1
|
Alibrandi S, Rinaldi C, Vinci SL, Conti A, Donato L, Scimone C, Sidoti A, D’Angelo R. Mechanotransduction in Development: A Focus on Angiogenesis. BIOLOGY 2025; 14:346. [PMID: 40282211 PMCID: PMC12024848 DOI: 10.3390/biology14040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Cells respond to external mechanical cues and transduce these forces into biological signals. This process is known as mechanotransduction and requires a group of proteins called mechanosensors. This peculiar class of receptors include extracellular matrix proteins, plasma membrane proteins, the cytoskeleton and the nuclear envelope. These cell components are responsive to a wide spectrum of physical cues including stiffness, tensile force, hydrostatic pressure and shear stress. Among mechanotransducers, the Transient Receptor Potential (TRP) and the PIEZO family members are mechanosensitive ion channels, coupling force transduction with intracellular cation transport. Their activity contributes to embryo development, tissue remodeling and repair, and cell homeostasis. In particular, vessel development is driven by hemodynamic cues such as flow direction and shear stress. Perturbed mechanotransduction is involved in several pathological vascular phenotypes including hereditary hemorrhagic telangiectasia. This review is conceived to summarize the most recent findings of mechanotransduction in development. We first collected main features of mechanosensitive proteins. However, we focused on the role of mechanical cues during development. Mechanosensitive ion channels and their function in vascular development are also discussed, with a focus on brain vessel morphogenesis.
Collapse
Affiliation(s)
- Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Street Altura 3, 40123 Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
2
|
Shi DL. Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia. Cells 2024; 13:2116. [PMID: 39768206 PMCID: PMC11727252 DOI: 10.3390/cells13242116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis. Wnt/planar cell polarity signaling plays an important role in the biased orientation and rotational motion of motile cilia. The leftward fluid flow generated in the cavity of the left-right organizer is sensed by immotile cilia through complex mechanisms to trigger left-sided calcium signaling and lateralized gene expression pattern. Disrupted asymmetric positioning or impaired structure and function of cilia leads to randomized left-right axis determination, which is closely linked to laterality defects, particularly congenital heart disease. Despite of the formidable progress made in deciphering the critical contribution of cilia to establishing the left-right asymmetry, a strong challenge remains to understand how cilia generate and sense fluid flow to differentially activate gene expression across the left-right axis. This review analyzes mechanisms underlying the asymmetric morphogenesis and function of the left-right organizer in left-right axis formation. It also aims to identify important questions that are open for future investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
3
|
Wang P, Shi W, Liu S, Shi Y, Jiang X, Li F, Chen S, Sun K, Xu R. ccdc141 is required for left-right axis development by regulating cilia formation in the Kupffer's vesicle of zebrafish. J Genet Genomics 2024; 51:934-946. [PMID: 39047937 DOI: 10.1016/j.jgg.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Laterality is a crucial physiological process intricately linked to the cilium-centrosome complex during embryo development. Defects in the process can result in severe organ mispositioning. Coiled-coil domain containing 141 (CCDC141) has been previously known as a centrosome-related gene, but its role in left-right (LR) asymmetry has not been characterized. In this study, we utilize the zebrafish model and human exome analysis to elucidate the function of ccdc141 in laterality defects. The knockdown of ccdc141 in zebrafish disrupts early LR signaling pathways, cilia function, and Kupffer's vesicle formation. Unlike ccdc141-knockdown embryos exhibiting aberrant LR patterns, ccdc141-null mutants show no apparent abnormality, suggesting a genetic compensation response effect. In parallel, we observe a marked reduction in α-tubulin acetylation levels in the ccdc141 crispants. The treatment with histone deacetylase (HDAC) inhibitors, particularly the HDAC6 inhibitor, rescues the ccdc141 crispant phenotypes. Furthermore, exome analysis of 70 patients with laterality defects reveals an increased burden of CCDC141 mutations, with in-vivo studies verifying the pathogenicity of the patient mutation CCDC141-R123G. Our findings highlight the critical role of ccdc141 in ciliogenesis and demonstrate that CCDC141 mutations lead to abnormal LR patterns, identifying it as a candidate gene for laterality defects.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Sijie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunjing Shi
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
4
|
Kurup AJ, Bailet F, Fürthauer M. Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry. Nat Commun 2024; 15:6547. [PMID: 39095343 PMCID: PMC11297164 DOI: 10.1038/s41467-024-50868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFβ signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.
Collapse
|
5
|
Manna RK, Retzlaff EM, Hinman AM, Lan Y, Abdel-Razek O, Bates M, Hehnly H, Amack JD, Manning ML. Dynamical forces drive organ morphology changes during embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603371. [PMID: 39071435 PMCID: PMC11275717 DOI: 10.1101/2024.07.13.603371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Organs and tissues must change shape in precise ways during embryonic development to execute their functions. Multiple mechanisms including biochemical signaling pathways and biophysical forces help drive these morphology changes, but it has been difficult to tease apart their contributions, especially from tissue-scale dynamic forces that are typically ignored. We use a combination of mathematical models and in vivo experiments to study a simple organ in the zebrafish embryo called Kupffer's vesicle. Modeling indicates that dynamic forces generated by tissue movements in the embryo produce shape changes in Kupffer's vesicle that are observed during development. Laser ablations in the zebrafish embryo that alter these forces result in altered organ shapes matching model predictions. These results demonstrate that dynamic forces sculpt organ shape during embryo development.
Collapse
Affiliation(s)
- Raj Kumar Manna
- Department of Physics Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Emma M. Retzlaff
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA, 13210
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA, 13210
| | - Yiling Lan
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Osama Abdel-Razek
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA, 13210
| | - Mike Bates
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA, 13210
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - M. Lisa Manning
- Department of Physics Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
6
|
Ng M, Ma L, Shi J, Jeffery WR. Natural reversal of cavefish heart asymmetry is controlled by Sonic Hedgehog effects on the left-right organizer. Development 2024; 151:dev202611. [PMID: 38940473 PMCID: PMC11273321 DOI: 10.1242/dev.202611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The direction of left-right visceral asymmetry is conserved in vertebrates. Deviations of the standard asymmetric pattern are rare, and the underlying mechanisms are not understood. Here, we use the teleost Astyanax mexicanus, consisting of surface fish with normal left-oriented heart asymmetry and cavefish with high levels of reversed right-oriented heart asymmetry, to explore natural changes in asymmetry determination. We show that Sonic Hedgehog (Shh) signaling is increased at the posterior midline, Kupffer's vesicle (the teleost left-right organizer) is enlarged and contains longer cilia, and the number of dorsal forerunner cells is increased in cavefish. Furthermore, Shh increase in surface fish embryos induces asymmetric changes resembling the cavefish phenotype. Asymmetric expression of the Nodal antagonist Dand5 is equalized or reversed in cavefish, and Shh increase in surface fish mimics changes in cavefish dand5 asymmetry. Shh decrease reduces the level of right-oriented heart asymmetry in cavefish. Thus, naturally occurring modifications in cavefish heart asymmetry are controlled by the effects of Shh signaling on left-right organizer function.
Collapse
Affiliation(s)
- Mandy Ng
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Janet Shi
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - William R. Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Feng Y, Zhang J, Li Y, Chen G, Zhang X, Ning G, Wu S. Inhibition of Pi4kb activity causes malformation of vestibular apparatus in zebrafish by downregulating hey1. Gene 2024; 898:148105. [PMID: 38135256 DOI: 10.1016/j.gene.2023.148105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Phosphatidylinositol 4 kinase-β (PI4KB) plays critical roles in human genetic diseases. In zebrafish, Pi4kb is strongly expressed in hair cells (HCs), which are necessary for detecting sound vibrations, head movements, and water motion. However, the role of PI4KB in HC or semicircular canal development is unclear. Herein, we report that pi4kb morphants exhibit insensitivity to sound stimulation and abnormal morphological vestibular organs, including cilium loss in HCs of the cristae and semicircular canal malformation. As bone morphogenetic protein (BMP) signaling is associated with HC and semicircular canal development, we analyzed the expression of BMP-related genes; the phosphorylated Smad1/5/9 (p-Smad1/5/9) expression was markedly reduced in otic HCs. RNA-sequencing data indicated that the transcriptional levels of BMP membrane receptor 2 (bmpr2a and bmpr2b) and hes-related family of bHLH transcription factors with YRPW motif 1 (hey1), a direct downstream target gene of p-Smad, were significantly reduced in the pi4kb morphants, as verified using quantitative reverse transcription-polymerase chain reaction and in situ hybridization. Co-injection of hey1 mRNA and pi4kb morpholino notably recovered vestibular apparatus development, including the number and length of cilia in HCs of the cristae and semicircular canal formation. Collectively, these results suggest that Pi4kb is involved in vestibular apparatus development in zebrafish by regulating BMP membrane receptor 2 and p-Smad1/5/9 levels, thereby affecting the transcriptional activation of the target gene hey1. This study sheds light on the interaction between Pi4kb and the BMP-Hey1 signaling axis, which is critical for HC and semicircular canal formation.
Collapse
Affiliation(s)
- Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jiaqi Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, HeilongJiang, China
| | - Yuzhen Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Gengrong Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Xiaoting Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Guozhu Ning
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shuilong Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
8
|
Juan T, Ebnicher G. In preprints: Shh signaling activity predicts cardiac laterality in Astyanax mexicanus populations. Development 2024; 151:dev202806. [PMID: 38451186 DOI: 10.1242/dev.202806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Greta Ebnicher
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| |
Collapse
|
9
|
Messmore M, Kassab AJ, Prather RO, Arceo DAC, DeCampli W. Cilia and Nodal Flow in Asymmetry: An Engineering Perspective. Crit Rev Biomed Eng 2024; 52:63-82. [PMID: 38523441 DOI: 10.1615/critrevbiomedeng.2024051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Over the past several years, cilia in the primitive node have become recognized more and more for their contribution to development, and more specifically, for their role in axis determination. Although many of the mechanisms behind their influence remain undocumented, it is known that their presence and motion in the primitive node of developing embryos is the determinant of the left-right axis. Studies on cilial mechanics and nodal fluid dynamics have provided clues as to how this asymmetry mechanism works, and more importantly, have shown that direct manipulation of the flow field in the node can directly influence physiology. Although relatively uncommon, cilial disorders have been shown to have a variety of impacts on individuals from chronic respiratory infections to infertility, as well as situs inversus which is linked to congenital heart disease. After first providing background information pertinent to understanding nodal flow and information on why this discussion is important, this paper aims to give a review of the history of nodal cilia investigations, an overview of cilia mechanics and nodal flow dynamics, as well as a review of research studies current and past that sought to understand the mechanisms behind nodal cilia's involvement in symmetry-breaking pathways through a biomedical engineering perspective. This discussion has the additional intention to compile interdisciplinary knowledge on asymmetry and development such that it may encourage more collaborative efforts between the sciences on this topic, as well as provide insight on potential paths forward in the field.
Collapse
Affiliation(s)
| | - Alain J Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida, USA
| | - Ray O Prather
- Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA; University of Central Florida, Orlando, FL 32816, USA; The Heart Center at Orlando Health Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | - David A Castillo Arceo
- College of Engineering and Computer Science (CECS), University of Central Florida, Orlando, FL, USA
| | - William DeCampli
- University of Central Florida, Orlando, FL, 32816, USA; The Heart Center, Arnold Palmer Hospital for Children, Orlando, FL, 32806, USA
| |
Collapse
|
10
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
11
|
Du J, Li SK, Guan LY, Guo Z, Yin JF, Gao L, Kawanishi T, Shimada A, Zhang QP, Zheng LS, Liu YY, Feng XQ, Zhao L, Chen DY, Takeda H, Fan YB. Mechanically sensitive HSF1 is a key regulator of left-right symmetry breaking in zebrafish embryos. iScience 2023; 26:107864. [PMID: 37766982 PMCID: PMC10520531 DOI: 10.1016/j.isci.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The left-right symmetry breaking of vertebrate embryos requires nodal flow. However, the molecular mechanisms that mediate the asymmetric gene expression regulation under nodal flow remain elusive. Here, we report that heat shock factor 1 (HSF1) is asymmetrically activated in the Kupffer's vesicle of zebrafish embryos in the presence of nodal flow. Deficiency in HSF1 expression caused a significant situs inversus and disrupted gene expression asymmetry of nodal signaling proteins in zebrafish embryos. Further studies demonstrated that HSF1 is a mechanosensitive protein. The mechanical sensation ability of HSF1 is conserved in a variety of mechanical stimuli in different cell types. Moreover, cilia and Ca2+-Akt signaling axis are essential for the activation of HSF1 under mechanical stress in vitro and in vivo. Considering the conserved expression of HSF1 in organisms, these findings unveil a fundamental mechanism of gene expression regulation by mechanical clues during embryonic development and other physiological and pathological transformations.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shu-Kai Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Liu-Yuan Guan
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Zheng Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jiang-Fan Yin
- College of life science, Hebei Normal University, Shijiazhuang 050024, China
| | - Li Gao
- College of life science, Hebei Normal University, Shijiazhuang 050024, China
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Qiu-Ping Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Li-Sha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yi-Yao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Lin Zhao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
12
|
Bota C, Martins GG, Lopes SS. Dand5 is involved in zebrafish tailbud cell movement. Front Cell Dev Biol 2023; 10:989615. [PMID: 36699016 PMCID: PMC9869157 DOI: 10.3389/fcell.2022.989615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
During vertebrate development, symmetry breaking occurs in the left-right organizer (LRO). The transfer of asymmetric molecular information to the lateral plate mesoderm is essential for the precise patterning of asymmetric internal organs, such as the heart. However, at the same developmental time, it is crucial to maintain symmetry at the somite level for correct musculature and vertebrae specification. We demonstrate how left-right signals affect the behavior of zebrafish somite cell precursors by using live imaging and fate mapping studies in dand5 homozygous mutants compared to wildtype embryos. We describe a population of cells in the vicinity of the LRO, named Non-KV Sox17:GFP+ Tailbud Cells (NKSTCs), which migrate anteriorly and contribute to future somites. We show that NKSTCs originate in a cluster of cells aligned with the midline, posterior to the LRO, and leave that cluster in a left-right alternating manner, primarily from the left side. Fate mapping revealed that more NKSTCs integrated somites on the left side of the embryo. We then abolished the asymmetric cues from the LRO using dand5-/- mutant embryos and verified that NKSTCs no longer displayed asymmetric patterns. Cell exit from the posterior cluster became bilaterally synchronous in dand5-/- mutants. Our study revealed a new link between somite specification and Dand5 function. The gene dand5 is well known as the first asymmetric gene involved in vertebrate LR development. This study revealed a new link for Dand5 as a player in cell exit from the maturation zone into the presomitic mesoderm, affecting the expression patterns of myogenic factors and tail size.
Collapse
Affiliation(s)
- Catarina Bota
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gabriel G. Martins
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Susana S. Lopes
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- *Correspondence: Susana S. Lopes,
| |
Collapse
|
13
|
Djenoune L, Mahamdeh M, Truong TV, Nguyen CT, Fraser SE, Brueckner M, Howard J, Yuan S. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science 2023; 379:71-78. [PMID: 36603098 PMCID: PMC9939240 DOI: 10.1126/science.abq7317] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The breaking of bilateral symmetry in most vertebrates is critically dependent upon the motile cilia of the embryonic left-right organizer (LRO), which generate a directional fluid flow; however, it remains unclear how this flow is sensed. Here, we demonstrated that immotile LRO cilia are mechanosensors for shear force using a methodological pipeline that combines optical tweezers, light sheet microscopy, and deep learning to permit in vivo analyses in zebrafish. Mechanical manipulation of immotile LRO cilia activated intraciliary calcium transients that required the cation channel Polycystin-2. Furthermore, mechanical force applied to LRO cilia was sufficient to rescue and reverse cardiac situs in zebrafish that lack motile cilia. Thus, LRO cilia are mechanosensitive cellular levers that convert biomechanical forces into calcium signals to instruct left-right asymmetry.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Thai V. Truong
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Martina Brueckner
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jonathon Howard
- Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
14
|
D'Gama PP, Jurisch-Yaksi N. Methods to study motile ciliated cell types in the zebrafish brain. Methods Cell Biol 2023; 176:103-123. [PMID: 37164533 DOI: 10.1016/bs.mcb.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cilia are well conserved hair-like structures that have diverse sensory and motile functions. In the brain, motile ciliated cells, known as ependymal cells, line the cerebrospinal fluid (CSF) filled ventricles, where their beating contribute to fluid movement. Ependymal cells have gathered increasing interest since they are associated with hydrocephalus, a neurological condition with ventricular enlargement. In this article, we highlight methods to identify and characterize motile ciliated ependymal lineage in the brain of zebrafish using histological staining and transgenic reporter lines.
Collapse
|
15
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
16
|
Liu S, Wei W, Wang P, Liu C, Jiang X, Li T, Li F, Wu Y, Chen S, Sun K, Xu R. LOF variants identifying candidate genes of laterality defects patients with congenital heart disease. PLoS Genet 2022; 18:e1010530. [PMID: 36459505 DOI: 10.1371/journal.pgen.1010530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 12/14/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Defects in laterality pattern can result in abnormal positioning of the internal organs during the early stages of embryogenesis, as manifested in heterotaxy syndrome and situs inversus, while laterality defects account for 3~7% of all congenital heart defects (CHDs). However, the pathogenic mechanism underlying most laterality defects remains unknown. In this study, we recruited 70 laterality defect patients with CHDs to identify candidate disease genes by exome sequencing. We then evaluated rare, loss-of-function (LOF) variants, identifying candidates by referring to previous literature. We chose TRIP11, DNHD1, CFAP74, and EGR4 as candidates from 776 LOF variants that met the initial screening criteria. After the variants-to-gene mapping, we performed function research on these candidate genes. The expression patterns and functions of these four candidate genes were studied by whole-mount in situ hybridization, gene knockdown, and gene rescue methods in zebrafish models. Among the four genes, trip11, dnhd1, and cfap74 morphant zebrafish displayed abnormalities in both cardiac looping and expression patterns of early signaling molecules, suggesting that these genes play important roles in the establishment of laterality patterns. Furthermore, we performed immunostaining and high-speed cilia video microscopy to investigate Kupffer's vesicle organogenesis and ciliogenesis of morphant zebrafish. Impairments of Kupffer's vesicle organogenesis or ciliogenesis were found in trip11, dnhd1, and cfap74 morphant zebrafish, which revealed the possible pathogenic mechanism of their LOF variants in laterality defects. These results highlight the importance of rare, LOF variants in identifying disease-related genes and identifying new roles for TRIP11, DNHD1, and CFAP74 in left-right patterning. Additionally, these findings are consistent with the complex genetics of laterality defects.
Collapse
Affiliation(s)
- Sijie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wei
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengcheng Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
18
|
Yan N, Wang WX. Maternal transfer and biodistribution of citrate and luminogens coated silver nanoparticles in medaka fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128862. [PMID: 35398793 DOI: 10.1016/j.jhazmat.2022.128862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Given the wide applications of silver nanoparticles (AgNPs), it is necessary to evaluate their potentially adverse long-term effects. In this study, we performed a 100-day exposure of medaka fish to citrate and luminogens coated AgNPs and investigated the maternal transfer potentials and biodistribution of AgNPs. Following long-term AgNPs exposure, AgNPs were mainly distributed in the liver, followed by gills, intestine, and brain, but were also detected in the ovary and strongly colocalized with the dissolved Ag+. The quantified transfer efficiency of different Ag species was 1.56-5.07%. Long-term exposure of medaka to small size of AgNPs (20 nm) reduced the hatching rate attributable to the accumulation of AgNPs and their dissolved Ag+. The maternally transferred AgNPs were mainly concentrated in the Kupffer's vesicle of embryos, while their dissolved Ag+ was almost homogeneously distributed in the embryos. In contrast, the newly accumulated AgNPs were mainly absorbed at the chorion of embryos. During initial larval development, the maternally transferred AgNPs and their dissolved Ag+ were consistently concentrated in intestine. Significant dissolution of maternally transferred AgNPs occurred during larval development. Our results showed that long-term exposure to AgNPs caused distinct biodistribution in the next generation of medaka, and may have implications for assessing their potential adverse effects.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
19
|
Derrick CJ, Santos-Ledo A, Eley L, Paramita IA, Henderson DJ, Chaudhry B. Sequential action of JNK genes establishes the embryonic left-right axis. Development 2022; 149:274898. [PMID: 35352808 PMCID: PMC9148569 DOI: 10.1242/dev.200136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
The establishment of the left-right axis is crucial for the placement, morphogenesis and function of internal organs. Left-right specification is proposed to be dependent on cilia-driven fluid flow in the embryonic node. Planar cell polarity (PCP) signalling is crucial for patterning of nodal cilia, yet downstream effectors driving this process remain elusive. We have examined the role of the JNK gene family, a proposed downstream component of PCP signalling, in the development and function of the zebrafish node. We show jnk1 and jnk2 specify length of nodal cilia, generate flow in the node and restrict southpaw to the left lateral plate mesoderm. Moreover, loss of asymmetric southpaw expression does not result in disturbances to asymmetric organ placement, supporting a model in which nodal flow may be dispensable for organ laterality. Later, jnk3 is required to restrict pitx2c expression to the left side and permit correct endodermal organ placement. This work uncovers multiple roles for the JNK gene family acting at different points during left-right axis establishment. It highlights extensive redundancy and indicates JNK activity is distinct from the PCP signalling pathway.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Isabela Andhika Paramita
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
20
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
22
|
Sanematsu PC, Erdemci-Tandogan G, Patel H, Retzlaff EM, Amack JD, Manning ML. 3D viscoelastic drag forces contribute to cell shape changes during organogenesis in the zebrafish embryo. Cells Dev 2021; 168:203718. [PMID: 34273601 PMCID: PMC8758797 DOI: 10.1016/j.cdev.2021.203718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
The left-right organizer in zebrafish embryos, Kupffer's Vesicle (KV), is a simple organ that undergoes programmed asymmetric cell shape changes that are necessary to establish the left-right axis of the embryo. We use simulations and experiments to investigate whether 3D mechanical drag forces generated by the posteriorly-directed motion of the KV through the tailbud tissue are sufficient to drive such shape changes. We develop a fully 3D vertex-like (Voronoi) model for the tissue architecture, and demonstrate that the tissue can generate drag forces and drive cell shape changes. Furthermore, we find that tailbud tissue presents a shear-thinning, viscoelastic behavior consistent with those observed in published experiments. We then perform live imaging experiments and particle image velocimetry analysis to quantify the precise tissue velocity gradients around KV as a function of developmental time. We observe robust velocity gradients around the KV, indicating that mechanical drag forces must be exerted on the KV by the tailbud tissue. We demonstrate that experimentally observed velocity fields are consistent with the viscoelastic response seen in simulations. This work also suggests that 3D viscoelastic drag forces could be a generic mechanism for cell shape change in other biological processes.
Collapse
Affiliation(s)
- Paula C Sanematsu
- Department of Physics and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Himani Patel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA, 13210
| | - Emma M Retzlaff
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA, 13210
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA, 13210
| | - M Lisa Manning
- Department of Physics and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
23
|
Wei X, Sha Y, Wei Z, Zhu X, He F, Zhang X, Liu W, Wang Y, Lu Z. Bi-allelic mutations in DNAH7 cause asthenozoospermia by impairing the integrality of axoneme structure. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1300-1309. [PMID: 34476482 DOI: 10.1093/abbs/gmab113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
Asthenozoospermia is the most common cause of male infertility. Dynein protein arms play a crucial role in the motility of both the cilia and flagella, and defects in these proteins generally impair the axoneme structure and cause primary ciliary dyskinesia. But relatively little is known about the influence of dynein protein arm defects on sperm flagella function. Here, we recruited 85 infertile patients with idiopathic asthenozoospermia and identified bi-allelic mutations in DNAH7 (NM_018897.3) from three patients using whole-exome sequencing. These variants are rare, highly pathogenic, and very conserved. The spermatozoa from the patients with DNAH7 bi-allelic mutations showed specific losses in the inner dynein arms. The expression of DNAH7 in the spermatozoa from the DNAH7-defective patients was significantly decreased, but these patients were able to have their children via intra-cytoplasmic sperm injection treatment. Our study is the first to demonstrate that bi-allelic mutations in DNAH7 may impair the integrality of axoneme structure, affect sperm motility, and cause asthenozoospermia in humans. These findings may extend the spectrum of etiological genes and provide new clues for the diagnosis and treatment of patients with asthenozoospermia.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital and School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zijie Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xingshen Zhu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xiaoya Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Wensheng Liu
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
24
|
Oliveira I, Jacinto R, Pestana S, Nolasco F, Calado J, Lopes SS, Roxo-Rosa M. Zebrafish Model as a Screen to Prevent Cyst Inflation in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms22169013. [PMID: 34445719 PMCID: PMC8396643 DOI: 10.3390/ijms22169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), kidney cyst growth requires the recruitment of CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel that is defective in cystic fibrosis. We have been studying cyst inflation using the zebrafish Kupffer’s vesicle (KV) as model system because we previously demonstrated that knocking down polycystin 2 (PC2) induced a CFTR-mediated enlargement of the organ. We have now quantified the PC2 knockdown by showing that it causes a 73% reduction in the number of KV cilia expressing PC2. According to the literature, this is an essential event in kidney cystogenesis in ADPKD mice. Additionally, we demonstrated that the PC2 knockdown leads to a significant accumulation of CFTR-GFP at the apical region of the KV cells. Furthermore, we determined that KV enlargement is rescued by the injection of Xenopus pkd2 mRNA and by 100 µM tolvaptan treatment, the unique and approved pharmacologic approach for ADPKD management. We expected vasopressin V2 receptor antagonist to lower the cAMP levels of KV-lining cells and, thus, to inactivate CFTR. These findings further support the use of the KV as an in vivo model for screening compounds that may prevent cyst enlargement in this ciliopathy, through CFTR inhibition.
Collapse
Affiliation(s)
- Inês Oliveira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Fernando Nolasco
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
| | - Joaquim Calado
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
- ToxOmics, Center of ToxicoGenomics & Human Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| |
Collapse
|
25
|
Pinto AL, Rasteiro M, Bota C, Pestana S, Sampaio P, Hogg C, Burgoyne T, Lopes SS. Zebrafish Motile Cilia as a Model for Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:8361. [PMID: 34445067 PMCID: PMC8393663 DOI: 10.3390/ijms22168361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Zebrafish is a vertebrate teleost widely used in many areas of research. As embryos, they develop quickly and provide unique opportunities for research studies owing to their transparency for at least 48 h post fertilization. Zebrafish have many ciliated organs that include primary cilia as well as motile cilia. Using zebrafish as an animal model helps to better understand human diseases such as Primary Ciliary Dyskinesia (PCD), an autosomal recessive disorder that affects cilia motility, currently associated with more than 50 genes. The aim of this study was to validate zebrafish motile cilia, both in mono and multiciliated cells, as organelles for PCD research. For this purpose, we obtained systematic high-resolution data in both the olfactory pit (OP) and the left-right organizer (LRO), a superficial organ and a deep organ embedded in the tail of the embryo, respectively. For the analysis of their axonemal ciliary structure, we used conventional transmission electron microscopy (TEM) and electron tomography (ET). We characterised the wild-type OP cilia and showed, for the first time in zebrafish, the presence of motile cilia (9 + 2) in the periphery of the pit and the presence of immotile cilia (still 9 + 2), with absent outer dynein arms, in the centre of the pit. In addition, we reported that a central pair of microtubules in the LRO motile cilia is common in zebrafish, contrary to mouse embryos, but it is not observed in all LRO cilia from the same embryo. We further showed that the outer dynein arms of the microtubular doublet of both the OP and LRO cilia are structurally similar in dimensions to the human respiratory cilia at the resolution of TEM and ET. We conclude that zebrafish is a good model organism for PCD research but investigators need to be aware of the specific physical differences to correctly interpret their results.
Collapse
Affiliation(s)
- Andreia L. Pinto
- Paediatric Respiratory Medicine, Primary Ciliary Dyskinesia Centre, Royal Brompton & Harefield NHS Trust, London SW3 6NP, UK; (A.L.P.); (C.H.); (T.B.)
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
- Department of Life Sciences, NOVA School of Science and Technology, 2825-149 Caparica, Portugal
| | - Margarida Rasteiro
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Catarina Bota
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Sara Pestana
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Pedro Sampaio
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Claire Hogg
- Paediatric Respiratory Medicine, Primary Ciliary Dyskinesia Centre, Royal Brompton & Harefield NHS Trust, London SW3 6NP, UK; (A.L.P.); (C.H.); (T.B.)
- Department of Paediatrics, Imperial College London, London SW3 6LY, UK
| | - Thomas Burgoyne
- Paediatric Respiratory Medicine, Primary Ciliary Dyskinesia Centre, Royal Brompton & Harefield NHS Trust, London SW3 6NP, UK; (A.L.P.); (C.H.); (T.B.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| |
Collapse
|
26
|
Gallagher MT, Smith DJ. The art of coarse Stokes: Richardson extrapolation improves the accuracy and efficiency of the method of regularized stokeslets. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210108. [PMID: 34084547 PMCID: PMC8150023 DOI: 10.1098/rsos.210108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The method of regularized stokeslets is widely used in microscale biological fluid dynamics due to its ease of implementation, natural treatment of complex moving geometries, and removal of singular functions to integrate. The standard implementation of the method is subject to high computational cost due to the coupling of the linear system size to the numerical resolution required to resolve the rapidly varying regularized stokeslet kernel. Here, we show how Richardson extrapolation with coarse values of the regularization parameter is ideally suited to reduce the quadrature error, hence dramatically reducing the storage and solution costs without loss of accuracy. Numerical experiments on the resistance and mobility problems in Stokes flow support the analysis, confirming several orders of magnitude improvement in accuracy and/or efficiency.
Collapse
Affiliation(s)
- M. T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - D. J. Smith
- School of Mathematics, University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
Jacinto R, Sampaio P, Roxo-Rosa M, Pestana S, Lopes SS. Pkd2 Affects Cilia Length and Impacts LR Flow Dynamics and Dand5. Front Cell Dev Biol 2021; 9:624531. [PMID: 33869175 PMCID: PMC8047213 DOI: 10.3389/fcell.2021.624531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
The left-right (LR) field recognizes the importance of the mechanism involving the calcium permeable channel Polycystin-2. However, whether the early LR symmetry breaking mechanism is exclusively via Polycystin-2 has not been tested. For that purpose, we need to be able to isolate the effects of decreasing the levels of Pkd2 protein from any eventual effects on flow dynamics. Here we demonstrate that curly-up (cup) homozygous mutants have abnormal flow dynamics. In addition, we performed one cell stage Pkd2 knockdowns and LR organizer specific Pkd2 knockdowns and observed that both techniques resulted in shorter cilia length and abnormal flow dynamics. We conclude that Pkd2 reduction leads to LR defects that cannot be assigned exclusively to its putative role in mediating mechanosensation because indirectly, by modifying cell shape or decreasing cilia length, Pkd2 deficit affects LR flow dynamics.
Collapse
Affiliation(s)
- Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Pedro Sampaio
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Susana S Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
29
|
Little RB, Norris DP. Right, left and cilia: How asymmetry is established. Semin Cell Dev Biol 2021; 110:11-18. [PMID: 32571625 DOI: 10.1016/j.semcdb.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.
Collapse
Affiliation(s)
- Rosie B Little
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
30
|
Moreno-Ayala R, Olivares-Chauvet P, Schäfer R, Junker JP. Variability of an Early Developmental Cell Population Underlies Stochastic Laterality Defects. Cell Rep 2021; 34:108606. [PMID: 33440143 PMCID: PMC7809618 DOI: 10.1016/j.celrep.2020.108606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/28/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Embryonic development seemingly proceeds with almost perfect precision. However, it is largely unknown how much underlying microscopic variability is compatible with normal development. Here, we quantify embryo-to-embryo variability in vertebrate development by studying cell number variation in the zebrafish endoderm. We notice that the size of a sub-population of the endoderm, the dorsal forerunner cells (DFCs, which later form the left-right organizer), exhibits significantly more embryo-to-embryo variation than the rest of the endoderm. We find that, with incubation of the embryos at elevated temperature, the frequency of left-right laterality defects is increased drastically in embryos with a low number of DFCs. Furthermore, we observe that these fluctuations have a large stochastic component among fish of the same genetic background. Hence, a stochastic variation in early development leads to a remarkably strong macroscopic phenotype. These fluctuations appear to be associated with maternal effects in the specification of the DFCs. High embryo-to-embryo variability of dorsal forerunner cell numbers Fluctuations of dorsal forerunner cells have a large stochastic component Embryos with fewer dorsal forerunner cells frequently develop laterality defects Variability of dorsal forerunner cell numbers is associated to maternal effects
Collapse
Affiliation(s)
- Roberto Moreno-Ayala
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany
| | - Pedro Olivares-Chauvet
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany
| | - Ronny Schäfer
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany.
| |
Collapse
|
31
|
Gallagher MT, Smith DJ. Passively parallel regularized stokeslets. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190528. [PMID: 32762431 PMCID: PMC7422872 DOI: 10.1098/rsta.2019.0528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Stokes flow, discussed by G.G. Stokes in 1851, describes many microscopic biological flow phenomena, including cilia-driven transport and flagellar motility; the need to quantify and understand these flows has motivated decades of mathematical and computational research. Regularized stokeslet methods, which have been used and refined over the past 20 years, offer significant advantages in simplicity of implementation, with a recent modification based on nearest-neighbour interpolation providing significant improvements in efficiency and accuracy. Moreover this method can be implemented with the majority of the computation taking place through built-in linear algebra, entailing that state-of-the-art hardware and software developments in the latter, in particular multicore and GPU computing, can be exploited through minimal modifications ('passive parallelism') to existing Matlab computer code. Hence, and with widely available GPU hardware, significant improvements in the efficiency of the regularized stokeslet method can be obtained. The approach is demonstrated through computational experiments on three model biological flows: undulatory propulsion of multiple Caenorhabditis elegans, simulation of progression and transport by multiple sperm in a geometrically confined region, and left-right symmetry breaking particle transport in the ventral node of the mouse embryo. In general an order-of-magnitude improvement in efficiency is observed. This development further widens the complexity of biological flow systems that are accessible without the need for extensive code development or specialist facilities. This article is part of the theme issue 'Stokes at 200 (part 2)'.
Collapse
Affiliation(s)
- Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham B15 2TT, UK
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- e-mail:
| | - David J. Smith
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
32
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
33
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Mizuno K, Shiozawa K, Katoh TA, Minegishi K, Ide T, Ikawa Y, Nishimura H, Takaoka K, Itabashi T, Iwane AH, Nakai J, Shiratori H, Hamada H. Role of Ca 2+ transients at the node of the mouse embryo in breaking of left-right symmetry. SCIENCE ADVANCES 2020; 6:eaba1195. [PMID: 32743070 PMCID: PMC7375832 DOI: 10.1126/sciadv.aba1195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 05/14/2023]
Abstract
Immotile cilia sense extracellular signals such as fluid flow, but whether Ca2+ plays a role in flow sensing has been unclear. Here, we examined the role of ciliary Ca2+ in the flow sensing that initiates the breaking of left-right (L-R) symmetry in the mouse embryo. Intraciliary and cytoplasmic Ca2+ transients were detected in the crown cells at the node. These Ca2+ transients showed L-R asymmetry, which was lost in the absence of fluid flow or the PKD2 channel. Further characterization allowed classification of the Ca2+ transients into two types: cilium-derived, L-R-asymmetric transients (type 1) and cilium-independent transients without an L-R bias (type 2). Type 1 intraciliary transients occurred preferentially at the left posterior region of the node, where L-R symmetry breaking takes place. Suppression of intraciliary Ca2+ transients delayed L-R symmetry breaking. Our results implicate cilium-derived Ca2+ transients in crown cells in initiation of L-R symmetry breaking in the mouse embryo.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Corresponding author. (K.Miz.); (H.H.)
| | - Kei Shiozawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takanobu A. Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Atsuko H. Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Junichi Nakai
- Department of Oral Function and Morphology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
- Corresponding author. (K.Miz.); (H.H.)
| |
Collapse
|
35
|
Yu T, Matsuda M. Epb41l5 interacts with Iqcb1 and regulates ciliary function in zebrafish embryos. J Cell Sci 2020; 133:jcs240648. [PMID: 32501287 PMCID: PMC7338265 DOI: 10.1242/jcs.240648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Erythrocyte protein band 4.1 like 5 (EPB41L5) is an adaptor protein beneath the plasma membrane that functions to control epithelial morphogenesis. Here we report a previously uncharacterized role of EPB41L5 in controlling ciliary function. We found that EPB41L5 forms a complex with IQCB1 (previously known as NPHP5), a ciliopathy protein. Overexpression of EPB41L5 reduced IQCB1 localization at the ciliary base in cultured mammalian epithelial cells. Conversely, epb41l5 knockdown increased IQCB1 localization at the ciliary base. epb41l5-deficient zebrafish embryos or embryos expressing C-terminally modified forms of Epb41l5 developed cilia with reduced motility and exhibited left-right patterning defects, an outcome of abnormal ciliary function. We observed genetic synergy between epb41l5 and iqcb1. Moreover, EPB41L5 decreased IQCB1 interaction with CEP290, another ciliopathy protein and a component of the ciliary base and centrosome. Together, these observations suggest that EPB41L5 regulates the composition of the ciliary base and centrosome through IQCB1 and CEP290.
Collapse
Affiliation(s)
- Tiffany Yu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07302, USA
| | - Miho Matsuda
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07302, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
36
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
37
|
Shylo NA, Emmanouil E, Ramrattan D, Weatherbee SD. Loss of ciliary transition zone protein TMEM107 leads to heterotaxy in mice. Dev Biol 2020; 460:187-199. [PMID: 31887266 PMCID: PMC7108973 DOI: 10.1016/j.ydbio.2019.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/15/2022]
Abstract
Cilia in most vertebrate left-right organizers are involved in the original break in left-right (L-R) symmetry, however, less is known about their roles in subsequent steps of the cascade - relaying the signaling and maintaining the established asymmetry. Here we describe the L-R patterning cascades in two mutants of a ciliary transition zone protein TMEM107, revealing that near-complete loss of cilia in Tmem107null leads to left pulmonary isomerism due to the failure of the midline barrier. Contrary, partially retained cilia in the node and the midline of a hypomorphic Tmem107schlei mutant appear sufficient for the formation of the midline barrier and establishment and maintenance of the L-R asymmetry. Despite misregulation of Shh signaling in both mutants, the presence of normal Lefty1 expression and midline barrier formation in Tmem107schlei mutants, suggests a requirement for cilia, but not necessarily Shh signaling for Lefty1 expression and midline barrier formation.
Collapse
Affiliation(s)
- Natalia A Shylo
- Yale University, Genetics Department, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Elli Emmanouil
- Yale University, Genetics Department, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Dylan Ramrattan
- Yale University, Genetics Department, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Scott D Weatherbee
- Yale University, Genetics Department, 333 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
38
|
Abstract
The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
39
|
Gallagher MT, Montenegro-Johnson TD, Smith DJ. Simulations of particle tracking in the oligociliated mouse node and implications for left-right symmetry-breaking mechanics. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190161. [PMID: 31884925 DOI: 10.1098/rstb.2019.0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The concept of internal anatomical asymmetry is familiar-usually in humans the heart is on the left and the liver is on the right; however, how does the developing embryo know to produce this consistent laterality? Symmetry-breaking initiates with left-right asymmetric cilia-driven fluid mechanics in a small fluid-filled structure called the ventral node in mice. However, the question of what converts this flow into left-right asymmetric development remains unanswered. A leading hypothesis is that flow transports morphogen-containing vesicles within the node, the absorption of which results in asymmetrical gene expression. To investigate how vesicle transport might result in the situs patterns observe in wild-type and mutant experiments, we extend the open-source Stokes flow package, NEAREST, to consider the hydrodynamic and Brownian motion of particles in a mouse model with flow driven by one, two and 112 beating cilia. Three models for morphogen-containing particle released are simulated to assess their compatibility with observed results in oligociliated and wild-type mouse embryos: uniformly random release, localized cilium stress-induced release and localized release from motile cilia themselves. Only the uniformly random release model appears consistent with the data, with neither localized release model resulting in significant transport in the oligociliated embryo. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- M T Gallagher
- School of Mathematics, University of Birmingham, Birmingham B15 2TT UK
| | | | - D J Smith
- School of Mathematics, University of Birmingham, Birmingham B15 2TT UK
| |
Collapse
|
40
|
Cartwright JHE, Piro O, Tuval I. Chemosensing versus mechanosensing in nodal and Kupffer's vesicle cilia and in other left-right organizer organs. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190566. [PMID: 31884912 DOI: 10.1098/rstb.2019.0566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How is sensing carried out by cilia in the mouse node, zebrafish Kupffer's vesicle and similar left-right (LR) organizer organs in other species? Two possibilities have been put forward. In the former, cilia would detect some chemical species in the fluid; in the latter, they would detect fluid flow. In either case, the hypothesis is that an imbalance would be detected between this signalling coming from cilia on the left and right sides of the organizer, which would initiate a cascade of signals leading ultimately to the breaking of LR symmetry in the developing body plan of the organism. We review the evidence for both hypotheses. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18100 Armilla, Granada, Spain.,Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
| | - Oreste Piro
- Departamento de Física, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Idan Tuval
- Departamento de Física, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Mediterranean Institute for Advanced Studies, CSIC-Universitat de les Illes Balears, 07190 Mallorca, Spain
| |
Collapse
|
41
|
On the Necessary Conditions for Non-Equivalent Solutions of the Rotlet-Induced Stokes Flow in a Sphere: Towards a Minimal Model for Fluid Flow in the Kupffer’s Vesicle. MATHEMATICS 2019. [DOI: 10.3390/math8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of left–right (LR) asymmetry in vertebrates is a prime example of a highly conserved fundamental process in developmental biology. Details of how symmetry breaking is established in different organisms are, however, still not fully understood. In the zebrafish (Danio rerio), it is known that a cilia-mediated vortical flow exists within its LR organizer, the so-called Kupffer’s vesicle (KV), and that it is directly involved in early LR determination. However, the flow exhibits spatio-temporal complexity; moreover, its conversion to asymmetric development has proved difficult to resolve despite a number of recent experimental advances and numerical efforts. In this paper, we provide further theoretical insight into the essence of flow generation by putting together a minimal biophysical model which reduces to a set of singular solutions satisfying the imposed boundary conditions; one that is informed by our current understanding of the fluid flow in the KV, that satisfies the requirements for left–right symmetry breaking, but which is also amenable to extensive parametric analysis. Our work is a step forward in this direction. By finding the general conditions for the solution to the fluid mechanics of a singular rotlet within a rigid sphere, we have enlarged the set of available solutions in a way that can be easily extended to more complex configurations. These general conditions define a suitable set for which to apply the superposition principle to the linear Stokes problem and, hence, by which to construct a continuous set of solutions that correspond to spherically constrained vortical flows generated by arbitrarily displaced infinitesimal rotations around any three-dimensional axis.
Collapse
|
42
|
Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, Ramalho JS, Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE. Rab35 controls cilium length, function and membrane composition. EMBO Rep 2019; 20:e47625. [PMID: 31432619 PMCID: PMC6776896 DOI: 10.15252/embr.201847625] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Collapse
Affiliation(s)
- Stefanie Kuhns
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Cecília Seixas
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Sara Pestana
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Bárbara Tavares
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Renata Nogueira
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Raquel Jacinto
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - José S Ramalho
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Jeremy C Simpson
- School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Jens S Andersen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | | | - Susana S Lopes
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Duarte C Barral
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Oliver E Blacque
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
43
|
Clinical and Genetic Analysis of Children with Kartagener Syndrome. Cells 2019; 8:cells8080900. [PMID: 31443223 PMCID: PMC6721662 DOI: 10.3390/cells8080900] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia causing ineffective mucus clearance and organ laterality defects. In this study, two unrelated Portuguese children with strong PCD suspicion underwent extensive clinical and genetic assessments by whole-exome sequencing (WES), as well as ultrastructural analysis of cilia by transmission electron microscopy (TEM) to identify their genetic etiology. These analyses confirmed the diagnostic of Kartagener syndrome (KS) (PCD with situs inversus). Patient-1 showed a predominance of the absence of the inner dynein arms with two disease-causing variants in the CCDC40 gene. Patient-2 showed the absence of both dynein arms and WES disclosed two novel high impact variants in the DNAH5 gene and two missense variants in the DNAH7 gene, all possibly deleterious. Moreover, in Patient-2, functional data revealed a reduction of gene expression and protein mislocalization in both genes' products. Our work calls the researcher's attention to the complexity of the PCD and to the possibility of gene interactions modelling the PCD phenotype. Further, it is demonstrated that even for well-known PCD genes, novel pathogenic variants could have importance for a PCD/KS diagnosis, reinforcing the difficulty of providing genetic counselling and prenatal diagnosis to families.
Collapse
|
44
|
Chiani F, Orsini T, Gambadoro A, Pasquini M, Putti S, Cirilli M, Ermakova O, Tocchini-Valentini GP. Functional loss of Ccdc151 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia. Dis Model Mech 2019; 12:dmm038489. [PMID: 31383820 PMCID: PMC6737950 DOI: 10.1242/dmm.038489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/03/2019] [Indexed: 01/10/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder affecting normal structure and function of motile cilia, phenotypically manifested as chronic respiratory infections, laterality defects and infertility. Autosomal recessive mutations in genes encoding for different components of the ciliary axoneme have been associated with PCD in humans and in model organisms. The CCDC151 gene encodes for a coiled-coil axonemal protein that ensures correct attachment of outer dynein arm (ODA) complexes to microtubules. A correct arrangement of dynein arm complexes is required to provide the proper mechanical force necessary for cilia beat. Loss-of-function mutations in CCDC151 in humans leads to PCD disease with respiratory distress and defective left-right body asymmetry. In mice with the Ccdc151Snbl loss-of-function mutation (Snowball mutant), left-right body asymmetry with heart defects have been observed. Here, we demonstrate that loss of Ccdc151 gene function via targeted gene deletion in mice leads to perinatal lethality and congenital hydrocephalus. Microcomputed tomography (microCT) X-ray imaging of Ccdc151-β-galactosidase reporter expression in whole-mount brain and histological analysis show that Ccdc151 is expressed in ependymal cells lining the ventricular brain system, further confirming the role of Ccdc151 dysfunction in hydrocephalus development. Analyzing the features of hydrocephalus in the Ccdc151-knockout animals by microCT volumetric imaging, we observe continuity of the aqueduct of Sylvius, indicating the communicating nature of hydrocephalus in the Ccdc151-knockout animals. Congenital defects in left-right asymmetry and male infertility have been also observed in Ccdc151-null animals. Ccdc151 gene deletion in adult animals results in abnormal sperm counts and defective sperm motility.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Francesco Chiani
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Tiziana Orsini
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Alessia Gambadoro
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Miriam Pasquini
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Sabrina Putti
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Maurizio Cirilli
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Olga Ermakova
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, Department of Biomedical Sciences (DSB), Italian National Research Council (CNR), Adriano Buzzati-Traverso Campus, via Ramarini, 32, 00015, Monterotondo, Rome, Italy
| |
Collapse
|
45
|
R Ferreira R, Fukui H, Chow R, Vilfan A, Vermot J. The cilium as a force sensor-myth versus reality. J Cell Sci 2019; 132:132/14/jcs213496. [PMID: 31363000 DOI: 10.1242/jcs.213496] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.
Collapse
Affiliation(s)
- Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Hajime Fukui
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Department of Living Matter Physics, 37077 Göttingen, Germany .,J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
46
|
Burkhalter MD, Sridhar A, Sampaio P, Jacinto R, Burczyk MS, Donow C, Angenendt M, Hempel M, Walther P, Pennekamp P, Omran H, Lopes SS, Ware SM, Philipp M. Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis. J Clin Invest 2019; 129:2841-2855. [PMID: 31094706 DOI: 10.1172/jci98890] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
About 1% of all newborns are affected by congenital heart disease (CHD). Recent findings identify aberrantly functioning cilia as a possible source for CHD. Faulty cilia also prevent the development of proper left-right asymmetry and cause heterotaxy, the incorrect placement of visceral organs. Intriguingly, signaling cascades such as mTor that influence mitochondrial biogenesis also affect ciliogenesis, and can cause heterotaxy-like phenotypes in zebrafish. Here, we identify levels of mitochondrial function as a determinant for ciliogenesis and a cause for heterotaxy. We detected reduced mitochondrial DNA content in biopsies of heterotaxy patients. Manipulation of mitochondrial function revealed a reciprocal influence on ciliogenesis and affected cilia-dependent processes in zebrafish, human fibroblasts and Tetrahymena thermophila. Exome analysis of heterotaxy patients revealed an increased burden of rare damaging variants in mitochondria-associated genes as compared to 1000 Genome controls. Knockdown of such candidate genes caused cilia elongation and ciliopathy-like phenotypes in zebrafish, which could not be rescued by RNA encoding damaging rare variants identified in heterotaxy patients. Our findings suggest that ciliogenesis is coupled to the abundance and function of mitochondria. Our data further reveal disturbed mitochondrial function as an underlying cause for heterotaxy-linked CHD and provide a mechanism for unexplained phenotypes of mitochondrial disease.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany.,Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Arthi Sridhar
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pedro Sampaio
- CEDOC Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Raquel Jacinto
- CEDOC Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Martina S Burczyk
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Max Angenendt
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | | | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Susana S Lopes
- CEDOC Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Stephanie M Ware
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany.,Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
47
|
Maerz LD, Burkhalter MD, Schilpp C, Wittekindt OH, Frick M, Philipp M. Pharmacological cholesterol depletion disturbs ciliogenesis and ciliary function in developing zebrafish. Commun Biol 2019; 2:31. [PMID: 30729178 PMCID: PMC6351647 DOI: 10.1038/s42003-018-0272-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Patients with an inherited inability to synthesize sufficient amounts of cholesterol develop congenital malformations of the skull, toes, kidney and heart. As development of these structures depends on functional cilia we investigated whether cholesterol regulates ciliogenesis through inhibition of hydroxymethylglutaryl-Coenzyme A reductase (HMG-CoA-R), the rate-limiting enzyme in cholesterol synthesis. HMG-CoA-R is efficiently inhibited by statins, a standard medication for hyperlipidemia. When zebrafish embryos are treated with statins cilia dysfunction phenotypes including heart defects, left-right asymmetry defects and malformation of ciliated organs develop, which are ameliorated by cholesterol replenishment. HMG-CoA-R inhibition and other means of cholesterol reduction lowered ciliation frequency and cilia length in zebrafish as well as several mammalian cell types. Cholesterol depletion further triggers an inability for ciliary signalling. Because of a reduction of the transition zone component Pi(4,5)P2 we propose that cholesterol governs crucial steps of cilium extension. Taken together, we report that cholesterol abrogation provokes cilia defects.
Collapse
Affiliation(s)
- Lars D. Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martin D. Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carolin Schilpp
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver H. Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
48
|
Olstad EW, Ringers C, Hansen JN, Wens A, Brandt C, Wachten D, Yaksi E, Jurisch-Yaksi N. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development. Curr Biol 2019; 29:229-241.e6. [PMID: 30612902 PMCID: PMC6345627 DOI: 10.1016/j.cub.2018.11.059] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Motile cilia are miniature, propeller-like extensions, emanating from many cell types across the body. Their coordinated beating generates a directional fluid flow, which is essential for various biological processes, from respiration to reproduction. In the nervous system, ependymal cells extend their motile cilia into the brain ventricles and contribute to cerebrospinal fluid (CSF) flow. Although motile cilia are not the only contributors to CSF flow, their functioning is crucial, as patients with motile cilia defects develop clinical features, like hydrocephalus and scoliosis. CSF flow was suggested to primarily deliver nutrients and remove waste, but recent studies emphasized its role in brain development and function. Nevertheless, it remains poorly understood how ciliary beating generates and organizes CSF flow to fulfill these roles. Here, we study motile cilia and CSF flow in the brain ventricles of larval zebrafish. We identified that different populations of motile ciliated cells are spatially organized and generate a directional CSF flow powered by ciliary beating. Our investigations revealed that CSF flow is confined within individual ventricular cavities, with little exchange of fluid between ventricles, despite a pulsatile CSF displacement caused by the heartbeat. Interestingly, our results showed that the ventricular boundaries supporting this compartmentalized CSF flow are abolished during bodily movement, highlighting that multiple physiological processes regulate the hydrodynamics of CSF flow. Finally, we showed that perturbing cilia reduces hydrodynamic coupling between the brain ventricles and disrupts ventricular development. We propose that motile-cilia-generated flow is crucial in regulating the distribution of CSF within and across brain ventricles. Spatially organized motile cilia with rotational beats create directional CSF flow Ciliary beating, heartbeat, and locomotion generate distinct components of CSF flow Joint action of these components balances CSF compartmentalization and dispersion Disruption of ciliary beating leads to ventricular defects during brain development
Collapse
Affiliation(s)
- Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Jan N Hansen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Adinda Wens
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Cecilia Brandt
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| |
Collapse
|
49
|
Wall stress enhanced exocytosis of extracellular vesicles as a possible mechanism of left-right symmetry-breaking in vertebrate development. J Theor Biol 2018; 460:220-226. [PMID: 30300649 DOI: 10.1016/j.jtbi.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022]
Abstract
In certain vertebrate species, the developing embryo breaks left-right symmetry in a transient organising structure: the "Left-Right Organiser" (LRO) known as the "node" in mice, and "Kupffer's vesicle" in fish. Directional cilia-driven flow is integral to this symmetry-breaking process, however the mechanism by which this flow is translated into an asymmetric signal remains contested; the principal theories are either flow transport of vesicles containing morphogens, or flow mechanosensing by cilia. Whilst some recent work favours the morphogen theory, other findings seem to support mechanosensing. In this study, we consider a hypothesis whereby the cilia themselves drive the release of morphogen-carrying extracellular vesicles (EVs) into the LRO; namely, that fluid stresses on the cell membrane induce/enhance exocytosis of EVs. Using a mathematical model, we calculate significant wall normal and shear stresses for a range of typical cilium parameter values comparable to levels capable of enhancing exocytosis. This mechanism may be able to reconcile the apparently conflicting experimental evidence.
Collapse
|
50
|
Left atrial deformation analysis by speckle tracking echocardiography to predict exercise capacity after myocardial infarction. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.repce.2017.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|