known as epithelial and mesenchymal. Cells in the epithelial state tend to be tightly connected and form barriers, like skin cells. Mesenchymal state cells are loosely organized, move around more and make up connective tissues. Some cells alternate between these states via an epithelial-to-mesenchymal transition (EMT for short) and back again. Without this transition, certain organs would not develop and wounds would not heal. Yet, cancer cells also use this transition to spread to distant sites of the body. Such cancers are often the most aggressive, and therefore the most deadly. The epithelial-to-mesenchymal transition is dynamically regulated in a reversible manner. For example, the genes for some proteins might only be active in the epithelial state and further reinforce this state by turning on other ‘epithelial genes’. Alternatively, there might be differences in the processing of mRNA molecules – the intermediate molecules between DNA and protein – that result in the production of different proteins in epithelial and mesenchymal cells. Li, Choi et al. wanted to know which of the thousands of human genes can endow epithelial state cells with mesenchymal characteristics. A better understanding of the switch could help to prevent cancers undergoing an epithelial-to-mesenchymal transition. From a large-scale experiment in human breast cancer cells, Li, Choi et al. found that a group of proteins that bind and modify mRNA molecules are important for the epithelial-to-mesenchymal transition. Two proteins in particular promoted the transition, most likely by binding to the mRNA of a third protein called FLNB and removing a small piece of it. FLNB normally works to prevent the epithelial-to-mesenchymal transition, but the smaller protein encoded by the shorter mRNA promoted the transition by turning on ‘mesenchymal genes’. This switching between different FLNB proteins happens in some of the more aggressive breast cancers, which also contain mesenchymal cells. Finding out which FLNB protein is made in a given cancer may provide an indication of its aggressiveness. Also, looking for drugs that can target the mRNA-binding proteins or FLNB may one day lead to new treatments for some of the most aggressive breast cancers.
Collapse
Affiliation(s)
- Ji Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Peter S Choi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Christine L Chaffer
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States.,Garvan Institute of Medical Research, Sydney, Australia
| | - Katherine Labella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Nina Ilic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Seav Huong Ly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Chao Dai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kimberly Hagel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Andrew L Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Ole Gjoerup
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shom Goel
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jean J Zhao
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Angela N Brooks
- University of California, Santa Cruz, Santa Cruz, United States
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
28
|
Abstract
Cancer metastasis is defined as the dissemination of malignant cells from the primary tumor site, leading to colonization of distant organs and the establishment of a secondary tumor. Metastasis is frequently associated with chemoresistance and is the major cause of cancer-related mortality. Metastatic cells need to acquire the ability to resist to stresses provided by different environments, such as reactive oxygen species, shear stress, hemodynamic forces, stromal composition, and immune responses, to colonize other tissues. Hence, only a small population of cells has a metastasis-initiating potential. Several studies have revealed the misregulation of transcriptional variants during cancer progression, and many splice events can be used to distinguish between normal and tumoral tissue. These variants, which are abnormally expressed in malignant cells, contribute to an adaptive response of tumor cells and the success of the metastatic cascade, promoting an anomalous cell cycle, cellular adhesion, resistance to death, cell survival, migration and invasion. Understanding the different aspects of splicing regulation and the influence of transcriptional variants that control metastatic cells is critical for the development of therapeutic strategies. In this review, we describe how transcriptional variants contribute to metastatic competence and discuss how targeting specific isoforms may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Joice De Faria Poloni
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Diego Bonatto
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
29
|
Pillman KA, Phillips CA, Roslan S, Toubia J, Dredge BK, Bert AG, Lumb R, Neumann DP, Li X, Conn SJ, Liu D, Bracken CP, Lawrence DM, Stylianou N, Schreiber AW, Tilley WD, Hollier BG, Khew-Goodall Y, Selth LA, Goodall GJ, Gregory PA. miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking. EMBO J 2018; 37:embj.201899016. [PMID: 29871889 PMCID: PMC6028027 DOI: 10.15252/embj.201899016] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022] Open
Abstract
Members of the miR‐200 family are critical gatekeepers of the epithelial state, restraining expression of pro‐mesenchymal genes that drive epithelial–mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR‐200c and another epithelial‐enriched miRNA, miR‐375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA‐binding protein Quaking (QKI). During EMT, QKI‐5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI‐5 is both necessary and sufficient to direct EMT‐associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial‐derived cancer types. Importantly, several actin cytoskeleton‐associated genes are directly targeted by both QKI and miR‐200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT. These findings demonstrate the existence of a miR‐200/miR‐375/QKI axis that impacts cancer‐associated epithelial cell plasticity through widespread control of alternative splicing.
Collapse
Affiliation(s)
- Katherine A Pillman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Caroline A Phillips
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Suraya Roslan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rachael Lumb
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Daniel P Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Simon J Conn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Dawei Liu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - David M Lawrence
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Nataly Stylianou
- Institute of Health and Biomedical Innovation, Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Qld, Australia
| | - Andreas W Schreiber
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Brett G Hollier
- Institute of Health and Biomedical Innovation, Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Qld, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia.,School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia .,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia.,School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia .,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
30
|
Hamilton MJ, Girke T, Martinez E. Global isoform-specific transcript alterations and deregulated networks in clear cell renal cell carcinoma. Oncotarget 2018; 9:23670-23680. [PMID: 29805765 PMCID: PMC5955119 DOI: 10.18632/oncotarget.25330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/19/2018] [Indexed: 11/25/2022] Open
Abstract
Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.
Collapse
Affiliation(s)
- Michael J. Hamilton
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| |
Collapse
|
31
|
Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031401. [PMID: 28264817 DOI: 10.1101/cshperspect.a031401] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One requirement for establishing polarity within a cell is the asymmetric trafficking of intracellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated trafficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establishment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front-back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
32
|
Walser TC, Jing Z, Tran LM, Lin YQ, Yakobian N, Wang G, Krysan K, Zhu LX, Sharma S, Lee MH, Belperio JA, Ooi AT, Gomperts BN, Shay JW, Larsen JE, Minna JD, Hong LS, Fishbein MC, Dubinett SM. Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells. Cancer Res 2018; 78:1986-1999. [PMID: 29431637 DOI: 10.1158/0008-5472.can-17-0315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated, including in non-small cell lung cancer (NSCLC). Here, we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo Snail-mediated transformation relied upon silencing of the tumor-suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC.Significance: This study defines a Snail-ESRP1 cancer axis that is crucial for human lung carcinogenesis, with implications for new intervention strategies and translational opportunities. Cancer Res; 78(8); 1986-99. ©2018 AACR.
Collapse
Affiliation(s)
- Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Zhe Jing
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Linh M Tran
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Ying Q Lin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Natalie Yakobian
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Gerald Wang
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Li X Zhu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Sherven Sharma
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Mi-Heon Lee
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Aik T Ooi
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California.,Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Brigitte N Gomperts
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California.,Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jill E Larsen
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Long-Sheng Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California. .,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
33
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
34
|
Mager LF, Koelzer VH, Stuber R, Thoo L, Keller I, Koeck I, Langenegger M, Simillion C, Pfister SP, Faderl M, Genitsch V, Tcymbarevich I, Juillerat P, Li X, Xia Y, Karamitopoulou E, Lyck R, Zlobec I, Hapfelmeier S, Bruggmann R, McCoy KD, Macpherson AJ, Müller C, Beutler B, Krebs P. The ESRP1-GPR137 axis contributes to intestinal pathogenesis. eLife 2017; 6:28366. [PMID: 28975893 PMCID: PMC5665647 DOI: 10.7554/elife.28366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Aberrant alternative pre-mRNA splicing (AS) events have been associated with several disorders. However, it is unclear whether deregulated AS directly contributes to disease. Here, we reveal a critical role of the AS regulator epithelial splicing regulator protein 1 (ESRP1) for intestinal homeostasis and pathogenesis. In mice, reduced ESRP1 function leads to impaired intestinal barrier integrity, increased susceptibility to colitis and altered colorectal cancer (CRC) development. Mechanistically, these defects are produced in part by modified expression of ESRP1-specific Gpr137 isoforms differently activating the Wnt pathway. In humans, ESRP1 is downregulated in inflamed biopsies from inflammatory bowel disease patients. ESRP1 loss is an adverse prognostic factor in CRC. Furthermore, generation of ESRP1-dependent GPR137 isoforms is altered in CRC and expression of a specific GPR137 isoform predicts CRC patient survival. These findings indicate a central role of ESRP1-regulated AS for intestinal barrier integrity. Alterations in ESRP1 function or expression contribute to intestinal pathology.
Collapse
Affiliation(s)
- Lukas Franz Mager
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Regula Stuber
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Lester Thoo
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Irene Keller
- Department of BioMedical Research, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Ivonne Koeck
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Cedric Simillion
- Department of BioMedical Research, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Simona P Pfister
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Martin Faderl
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Vera Genitsch
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Irina Tcymbarevich
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Pascal Juillerat
- Department of Gastroenterology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xiaohong Li
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yu Xia
- Department of Genetics, The Scripps Research Institute, La Jolla, United States
| | | | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Kathy D McCoy
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Andrew J Macpherson
- Department of BioMedical Research, University of Bern, Bern, Switzerland.,Department of Gastroenterology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Bruce Beutler
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Neumann DP, Goodall GJ, Gregory PA. Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin Cell Dev Biol 2017; 75:50-60. [PMID: 28789987 DOI: 10.1016/j.semcdb.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Interconversions between epithelial and mesenchymal states, often referred to as epithelial mesenchymal transition (EMT) and its reverse MET, play important roles in embryonic development and are recapitulated in various adult pathologies including cancer progression. These conversions are regulated by complex transcriptional and post-transcriptional mechanisms including programs of alternative splicing which are orchestrated by specific splicing factors. This review will focus on the latest developments in our understanding of the splicing factors regulating epithelial mesenchymal plasticity associated with cancer progression and the induction of pluripotency, including potential roles for circular RNAs (circRNAs) which have been recently implicated in these processes.
Collapse
Affiliation(s)
- Daniel P Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
36
|
Xiao L, Zheng K, Lv X, Hou J, Xu L, Zhao Y, Song F, Fan Y, Cao H, Zhang W, Hong X, Zhan YY, Hu T. Exo70 is an independent prognostic factor in colon cancer. Sci Rep 2017; 7:5039. [PMID: 28698570 PMCID: PMC5505949 DOI: 10.1038/s41598-017-05308-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Exo70, a key component of the Exocyst complex, plays important roles in human cancer progression beyond exocytosis. However, the expression of Exo70 and its prognostic value for patients with colon cancer has not been well investigated to date. In this study, we observed that the mRNA and protein levels of Exo70 were upregulated in 11 of 13 colon cancer tissues, compared with their normal counterparts, which was validated by immunohistochemical analysis in a tissue microarray containing 89 pairs of colon cancer tissues and the matched adjacent normal tissues. Statistical analysis revealed that Exo70 expression is positively correlated with tumor size, invasion depth, TNM stage and distant metastasis. Kaplan-Meier survival analysis showed that colon cancer patients with higher Exo70 expression have a poorer clinical outcome than those with lower Exo70 expression. Multivariate Cox regression analysis revealed that Exo70, age and distant metastasis were there independent prognostic factors for overall survival rate of colon cancer patients. Through gain- and loss of Exo70 in colon cancer cells, we found that Exo70 could enhance the migration ability of colon cancer cells. Taken together, our studies revealed that Exo70 might be a promising negative prognostic factor and a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Xiao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian Province, P.R. China
| | - Kaifeng Zheng
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Xia Lv
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian Province, P.R. China
| | - Jihuan Hou
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Fei Song
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yaqiong Fan
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Xiaoting Hong
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yan-Yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China.
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China.
| |
Collapse
|
37
|
Zhang J, Liu Y, Yang H, Zhang H, Tian X, Fang W. ATP-P2Y2-β-catenin axis promotes cell invasion in breast cancer cells. Cancer Sci 2017; 108:1318-1327. [PMID: 28474758 PMCID: PMC5497932 DOI: 10.1111/cas.13273] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP), secreted by living cancer cells or released by necrotic tumor cells, plays an important role in tumor invasion and metastasis. Our previous study demonstrated that ATP treatment in vitro could promote invasion in human prostate cancer cells via P2Y2, a preferred receptor for ATP, by enhancing EMT process. However, the pro-invasion mechanisms of ATP and P2Y2 are still poorly studied in breast cancer. In this study, we found that P2Y2 was highly expressed in breast cancer cells and associated with human breast cancer metastasis. ATP could promote the in vitro invasion of breast cancer cells and enhance the expression of β-catenin as well as its downstream target genes CD44, c-Myc and cyclin D1, while P2Y2 knockdown attenuated above ATP-driven events in vitro and in vivo. Furthermore, iCRT14, a β-catenin/TCF complex inhibitor, could also suppress ATP-driven migration and invasion in vitro. These results suggest that ATP promoted breast cancer cell invasion via P2Y2-β-catenin axis. Thus blockade of the ATP-P2Y2-β-catenin axis could suppress the invasive and metastatic potential of breast cancer cells and may serve as potential targets for therapeutic interventions of breast cancer.
Collapse
Affiliation(s)
- Jiang‐Lan Zhang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Ying Liu
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Hui Yang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Hong‐Quan Zhang
- Department of Anatomy, Histology and EmbryologyPeking University Health Science CenterBeijingChina
| | - Xin‐Xia Tian
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Wei‐Gang Fang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| |
Collapse
|
38
|
Pereira B, Billaud M, Almeida R. RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends Cancer 2017; 3:506-528. [PMID: 28718405 DOI: 10.1016/j.trecan.2017.05.003] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins (RBPs) are key players in post-transcriptional events. The combination of versatility of their RNA-binding domains with structural flexibility enables RBPs to control the metabolism of a large array of transcripts. Perturbations in RBP-RNA networks activity have been causally associated with cancer development, but the rational framework describing these contributions remains fragmented. We review here the evidence that RBPs modulate multiple cancer traits, emphasize their functional diversity, and assess future trends in the study of RBPs in cancer.
Collapse
Affiliation(s)
- Bruno Pereira
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal.
| | - Marc Billaud
- Clinical and Experimental Model of Lymphomagenesis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1052, Centre National de la Recherche Scientifique (CNRS) Unité 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Raquel Almeida
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Biology Department, Faculty of Sciences of the University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
39
|
Abstract
The exocyst complex mediates the tethering of secretory vesicles to the plasma membrane before SNARE-mediated membrane fusion. Recent studies have implicated the exocyst in a wide range of cellular processes. Particularly, research on the Exo70 subunit of the complex has linked the function of the exocyst in exocytosis to cell adhesion, migration and invasion. In this review, we will discuss the recent work on how Exo70 regulates these cellular processes, and how small GTPases and kinases interact with Exo70 to orchestrate its function in exocytosis and cytoskeleton organization. The study of Exo70 contributes to the understanding of many pathophysiological processes from organogenesis to cancer metastasis.
Collapse
Affiliation(s)
- Yueyao Zhu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Bin Wu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Wei Guo
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
40
|
Li HM, Ye ZH. Microenvironment of liver regeneration in liver cancer. Chin J Integr Med 2017; 23:555-560. [PMID: 28523536 DOI: 10.1007/s11655-017-2806-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 01/30/2023]
Abstract
The occurrence and development of liver cancer are essentially the most serious outcomes of uncontrolled liver regeneration. The progression of liver cancer is inevitably related to the abnormal microenvironment of liver regeneration. The deterioration observed in the microenvironment of liver regeneration is a necessary condition for the occurrence, development and metastasis of cancer. Therefore, the use of a technique to prevent and treat liver cancer via changes in the microenvironment of liver regeneration is a novel strategy. This strategy would be an effective way to delay, prevent or even reverse cancer occurrence, development and metastasis through an improvement in the liver regeneration microenvironment along with the integrated regulation of multiple components, targets, levels, channels and time sequences. In addition, the treatment of "tonifying Shen (Kidney) to regulate liver regeneration and repair by affecting stem cells and their microenvironment" can regulate "the dynamic imbalance between the normal liver regeneration and the abnormal liver regeneration"; this would improve the microenvironment of liver regeneration, which is also a mechanism by which liver cancer may be prevented or treated.
Collapse
Affiliation(s)
- Han-Min Li
- Institute of Application Foundation and Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China. .,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
| | - Zhi-Hua Ye
- Institute of Application Foundation and Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
41
|
Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, He J. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett 2017; 393:40-51. [PMID: 28223168 DOI: 10.1016/j.canlet.2017.02.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/04/2017] [Accepted: 02/12/2017] [Indexed: 12/20/2022]
Abstract
Alternative splicing provides a major mechanism to generate protein diversity. Increasing evidence suggests a link of dysregulation of splicing associated with cancer. Genome-wide alternative splicing profiling in lung cancer remains largely unstudied. We generated alternative splicing profiles in 491 lung adenocarcinoma (LUAD) and 471 lung squamous cell carcinoma (LUSC) patients in TCGA using RNA-seq data, prognostic models and splicing networks were built by integrated bioinformatics analysis. A total of 3691 and 2403 alternative splicing events were significantly associated with patient survival in LUAD and LUSC, respectively, including EGFR, CD44, PIK3C3, RRAS2, MAPKAP1 and FGFR2. The area under the curve of the receiver-operator characteristic curve for prognostic predictor in NSCLC was 0.817 at 2000 days of overall survival which were also over 0.8 in LUAD and LUSC, separately. Interestingly, splicing correlation networks uncovered opposite roles of splicing factors in LUAD and LUSC. We created prognostic predictors based on alternative splicing events with high performances for risk stratification in NSCLC patients and uncovered interesting splicing networks in LUAD and LUSC which could be underlying mechanisms.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Adenocarcinoma of Lung
- Alternative Splicing
- Area Under Curve
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Computational Biology
- Databases, Genetic
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genome-Wide Association Study
- Humans
- Kaplan-Meier Estimate
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- ROC Curve
- Signal Transduction
- Time Factors
- Transcriptome
Collapse
Affiliation(s)
- Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shouguo Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
42
|
Tanaka T, Goto K, Iino M. Sec8 modulates TGF-β induced EMT by controlling N-cadherin via regulation of Smad3/4. Cell Signal 2017; 29:115-126. [DOI: 10.1016/j.cellsig.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|
43
|
Zhao Y, Hou J, Mi P, Mao L, Xu L, Zhang Y, Xiao L, Cao H, Zhang W, Zhang B, Song G, Hu T, Zhan YY. Exo70 is transcriptionally up-regulated by hepatic nuclear factor 4α and contributes to cell cycle control in hepatoma cells. Oncotarget 2016; 7:9150-62. [PMID: 26848864 PMCID: PMC4891032 DOI: 10.18632/oncotarget.7133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Exo70, a member of the exocyst complex, is involved in cell exocytosis, migration, invasion and autophagy. However, the expression regulation and function of Exo70 in hepatocellular carcinoma are still poorly understood. In this study, we found Exo70 expression in human hepatoma cells was greatly reduced after knocking down hepatic nuclear factor 4α (HNF4α), the most important and abundant transcription factor in liver. This regulation occurred at the transcriptional level but not post-translational level. HNF4α transactivated Exo70 promoter through directly binding to the HNF4α-response element in this promoter. Cell cycle analysis further revealed that down-regulation of HNF4α and Exo70 was essential to berberine-stimulated G2/M cell cycle arrest in hepatoma cells. Moreover, knocking down either Exo70 or HNF4α induced G2/M phase arrest of hepatoma cells. Exo70 acted downstream of HNF4α to stimulate G2/M transition via increasing Cdc2 expression. Together, our results identify Exo70 as a novel transcriptional target of HNF4α to promote cell cycle progression in hepatoma, thus provide a basis for the development of therapeutic strategies for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Jihuan Hou
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Panying Mi
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liyuan Mao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Youyu Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Li Xiao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China.,Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Bing Zhang
- Department of Basic Medicine, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Gang Song
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Yan-yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| |
Collapse
|
44
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
45
|
Balsamo M, Mondal C, Carmona G, McClain LM, Riquelme DN, Tadros J, Ma D, Vasile E, Condeelis JS, Lauffenburger DA, Gertler FB. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Sci Rep 2016; 6:35298. [PMID: 27748415 PMCID: PMC5066228 DOI: 10.1038/srep35298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes.
Collapse
Affiliation(s)
- Michele Balsamo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chandrani Mondal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Carmona
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leslie M McClain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daisy N Riquelme
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Tadros
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Duan Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Jiang C, Cui C, Zhong W, Li G, Li L, Shao Y. Tumor proliferation and diffusion on percolation clusters. J Biol Phys 2016; 42:637-658. [PMID: 27678112 DOI: 10.1007/s10867-016-9427-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/24/2016] [Indexed: 12/28/2022] Open
Abstract
We study in silico the influence of host tissue inhomogeneity on tumor cell proliferation and diffusion by simulating the mobility of a tumor on percolation clusters with different homogeneities of surrounding tissues. The proliferation and diffusion of a tumor in an inhomogeneous tissue could be characterized in the framework of the percolation theory, which displays similar thresholds (0.54, 0.44, and 0.37, respectively) for tumor proliferation and diffusion in three kinds of lattices with 4, 6, and 8 connecting near neighbors. Our study reveals the existence of a critical transition concerning the survival and diffusion of tumor cells with leaping metastatic diffusion movement in the host tissues. Tumor cells usually flow in the direction of greater pressure variation during their diffusing and infiltrating to a further location in the host tissue. Some specific sites suitable for tumor invasion were observed on the percolation cluster and around these specific sites a tumor can develop into scattered tumors linked by some advantage tunnels that facilitate tumor invasion. We also investigate the manner that tissue inhomogeneity surrounding a tumor may influence the velocity of tumor diffusion and invasion. Our simulation suggested that invasion of a tumor is controlled by the homogeneity of the tumor microenvironment, which is basically consistent with the experimental report by Riching et al. as well as our clinical observation of medical imaging. Both simulation and clinical observation proved that tumor diffusion and invasion into the surrounding host tissue is positively correlated with the homogeneity of the tissue.
Collapse
Affiliation(s)
- Chongming Jiang
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China.,BGI-Research in Shenzhen, Shenzhen, 518083, China
| | - Chunyan Cui
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weirong Zhong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Gang Li
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuanzhi Shao
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
47
|
Ma W, Wang Y, Yao X, Xu Z, An L, Yin M. The role of Exo70 in vascular smooth muscle cell migration. Cell Mol Biol Lett 2016; 21:20. [PMID: 28536622 PMCID: PMC5415710 DOI: 10.1186/s11658-016-0019-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/10/2016] [Indexed: 01/05/2023] Open
Abstract
Background As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70’s function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5. Methods Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay. Results The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration. Conclusions This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of cardiovascular diseases such as atherosclerosis and restenosis after balloon angioplasty.
Collapse
Affiliation(s)
- Wenqing Ma
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Yu Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250014 People's Republic of China
| | - Xiaomeng Yao
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China.,No.10 High School of Zibo, Zibo, 255000 People's Republic of China
| | - Zijian Xu
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Liguo An
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Miao Yin
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| |
Collapse
|
48
|
Biondini M, Sadou-Dubourgnoux A, Paul-Gilloteaux P, Zago G, Arslanhan MD, Waharte F, Formstecher E, Hertzog M, Yu J, Guerois R, Gautreau A, Scita G, Camonis J, Parrini MC. Direct interaction between exocyst and Wave complexes promotes cell protrusions and motility. J Cell Sci 2016; 129:3756-3769. [PMID: 27591259 DOI: 10.1242/jcs.187336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022] Open
Abstract
Coordination between membrane trafficking and actin polymerization is fundamental in cell migration, but a dynamic view of the underlying molecular mechanisms is still missing. The Rac1 GTPase controls actin polymerization at protrusions by interacting with its effector, the Wave regulatory complex (WRC). The exocyst complex, which functions in polarized exocytosis, has been involved in the regulation of cell motility. Here, we show a physical and functional connection between exocyst and WRC. Purified components of exocyst and WRC directly associate in vitro, and interactions interfaces are identified. The exocyst-WRC interaction is confirmed in cells by co-immunoprecipitation and is shown to occur independently of the Arp2/3 complex. Disruption of the exocyst-WRC interaction leads to impaired migration. By using time-lapse microscopy coupled to image correlation analysis, we visualized the trafficking of the WRC towards the front of the cell in nascent protrusions. The exocyst is necessary for WRC recruitment at the leading edge and for resulting cell edge movements. This direct link between the exocyst and WRC provides a new mechanistic insight into the spatio-temporal regulation of cell migration.
Collapse
Affiliation(s)
- Marco Biondini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Amel Sadou-Dubourgnoux
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Perrine Paul-Gilloteaux
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR 144, Paris 75005, France
| | - Giulia Zago
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Melis D Arslanhan
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - François Waharte
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR 144, Paris 75005, France
| | | | - Maud Hertzog
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS UMR 5100, Université Paul Sabatier, Toulouse 31062, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191
| | - Alexis Gautreau
- Laboratoire de Biochimie Ecole Polytechnique, CNRS UMR7654, Palaiseau Cedex 91128, France
| | - Giorgio Scita
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan 20139, Italy
| | - Jacques Camonis
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| |
Collapse
|
49
|
Göttgens EL, Span PN, Zegers MM. Roles and Regulation of Epithelial Splicing Regulatory Proteins 1 and 2 in Epithelial-Mesenchymal Transition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:163-194. [PMID: 27692175 DOI: 10.1016/bs.ircmb.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The transformation of polarized epithelial cells into cells with mesenchymal characteristics by the morphogenetic process of epithelial-mesenchymal transition (EMT) is a well-characterized process essential for embryonic development and associated with cancer progression. EMT is a program driven by changes in gene expression induced by several EMT-specific transcription factors, which inhibit the expression of cell-cell adhesion proteins and other epithelial markers, causing a characteristic loss of cell-cell adhesion, a switch to mesenchymal cell morphology, and increased migratory capabilities. Recently, it has become apparent that in addition to these transcriptionally regulated changes, EMT may also be regulated posttranscriptionally, that is, by alternative splicing. Specifically, the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) have been described as epithelial-specific splicing master regulators specifically involved in EMT-associated alternative splicing. Here, we discuss the regulation of ESRP activity, as well as the evidence supporting a causal role of ESRPs in EMT.
Collapse
Affiliation(s)
- E-L Göttgens
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Lu H, Liu S, Zhang G, Kwong LN, Zhu Y, Miller JP, Hu Y, Zhong W, Zeng J, Wu L, Krepler C, Sproesser K, Xiao M, Xu W, Karakousis GC, Schuchter LM, Field J, Zhang PJ, Herlyn M, Xu X, Guo W. Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Rep 2016; 15:2012-24. [PMID: 27210749 DOI: 10.1016/j.celrep.2016.04.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
Melanoma patients with oncogenic BRAF(V600E) mutation have poor prognoses. While the role of BRAF(V600E) in tumorigenesis is well established, its involvement in metastasis that is clinically observed in melanoma patients remains a topic of debate. Here, we show that BRAF(V600E) melanoma cells have extensive invasion activity as assayed by the generation of F-actin and cortactin foci that mediate membrane protrusion, and degradation of the extracellular matrix (ECM). Inhibition of BRAF(V600E) blocks melanoma cell invasion. In a BRAF(V600E)-driven murine melanoma model or in patients' tumor biopsies, cortactin foci decrease upon inhibitor treatment. In addition, genome-wide expression analysis shows that a number of invadopodia-related genes are downregulated after BRAF(V600E) inhibition. Mechanistically, BRAF(V600E) induces phosphorylation of cortactin and the exocyst subunit Exo70 through ERK, which regulates actin dynamics and matrix metalloprotease secretion, respectively. Our results provide support for the role of BRAF(V600E) in metastasis and suggest that inhibiting invasion is a potential therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Hezhe Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 770303, USA
| | - Yueyao Zhu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P Miller
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 770303, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Wenqun Zhong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingwen Zeng
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lawrence Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|